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Proposed Features
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Human and machine scores often differ

because of ASR errors
How can we detect such cases?

* Inconsistency between ASR info and pitch

Estimate syllables using ASR result

« Approx. number/location of vowels

Estimate syllables from pitch/energy

* Explore different LMs

- Language Model Based

» Task constrained word bigram LM

* Proposed task independent phone bigram LM
« Can handle off-topic or non English words

« Estimate ASR similarity using edit distance
* Dissimilarity may indicate non-scorable

Phoneme level similarity features based on edit dist.

Confidence Based

 Use proposed phone bigram LM to
extract ASR confidence scores
3 variants of confidence score *
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Existing Features |
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 We extract state-of-the-art features for
non-scorable and off-topic detection

Summary of ‘Base’ feature set

* recognition log-likelihoods

Feature Type

Description

« Similar features also extracted from
word LM

Signal derived

Max and min energy, nonzero pitch
frames, avg. pitch, SNR

* described in [Cheng and Shen, 2011]

Number of spoken words, pauses and
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Random forest classifiers for

non-scorable detection
« using different feature sets

Estimate the ROC curves
Minimize Area Under Curve (AUC)

5-fold cross validation over all
6000 tests

Repeat experiment 10 times

* report avg. and std. dev of AUC
over the 10 runs

Detection Results

features AUC (avg = std.dev)
Base 0.102 £ 0.007
Syllable 0.122 + 0.011
LM 0.123 £ 0.008
Confidence 0.106 £ 0.011
Classifier Decision Combination
Base+Syllable 0.087 £ 0.008
Base+LM 0.085 + 0.007
Base+ Confidence 0.084 + 0.007
All 0.081 £ 0.006

ROC curves

Feature set Description

diff length_nrm (avg,r) diff _length_nrm (av,op)

1.0

o
o

o
o

Base features (AUC = 0.098) Syllable
Syllable features (AUC = 0.114)
LM features (AUC = 0.126)
Confidence features (AUC = 0.110)
All, decision fusion (AUC = 0.071) ||
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Proposed syllable and LM-based

features for non-scorable detection
« Estimate syllable locations
* Propose task-independent phone LM

Features lead to improvement in AUC
when combined with existing ones
 0.102 = 0.081 (21 % rel. reduction)

Our final system combines 4 random

forest classifiers
* one using existing features
 three using the proposed features




