IMPORTANT: Write each problem on a separate sheet of paper. Write your name on each sheet. (Why? To speed up the grading we will use parallelization—each problem will be graded by a different TA. At the beginning of the class (on the date when the homework is due) there will be a separate pile for each problem.)

<table>
<thead>
<tr>
<th>Homework 3 due: Oct. 19 (Thursday); collected before class in Wegmans 1400.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem sessions before Homework 3 is due:</td>
</tr>
<tr>
<td>Oct. 16 (Monday) 6:15pm - 7:15pm in Hylan 202</td>
</tr>
<tr>
<td>Oct. 17 (Tuesday) 6:15pm - 7:15pm in Goergen 109</td>
</tr>
<tr>
<td>Oct. 18 (Wednesday) 6:15pm - 7:15pm in Gavett 310</td>
</tr>
<tr>
<td>Oct. 18 (Wednesday) 7:40pm - 8:40pm in Hutchinson 473</td>
</tr>
</tbody>
</table>

Exam 2 is on: Oct. 26 (Thursday). Problem sessions before Exam 2 is due:

| Oct. 23 (Monday) 6:15pm - 7:15pm in Hylan 202 |
| Oct. 24 (Tuesday) 6:15pm - 7:15pm in Goergen 109 |
| Oct. 25 (Wednesday) 6:15pm - 7:15pm in Gavett 310 |
| Oct. 25 (Wednesday) 7:40pm - 8:40pm in Hutchinson 473 |

1 Homework - solve and turn in

3.1 (due Thursday, Oct 19) We are given a weighted directed graph $G = (V, E, w)$. (The weights represent widths of roads in a road network.) The width of a path P is the minimum of the weights of edges in P. (Intuitively, the width of a path is the maximum width of an object that can be transported on that path without the object ever "sticking out"). Given two vertices s, t we want to compute the widest path from s to t. Give an algorithm for the problem; your algorithm should be as fast as possible; state the running time of your algorithm.

3.2 (due Thursday, Oct 19) We are given a weighted directed graph $G = (V, E, w)$. (The weights represent widths of roads in a road network.) The width of a path P is the minimum of the weights of edges in P. (Intuitively, the width of a path is the maximum width of an object that can be transported on that path without the object ever "sticking out"). We want to compute the widest path from s to t for every pair of vertices $s, t \in V$. Modify Floyd-Warshall algorithm to solve the problem.

3.3 (due Thursday, Oct 19) We have a weighted directed graph with the following $n = 3k$ vertices:

$$V = \{a_1, \ldots, a_k, b_1, \ldots, b_k, c_1, \ldots, c_k\}$$

and the following $2k^2$ edges:

$$E = \{(a_i, b_j) \mid i, j \in \{1, \ldots, k\}\} \cup \{(b_i, c_j) \mid i, j \in \{1, \ldots, k\}\}.$$

Each edge-weight is a positive real number.

We want to find a collection of k disjoint paths P_1, \ldots, P_k where P_i starts at a_i and ends at c_i (for $i \in \{1, \ldots, k\}$). (Paths are disjoint if they do not share any vertices.) Our objective is to minimize the total length of the paths (that is, the function we want to minimize is the length of P_1 plus the length of P_2 plus the length of P_3 ... plus the length of P_k).

1
The input is \(k \) and all the edge weights, that is,
\[
w((a_1, b_1)), \ldots, w((a_k, b_k)), w((b_1, c_1)), \ldots, w((b_k, c_k)).
\]

Give a fast algorithm for the problem. Clear description of the algorithm is sufficient. You can use any algorithm covered in class a subroutine (without writing pseudocode for the algorithm)—just clearly state what algorithm you are using, what is its running time, and what input you are running it on. Your algorithm should run in polynomial time.

2 Bonus Homework - solve and turn in

Definitions needed for problems 3.5 - 3.6

Let \(G = (V, E) \) be an undirected graph. A matching of \(G \) is a set of edges \(E' \subseteq E \) such that every vertex of \(G \) is in at most one edge of \(E' \). A perfect matching of \(G \) is a set of edges \(E' \subseteq E \) such that every vertex of \(G \) is in exactly one edge of \(E' \).

Let \(G = (V, E, w) \) be an undirected graph where \(w \) are edge-weights. Let \(E' \subseteq E \) be a matching of \(G \). The weight of \(E' \) is
\[
\sum_{e \in E'} w(e).
\]

We will consider the following two problems:

MAX-WEIGHT MATCHING:
- INPUT: weighted graph \(G = (V, E, w) \)
- OUTPUT: a matching \(E' \subseteq E \) of \(G \) with the maximum weight.

MAX-WEIGHT PERFECT MATCHING:
- INPUT: weighted graph \(G = (V, E, w) \)
- OUTPUT: a perfect matching \(E' \subseteq E \) of \(G \) with the maximum weight.

You need the following information for problems 3.5 and 3.6

\textbf{FACT:} there is a polynomial-time algorithm to find a maximum-weight matching.

3.4 (warm-up problem—do not turn in) We are given \(n \) rectangles of sizes \(a_1 \times b_1, \ldots, a_n \times b_n \). We want to build the highest tower out of the rectangles. In a tower, if a rectangle of width \(w \) is on top of a rectangle of width \(w' \) then we require \(w \leq w' \). We are allowed to rotate the rectangles (i.e., an \(a \times b \) rectangle can be changed into a \(b \times a \) rectangle). Give an \(O(n) \) algorithm which finds the height of the highest possible tower.

(For example if the input is \(11 \times 11, 8 \times 2, 1 \times 10 \) then the solution is a tower of height \(29 = 11 + 8 + 10 \).)

3.5 (due Thursday, Oct 19) Suppose that in Problem 3.4 we change the requirement \(w \leq w' \) to \(w < w' \), i.e., a rectangle on top of another rectangle has to be strictly thinner. Note that now it can happen that not all rectangles get used (e.g., if we have two squares of the same size). Give a polynomial-time algorithm for the modified problem. (Hint: try to cast the problem as MAX-WEIGHT MATCHING, see definitions below.)

(For example if the input is \(2 \times 11, 2 \times 10, 10 \times 10 \) then the solution is a tower of height \(22 = 2 + 10 + 10 \).)

3.6 (due Thursday, Oct 19) We have \(n \) jobs and \(m \) machines. We are given \(n \times m \) table \(T \) where \(T_{ij} \) is the time to complete job \(i \) on machine \(j \). Our task is to schedule the jobs on the machines to minimize the average completion time (that is, for each job you take the time when it finished and then average over all jobs). Give a polynomial-time algorithm for the problem. (Hint: try to cast the problem as minimum-weight matching of given cardinality.)
(For example if we have 3 jobs and 2 machines and

\[T = \begin{pmatrix} 1 & 3 \\ 3 & 2 \\ 4 & 1 \end{pmatrix}, \]

then the following schedule is optimal:

- machine 1: 1;
- machine 2: 3, 2.

The completion times of jobs are: 1, 3, 1, the average completion time is 5/3.)