
Graph Algorithms (part 2 of CSC 282),
http://www.cs.rochester.edu/~stefanko/Teaching/16CS282

IMPORTANT: Write each problem on a separate sheet of paper. Write
your name on each sheet. (Why? To speed up the grading we will use parallelization—each
problem will be graded by a different TA. At the beginning of the class (on the date when the homework
is due) there will be a separate pile for each problem.)

Homework 2 due: Oct. 6 (Thursday); collected before class in B&L 109.

Problem sessions before Homework 2 is due:

Oct. 3 (Monday) 6:15pm - 7:15pm in Hylan 202
Oct. 4 (Tuesday) 6:15pm - 7:15pm in Goergen 109
Oct. 5 (Wednesday) 6:15pm - 7:15pm in Gavett 310
Oct. 5 (Wednesday) 7:40pm - 8:40pm in Hutchinson 473

1 Homework - solve and turn in

2.1 (due Thursday, Oct 6) Let G = (V,E) be a directed graph (digraph) given in the following adjacency-list
representation: for each vertex v ∈ V we have a linked list of out-neighbors of v. Assume that V = {1, . . . , n}; let
m := |E|.

1. Write pseudocode for a procedure which outputs an adjacency-list representation of the reverse digraph (i. e.,
G with each edge reversed). The procedure should run in time O(m + n).

2. Write pseudocode for a procedure which outputs the adjacency-list representation of G in which the out-
neighbors of each vertex are listed in the increasing order. The procedure should run in time O(m + n).

3. Write pseudocode for a procedure which checks if G is undirected (i. e., the reverse of every e ∈ E is also in
E). The procedure should run in time O(m + n).

2.2 (due Thursday, Oct 6) Let G = (V,E) be an directed graph; let n := |V |, m := |E|. Assume that G is not
strongly connected. Give an O(m + n) algorithm that decides whether there exist u, v ∈ V such that adding edge
(u, v) to G makes it strongly connected.

2.3 (due Thursday, Oct 6) We have a road network consisting of one-way streets. There are a few proposals
for a new one-way road to be built. You want to vote for the proposal that would result in the shortest distance
between your home and your office. How can you, quickly, figure out the proposal to vote for? We now formalize
the problem.

Let G = (V,E,w) be a directed graph with positive edge weights; let n := |V |, m := |E|. Let s, t ∈ V be two
distinct vertices (s is your home, t is your office). There are k proposals (a1, b1, c1), . . . , (ak, bk, ck), where ai, bi ∈ V
and ci ∈ R+ ((ai, bi, ci) proposes connecting location ai to location bi with a road of length ci).

Let Gi be the graph obtained from G by adding edge (ai, bi) with weight ci (note that Gi has m + 1 edges (for
each i ∈ {1, . . . , k})). We want to find which of G1, . . . , Gk has the shortest distance from s to t. Describe an
O(m + n log n + k) algorithm for the problem (no pseudocode is needed, just a clear description of the algorithm;
you can use any algorithm that was mentioned in the class or in the book).

2 Bonus Homework - solve and turn in

2.4 (due Thursday, Oct 6) Consider the same problem as 2.3 except now ` out of the k proposals get built. How
can you, quickly, figure out the proposals to vote for?

1

Let G = (V,E,w) be a directed graph with positive edge weights; let n := |V |, m := |E|. Let s, t ∈ V be two
distinct vertices (s is your home, t is your office). There are k proposals (a1, b1, c1), . . . , (ak, bk, ck), where ai, bi ∈ V
and ci ∈ R+ ((ai, bi, ci) proposes connecting location ai to location bi with a road of length ci). Let ` ∈ {1, . . . , k}. We
want to find S ⊆ {1, . . . , k}, |S| = ` that minimizes the distance from s to t in the graph G with edges (ai, bi, ci), i ∈ S
added in.

Describe a fast algorithm for the problem (no pseudocode is needed, just a clear description of the algorithm; you
can use any algorithm that was mentioned in the class or in the book). Determine the asymptotic running time of
your algorithm.

3 Additional problems

Try to solve the following problems from Dasgupta-Papadimitriou-Vazirani. We will go over the ones that you choose
in the problem sessions.

• 3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 3.8, 3.9, 3.11, 3.12, 3.13, 3.15, 3.18, 3.19, 3.21, 3.22, 3.23, 3.24, 3.25, 3.26, 3.27,

• 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.10, 4.11, 4.13, 4.15, 4.17, 4.18, 4.19, 4.20, 4.21,

• 5.1, 5.2, 5.3, 5.7.

Try to solve the following problems from http://jeffe.cs.illinois.edu/teaching/algorithms/all-graphs.pdf

We will go over the ones that you choose in the problem sessions.

• section 18: problems 9, 10, 11, 12,

• section 19: problems 1, 5, 6, 7, 9,

• section 20: problems 1, 2, 3, 4, 5, 6, 7, 8,

• section 21: problems 4, 5, 6, 7, 9, 11, 12

• section 2: problems 3, 4, 5, 6.

2

	Homework - solve and turn in
	Bonus Homework - solve and turn in
	Additional problems

