Divide&Conquer, FFT, NP, ILP (part 4 of CSC 282),

http://www.cs.rochester.edu/"stefanko/Teaching/19CS5282

IMPORTANT: Write each problem on a separate sheet of paper. Write

your name on each sheet. (Why? To speed up the grading we will use parallelization—each problem
will be graded by a different TA. At the beginning of the class (on the date when the homework is due) there will
be a separate pile for each problem.)

Homework 5 is due: Dec. 6 (Thursday); collected before class in Wegmans 1400.

Problem sessions before Homework 5 is due:

Dec. 2 (Monday) 6:15pm - 7:15pm in Hylan 202

Dec. 3 (Tuesday) 6:15pm - 7:15pm in in Goergen 109
Dec. 4 (Wednesday) 6:15pm - 7:15pm in Gavett 310
Dec. 4 (Wednesday) 7:40pm - 8:40pm in Hutchinson 473

Comprehensive Final Exam is on Dec. 19 (Thursday) 4:00pm - 7:00pm in Douglass
Ballroom.

1 CSC 482 Homework—solve and turn in (bonus for CSC 282)

5.1 (due Dec 5) The Hadamard matrices Hy, Hy, ..., are defined as follows.

e Hj is the 1 x 1 matrix [1].

e For k > 0, Hy, is the 2% x 2% matrix

[ Hiea | Hi
He = [ Hy_1 | —Hp—1 } '

Show that if v is a column vector of length n = 2* then the matrix-vector product Hyv can be calculated using

O(nlogn) operations. (Assume that all the numbers involved are small enough that basic arithmetic operations take
O(1) time.)

2 CSC 282/482 Homework—solve and turn in

Let ag,ay...,a,_1 and by, by ...,b,_1 be two sequences of integers. The convolution of the two sequences is a
sequence g, Cy, . .., Cop—2 Where
C = E aibk_i.
i

Thus, for example ¢y = apbg,c1 = agby + a1bg, ..., Can—2 = an_1b,—1. You will need the following fact for the first
two problems (5.2 and 5.3): the convolution of two sequences can be computed in time O(nlogn).

5.2 (due Dec 5) Let A and B be two sets. Their sum A + B is defined to be
A+B:={a+bla€ A, be B},
for example if A = {1,4,6} and B = {2,5} then A+ B = {3,6,8,9,11}. Give O(nlogn) algorithm whose input is

two sets A, B C {1,...,n} and the output is set A + B. (Hint: create two sequences of length n whose convolution
will allow you to compute the set A + B).



5.3 (due Dec 5) We are given a string S over alphabet ¥ = {a,b}. We want to find a cyclic rotation of S that
disagrees with the original string S on the maximal number of places.

For example, if S = ababb then there are 5 cyclic rotations of S: ababb (0), babba (4), abbab (2), bbaba (2), babab
(4); the numbers in the parenthesis give the number of places on which the rotations disagree with S. Thus the
output should be either babba, or babab.

Give an O(nlogn)-time algorithm for the problem.

5.4 (due Dec 5) We are given an undirected graph G = (V, E) and for each edge e = {u,v} € F we are given two
numbers a., b.. We want to assign a number from {1, ...,10} to each vertex in V' so that for every edge e = {u,v} € E
the sum of the numbers assigned to w and v is either a. or b.. Does such an assignment exist? Write an integer
linear program for the problem. Clearly describe the variables in your integer linear program.

Problem 5.5 (see the next page) is part of the CSC 282/482 homework.



5.5 (due Dec 5) Print this page and complete this problem on the printed page. For each question
below, circle one of the three answers and add a short explanation in the space immediately below that question.
The problem POLYNOMIAL EQUATIONS OVER INTEGERS (from “Unsolvable problems” box in the DPV textbook) is:
given polynomial equation in many variables, does it have an integer solution? Recall that a problem @ is NP-hard
if 3-SAT reduces to Q. A problem @ is NP-complete if @) is NP-hard and @ is in NP.

1.

10.

11.

12.

13.

14.

15.

Every problem in NP is in P.

. There exists a problem in NP which is in P.

There exists a problem in NP which is not in P.

There exists an NP-complete problem which is in P.

. Every NP-complete problem is in P.

POLYNOMIAL EQUATIONS OVER INTEGERS is in P.

POLYNOMIAL EQUATIONS OVER INTEGERS is in NP.

PoLYNOMIAL EQUATIONS OVER INTEGERS is NP-hard.

Every NP-hard problem is in P.

FACTORING is in P.

If P = NP then FACTORING is in P.

If P = NP then every NP-complete problem is in P.

If P = NP then some NP-complete problem is in P.

If some NP-complete problem is in P then P = NP.

Every problem in P is in NP.

TRUE - FALSE - WE

TRUE - FALSE - WE

TRUE - FALSE - WE

TRUE - FALSE - WE

TRUE - FALSE - WE

TRUE - FALSE - WE

TRUE - FALSE - WE

TRUE - FALSE - WE

TRUE - FALSE - WE

TRUE - FALSE - WE

TRUE - FALSE - WE

TRUE - FALSE - WE

TRUE - FALSE - WE

TRUE - FALSE - WE

TRUE - FALSE - WE

DON’T

DON’T

DON’T

DON’T

DON’T

DON’T

DON’T

DON’T

DON’T

DON’T

DON’T

DON’T

DON’T

DON’T

DON’T

KNOW

KNOW

KNOW

KNOW

KNOW

KNOW

KNOW

KNOW

KNOW

KNOW

KNOW

KNOW

KNOW

KNOW

KNOW



	CSC 482 Homework—solve and turn in (bonus for CSC 282)
	CSC 282/482 Homework—solve and turn in

