
Graph Algorithms (part 2 of CSC 282),
http://www.cs.rochester.edu/~stefanko/Teaching/18CS282

IMPORTANT: Write each problem on a separate sheet of paper. Write
your name on each sheet. (Why? To speed up the grading we will use parallelization—each
problem will be graded by a different TA. At the beginning of the class (on the date when the homework
is due) there will be a separate pile for each problem.)

Homework 2 due: Oct. 11 (Thursday); collected before class in Wegmans 1400.

Problem sessions before Homework 2 is due:

Oct. 8 (Monday) 6:15pm - 7:15pm in Hylan 202
Oct. 9 (Tuesday) 6:15pm - 7:15pm in Goergen 109
Oct. 10 (Wednesday) 6:15pm - 7:15pm in Gavett 310
Oct. 10 (Wednesday) 7:40pm - 8:40pm in Hutchinson 473

1 Homework - solve and turn in

2.1 (due Thursday, Oct. 11) Let G = (V,E) be a directed graph (digraph) given in the following adjacency-list
representation: for each vertex v ∈ V we have a linked list of out-neighbors of v. Assume that V = {1, . . . , n} and
let m := |E|.

1. Write pseudocode for a procedure which outputs an adjacency-list representation of the reverse digraph (i. e.,
G with each edge reversed). The procedure should run in time O(m + n).

2. Write pseudocode for a procedure which outputs the adjacency-list representation of G in which the out-
neighbors of each vertex are listed in the increasing order. The procedure should run in time O(m + n).

3. Write pseudocode for a procedure which checks if G is undirected (i. e., the reverse of every e ∈ E is also in
E). The procedure should run in time O(m + n).

2.2 (due Thursday, Oct. 11) Let G = (V,E) be an directed graph; let n := |V |, m := |E|. Assume that G is not
strongly connected. Give an O(m + n) algorithm that decides whether there exist u, v ∈ V such that adding edge
(u, v) to G makes it strongly connected.

2.3 (due Thursday, Oct. 11) We will call a directed graph G = (V,E) good if for every pair of vertices u, v ∈ V
there exists a path from u to v or there exists a path from v to u. For example, the following two graphs are good:
({1, 2}, {(1, 2)}) and ({1, 2}, {(1, 2), (2, 1)}). For example, the following graph is not good: ({1, 2}, {}). Give an
O(m + n) algorithm that decides whether a given directed graph is good.

2.4 (due Thursday, Oct. 11)

1. We are given a DAG (directed acyclic graph) G = (V,E) and two vertices u, v ∈ V . Assume that V = {1, . . . , n}
and let m := |E|. We want to figure out the length of the longest u-v-path in G (the length of a path v1, . . . , vk
is k − 1). Give an O(m + n) algorithm for the problem. Write pseudocode for the algorithm.

2. We are given a DAG G = (V,E), two vertices u, v ∈ V and a subset S ⊆ V . We want to figure out whether
there exists a u-v-path in G that contains a vertex in S (that is, does there exist k and a path v1, . . . , vk such
that v1 = u, vk = v and {v1, . . . , vk}∩S 6= ∅). Give an O(m+n) algorithm for the problem. Write pseudocode
for the algorithm.

1

3. We are given a directed graph G = (V,E), two vertices u, v ∈ V and a positive integer `. We want to figure
out whether there exists a u-v-walk of length at least ` (remember, in a walk we allow repeated vertices and
edges; the length of a walk v1, . . . , vk is k− 1). Give an O(m+ n) algorithm for the problem. Clearly describe
your algorithm (pseudocode is not required). You can use any algorithm covered in class/textbook (you don’t
need to write pseudocode for the algorithm used).

2 Additional problems

Try to solve the following problems from Cormen-Leiserson-Rivest-Stein. We will go over the ones that you choose
in the problem sessions.

• 22.1-1, 22.1-6, 22.1-7, 22.2-6, 22.2-8, 22.3-9, 22.3-11, 22.5-1, 22.5-3, 22.5-4, 22.5-7,

• 24.1-5, 24.1-6, 24.3-7, 24.3-8, 24.3-9, 24.4-5,

• 25.2-6, 25.2-8,

• 26.2-10, 26.2-11.

Try to solve the following problems from Dasgupta-Papadimitriou-Vazirani. We will go over the ones that you
choose in the problem sessions.

• 3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 3.8, 3.9, 3.11, 3.12, 3.13, 3.15, 3.18, 3.19, 3.21, 3.22, 3.23, 3.24, 3.25, 3.26, 3.27,

• 4.1, 4.2, 4.3, 4.4, 4.5, 4.7, 4.8, 4.10, 4.11, 4.13, 4.15, 4.17, 4.18, 4.19, 4.20, 4.21,

• 5.1, 5.2, 5.3, 5.7.

Try to solve the following problems from http://jeffe.cs.illinois.edu/teaching/algorithms/all-graphs.pdf

We will go over the ones that you choose in the problem sessions.

• Section 18: problems 9, 10, 11, 12,

• Section 19: problems 1, 5, 6, 7, 9,

• Section 20: problems 1, 2, 3, 4, 5, 6, 7, 8,

• Section 21: problems 4, 5, 6, 7, 9, 11, 12,

• Section 2: problems 3, 4, 5, 6.

2

	Homework - solve and turn in
	Additional problems

