
Greedy algorithms/dynamic programming (part 1 of CSC 282),
http://www.cs.rochester.edu/~stefanko/Teaching/12CS282

1 Schedule

”Homework” problem session is in CSB 601,
4:45pm-5:45pm on Wednesday, Sep. 12.

Homework is due Thursday, Sep. 13.

”Exam” problem session is in CSB 601, 4:45pm-
5:45pm on Wednesday, Sep. 19.

EXAM #1 will be on Thursday, Sep. 20.

2 Homework - solve and turn in

1.1 (due Sep. 13) We are given an n × n array A of zeros and ones. We want to find the size of the
largest contiguous all-ones square. Give an O(n2)-time algorithm for the problem.

1.2 (due Sep. 13) We are given n positive numbers a1, . . . , an. The goal is to select a subset of the
numbers with maximal sum and such that no three consecutive numbers are selected. Here are three
example inputs together with optimal solutions (the numbers in boxes are selected):

5 5 8 5 5

5 5 12 5 5

1 2 2 1 2 1 2 5 5

Give an O(n)-time algorithm for the problem.

1.3 (due Sep. 13) Write a dynamic programming algorithm which for a given number n finds the smallest
number of squares which sum to n (for example for n = 7 we need 4 squares (7 = 22 + 12 + 12 + 12),
whereas for n = 13 we only need 2 squares (13 = 32 +22)). Implement your algorithm and find all numbers
from {1, 2, . . . , 100} which need 4 squares. Use “The On-Line Encyclopedia of Integer Sequences” to find
a formula for the numbers which need 4 squares.

1.4 (due Sep. 13) A shuffle of two strings A,B is formed by interspersing the characters into a new
string, keeping the characters of A and B in the same order (for example, ‘several’ is a shuffle of ‘seal’
and ‘evr’). Given three strings A = a1 . . . an, B = b1 . . . bm, and C = c1 . . . cm+n, we would like to verify
whether C is a shuffle of A and B. Give a dynamic programming algorithm for the problem

3 Bonus Homework - solve and turn in

1.5 (due Sep. 13) Let a1, . . . , an and b1, . . . , bm be two sequences of numbers. We would like to find
the number of occurrences of b1, . . . , bm as a subsequence1 of a1, . . . , an

1What is a subsequence? We say that b1, . . . , bm is a subsequence of a1, . . . , an if by erasing some of the ai’s from
a1, . . . , an we can obtain the sequence b1, . . . , bm; for example 1, 1 is a subsequence of 1, 2, 1.

1



For example, if a1 = a2 = · · · = an = 1, m = 2, b1 = b2 = 1 then the answer is n(n − 1)/2. Give a
polynomial-time dynamic programming algorithm for the problem.

1.6 (due Sep. 13) We are given a sequence A of n numbers a1, . . . , an. We would like to count the
number of different subsequences of A. For example, A = 1, 2, 3 has 8 different subsequences (one
of length 3, three of length 2, three of length 1, and one of length 0); on the other hand A = 1, 1, 1 has
4 different subsequences (one of length 3, one of length 2, one of length 1, and one of length 0). Give a
polynomial-time dynamic programming algorithm for the problem.

1.7 (due Sep. 13) We have an a× b bar of chocolate (where a, b are integers). By breaking the bar we
can either

• create two bars a1 × b and a2 × b where a1, a2 are integers and a1 + a2 = a, or

• create two bars a× b1 and a× b2 where b1, b2 are integers and b1 + b2 = b.

We can further break the resulting bars. Our goal is to 1) end up with bars that are square (that is, have
size 1× 1, or 2× 2, or 3× 3, and so on) and 2) minimize the total number of breaks.

For example, if a = 2 and b = 3 then we use 2 breaks:

2× 3 →
2× 2 and 2× 1 →

2× 2 and 1× 1 and 1× 1.

For example, if a = 2 and b = 4 then we use 1 break:

2× 4 →
2× 2 and 2× 2.

Give a dynamic programming algorithm which computes a table T [1..a, 1..b] where T [x, y] contains the
minimal number of breaks to “squareize” an x× y bar.

4 Additional problems from the book (do not turn in)

Try to solve the following problems. A few of them can be on the quiz. We will go over the ones that you
choose in the problem sessions.

• 5.14, 5.15, 5.16, 5.20, 5.21, 5.26, 5.32,

• 6.1, 6.2, 6.6, 6.8, 6.9, 6.11, 6.14, 6.20, 6.21, 6.25, 6.26, 6.27, 6.29.

Check Jeff Erickson’s (UIUC) notes for additional problems:
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/05-dynprog.pdf

2


	Schedule
	Homework - solve and turn in
	Bonus Homework - solve and turn in
	Additional problems from the book (do not turn in)

