
Graph Algorithms (part 3 of CSC 282),
http://www.cs.rochester.edu/~stefanko/Teaching/11CS282

”Homework” problem sessions are in CSB 601, 6:15-7:15pm on Oct. 5 (Wednes-
day), Oct. 12 (Wednesday), and on Oct. 19 (Wednesday); held by Rintaro
Kuroiwa and Josh Pawlicki.

Homework is due Thursday, Oct 20 (Thursday).

”Exam” problem session is in CSB 601, 4:45-5:45pm on Oct. 24 (Monday).

EXAM #3 will be on Tuesday, Oct. 25.

1 List of algorithms covered in the class

(B-basic, I-intermediate, A-advanced):

B: DFS, BFS (p.85, DSV; p.105, DSV).
B: Topological sort (p.90, DSV).
A: Strongly connected components (p.91, DSV).
B: Dijkstra’s algorithm (p.108, DSV).
I: Bellman-Ford algorithm (p.117, DSV).
A: Floyd-Warshall algorithm (p.173, DSV).
B: Prim’s algorithm (p.137, DSV) (a.k.a., Bor̊uvka’s algorithm).
I: Kruskal’s algorithm (p.131, DSV).
I: Union-find (p.132, DSV).
A: Maximum matching in bipartite graphs.
A: Maximum-weight matching in bipartite graphs.

2 Basic material

Important concepts, problems, theorems, and algorithms:

• Graph, directed graph, representing graphs (adjacency list representation, adjacency matrix).

• Connected component, strongly connected component.

• Topological sorting.

• Shortest path.

• Minimum spanning tree.

• Matching, maximum matching, maximal matching, augmenting path.

3 Basic Homework - solve and turn in

3.1 (due Thursday, Oct 20) Let G = (V,E) be a digraph given in the adjacency-list representation (i. e., for each
vertex v ∈ V we have a (linked) list of out-neighbors of v). Assume that V = {1, . . . , n}; let m := |E|.

1. Write pseudocode for a procedure which outputs an adjacency-list representation of the reverse digraph (i. e.,
G with each edge reversed). The procedure should run in time O(m + n).

2. Write pseudocode for a procedure which outputs the adjacency-list representation of G in which the out-
neighbors of each vertex are listed in the increasing order. The procedure should run in time O(m + n).
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3. Write pseudocode for a procedure which checks if G is undirected (i. e., the reverse of every e ∈ E is also in
E). The procedure should run in time O(m + n).

3.2 (due Thursday, Oct 20) Let G = (V,E) be an undirected graph; let n := |V |, m := |E|. A 2-coloring of G
is an assignment φ : V → {1, 2} (that is, each vertex gets one of two colors) such that for all {u, v} ∈ E we have
φ(u) 6= φ(v) (that is, endpoints of each edge get different colors). Give an O(m + n) algorithm which finds either a
2-coloring of a graph or an odd cycle.

3.3 (due Thursday, Oct 20) Let G = (V,E) be an undirected graph; let n := |V |, m := |E|. Give an O(m + n)
algorithm that decides whether G contains a cycle and if it does then it outputs one (the output should be a sequence
of vertices in the order they occur on the cycle).

3.4 (due Thursday, Oct 20) Show that if we exchange the lines “for k = 1 to n:” and “for i = 1 to n:” of Floyd-
Warshall algorithm (DPV (draft), p. 188) the resulting algorithm does not correctly compute all-pairs-shortest paths.
Give an example graph for which the modified algorithm fails.

3.5 (due Thursday, Oct 20) We have a road network consisting of one-way streets. There are a few proposals
for a new one-way road to be built. You want to vote for the proposal that would result in the shortest distance
between your home and your office. How can you, quickly, figure out the proposal to vote for? We now formalize
the problem.

Let G = (V,E, w) be a directed graph with positive edge weights; let n := |V |, m := |E|. Let s, t ∈ V be two
distinct vertices (s is your home, t is your office). There are k proposals (a1, b1, c1), . . . , (ak, bk, ck), where ai, bi ∈ V
and ci ∈ R+ ((ai, bi, ci) proposes connecting location ai to location bi with a road of length ci).

Formally, let Gi be the graph obtained from G by adding edge (ai, bi) with weight ci. We want to find which
of G1, . . . , Gk has the shortest distance from s to t. Describe an O(m + n log n + k) algorithm for the problem (no
pseudocode is needed, just a clear description of the algorithm; you can use any algorithm that was mentioned in
the class or in the book).

4 Advanced Homework - solve and turn in

Definitions needed for problems 3.6 - 3.9 below:

Let G = (V,E) be an undirected graph. A matching of G is a set of edges E′ ⊆ E such that every vertex of G
is in at most one edge of E′. A perfect matching of G is a set of edges E′ ⊆ E such that every vertex of G is in
exactly one edge of E′. A matching E′ of G = (V,E) is maximal if there does not exist e ∈ E \E′ such that E′ ∪{e}
is a matching. A matching E′ of G = (V,E) is maximum if it has the largest cardinality (that is, the number of
elements) among the matchings of G. To understand the definitions, try to answer the following two questions (do
not turn in):

• Is every maximum matching maximal matching?

• Is every maximal matching maximum matching?

Let G = (V,E,w) be an undirected graph. Let E′ ⊆ E be a matching of G. The weight of E′ is∑
e∈E′

w(e).

We will also consider the following two problems:
Max-Weight Matching:

INPUT: weighted graph G = (V,E, w)
OUTPUT: a matching E′ ⊆ E of G with the maximum weight.

FACT: there is a polynomial-time algorithm to find the maximum-weight matching.
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Max-Weight Perfect Matching:
INPUT: weighted graph G = (V,E, w)
OUTPUT: a perfect matching E′ ⊆ E of G with the maximum weight.

3.6 (due Thursday, Oct 20) Consider the following algorithm to find a maximal matching of a given input graph
G = (V,E):

• E′ ← {}; V ′ ← {};

• For each edge {u, v} ∈ E do

– if u 6∈ V ′ and v 6∈ V ′ then E′ ← E′ ∪ {{u, v}}; V ′ ← V ′ ∪ {u, v}

Give an example of a graph for which the algorithm does not find a maximum matching. (The algorithm is a little
underspecified — it does not specify the order in which the edges are considered. You can pick any order.)

3.7 (due Thursday, Oct 20) Prove that the algorithm from the previous problem always returns a matching
whose size is at least half of the maximum.

3.8 (due Thursday, Oct 20) Suppose that you have an algorithm (let’s call it A) which solves the Max-Weight
Matching problem on any weighed graph G = (V,E,w) in time O(m + n) (where n := |V |, m := |E|). Show
how you can use algorithm A to solve the Max-Weight Perfect Matching problem in time O(m + n). (Hint:
consider the weighted graph G′ = (V,E,w′) where w′(e) = w(e) + C where C is some large number.)

3.9 (due Thursday, Oct 20) Suppose that you have an algorithm (let’s call it B) which solves the Max-Weight
Perfect Matching problem on any weighed graph G = (V,E,w) in time O(m + n) (where n := |V |, m := |E|).
Show how you can use the algorithm B to solve the Max-Weight Matching problem in time O(m + n).

3.10 (due Thursday, Oct 20) [a quite difficult problem] The max-weight of a spanning tree T is the maximum
weight of an edge of T . A min-max-weight spanning tree is a spanning tree with the minimum max-weight. Give
O(m + n) algorithm which finds min-max-weight spanning tree of a given input graph G = (V,E) (where n := |V |,
m := |E|).

3.11 (due Thursday, Oct 20) We are given n rectangles of sizes a1×b1, . . . , an×bn. We want to build the highest
tower out of the rectangles. In a tower, if a rectangle of width w is on top of a rectangle of width w′ then we require
w ≤ w′. We are allowed to rotate the rectangles (i. e., an a× b rectangle can be changed into a b×a rectangle). Give
an O(n) algorithm which finds the height of the highest tower.

(For example if the input is 11× 11, 8× 2, 1× 10 then the solution is a tower of height 29 = 11 + 8 + 10.)

3.12 (due Thursday, Oct 20) Suppose that in Problem 3.11 we change the requirement w ≤ w′ to w < w′, i. e., a
rectangle on top of another rectangle has to be strictly thinner. Note that now it can happen that not all rectangles
get used (e. g., if we have two squares of the same size). Give a polynomial-time algorithm for the modified problem.
(Hint: try to cast the problem as maximum weight matching.)

(For example if the input is 2× 11, 2× 10, 10× 10 then the solution is a tower of height 22 = 2 + 10 + 10.)

3.13 (due Thursday, Oct 20) We have n jobs and m machines. We are given n ×m table T where Tij is the
time to complete job i on machine j. Our task is to schedule the jobs on the machines to minimize the average
completion time (that is, for each job you take the time when it finished and then average over all jobs). Give a
polynomial-time algorithm for the problem. (Hint: try to cast the problem as maximum weight matching.)

(For example if we have 3 jobs and 2 machines and

T =

 1 3
3 2
4 1

 ,

then the following schedule is optimal:
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• machine 1: 1;

• machine 2: 3, 2.

The completion times of jobs are: 1, 3, 1, the average completion time is 5/3.)

3.14 (due Thursday, Oct 20) Let G = (V,E, w) be an undirected graph with positive edge weights; let m := |E|,
n := |V |. Let (a1, b1, c1), . . . , (ak, bk, ck) be a collection of triples, where ai, bi ∈ V and ci ∈ R+ (for i ∈ {1, . . . , k}).
Let Gi be the graph obtained from G by adding edge {ai, bi} with weight ci. We want to find the cost of the minimum
weight spanning tree of Gi, for each i ∈ {1, . . . , k}. (Thus the output of our procedure is k numbers.)

Describe an O(n2 + k) algorithm for the problem. Clearly describe your algorithm in words, give a pseudocode,
and argue why the running time is O(n2 + k) (if you have a faster algorithm that is, of course, OK). You can use
any algorithm that was mentioned in the class or in the book (without writing the pseudocode for that algorithm).

5 Additional problems from the book

Try to solve the following problems. A few of them will be on the quiz. We will go over the ones that you choose in
the problem sessions.

• 3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 3.8, 3.9, 3.11, 3.12, 3.13, 3.15, 3.18, 3.19, 3.21, 3.22, 3.23, 3.24, 3.25, 3.26, 3.27,

• 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.10, 4.11, 4.13, 4.15, 4.17, 4.18, 4.19, 4.20, 4.21,

• 5.1, 5.2, 5.3, 5.7.

6 Mechanical problems (solve, but do NOT turn in)

3.15 Give the adjacency matrix representation and the adjacency lists representation of the following graph:

1

2

5

3

4

3.16 Draw the graph with the following adjacency matrix:
0 1 0 0 1
1 0 1 1 0
0 1 0 1 1
0 1 1 0 0
1 0 1 0 0


3.17 Find a topological sorting of the following directed acyclic graph G = (V,E) where

V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

and
E = {(7, 9), (9, 8), (6, 8), (10, 6), (2, 3), (3, 6), (1, 3), (4, 10), (5, 2), (7, 5)}.
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3.18 Find the shortest s− t path in the following graph:
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3.19 Find the minimum spanning tree of the following graph:
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3.20 Find the strongly connected components of the following graph:
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