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Virtual Patients: A dialogue system

| was hoping you could help me with my back

One virtual patient: Mr. Wilkins
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Introduction

An example dialogue session

The student asks:
What brings yuo in today?

System predicts the label as “what brings you in today” and responds:
| was hoping you could help me with my back pain, it really hurts! ...

The student asks:

Could you tell me more about the pain?

System predicts the label as “describe the pain” and responds:
It's a dull ache right in the middle of my lower back.
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Introduction

An example dialogue session - cont.

The student asks:
What medications did you take?

System predicts the label as “what pills did you take” and responds:
| took some ibuprofen for a few days.

The student asks:

Have you had any surgery recently?

System predicts the label as “have you exercised recently” and responds:

No, my back hurt and | couldn’t really exercise.
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Virtual patient dataset

@ 94 dialogues with 4330 turns
@ hand-corrected question labels

@ 359 unique labels
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Introduction

Examples of frequent and rare labels

Example frequent label: what brings you in today

can you tell me a little about your issue
what brings you in today

so can you tell me what brings you in today
what brings you into the office today

what is it you want to talk about today

Example rare label: do you feel safe.

that sounds like a fun job. do you feel safe at home and work
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Introduction

Previous work: an ensemble of CNNs
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Stacked CNN significantly better than other machine

learning models

Simple | Ensemble
ChatScript | 79.8 n/a
Baseline 77.2 n/a
CharCNN | 76.16 | 78.20
WordCNN | 76.92 77.67
Stacked n/a 79.02%

Mean 10-fold Accuracy by System Type. Numbers reported are on the test set.
The improvement between the stacked model and any other model is significant.
Ensembling character CNNs provides significant performance boost, but not word

CNNs.
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Frequency quintile analysis: data is good for CNNs

Average accuracy of different systems in groups of label frequency quintiles
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System Accuracy by Label Frequency, in Quintiles. Note the high performance in
the least frequent labels for ChatScript, the hand-crafted pattern matching
system. With more data, the CNNs perform better.

Jin et al (Ohio State) Paraphrasing and Mem models June 5 @ 13th BEA 10 / 35



Addressing the long tail

We approach the problem of rare labels from two different angles:

@ Make the model good at dealing with such items:
Few-shot learning

© Make them no longer rare:
Data augmentation
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Addressing the long tail Memory augmentation

Few-shot learning

Unlike most machine learning algorithms, humans are perfectly capable of
learning with few examples. (Lake et al, 2009)

In order to give neural networks the ability to remember specific examples,
one approach is to give them memory to remember specific past events.
Let's see how the memory module works.
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Addressing the long tail Memory augmentation

How the memory operates
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Addressing the long tail Memory augmentation

How the memory operates
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ST G
Memory module

The memory module (Kaiser et al., 2017) is like an external database
which has a storage for question representations, question labels and age
of entries. The neural network (encoder) can read and write it to keep it
updated. This helps the neural network to remember the rare instances.
Training the memory module also requires balancing the training data,
which also helps give the rare labels better representations.
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Addressing the long tail Memory augmentation

Episodic evaluation
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Addressing the long tail Memory augmentation
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Addressing the long tail Memory augmentation

Episodic evaluation
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Addressing the long tail Memory augmentation
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Addressing the long tail Memory augmentation

MA-CNN on rare labels

System Full Acc | Rare Acc
StackedCNN | 79.02 46.54
MA-CNN 75.22 | 51.78***

Test results for the stacked CNN ensemble (Jin et al., 2017) and the
memory-augmented CNN classifier (MA-CNN) without any generated
paraphrases. The difference of performance on the rare items is highly significant

(p = 9.5 x 1075, McNemar's test).
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Addressing the long tail Data augmentation

Paraphrase generation

We augment the rare labels by generating new training instances with
different paraphrasing methods.
© Lexical substitution
©® Sources: WordNet, Word2Vec, PPDB
@ Ranked by likelihood ratio between the original and the generated
@ Neural machine translation

® 10 x 10 back translation (Mallinson et al., 2017)
@ Scores combined to produce a ranking
@ Used German as the pivot language
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Data augmentation
Filtering the generated phrases

There are still too many paraphrases for human filtering, and too noisy.

Ideally all paraphrases are filtered automatically, but we need to know if
they are any good at all.
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Data augmentation
Filtering the generated phrases

@ Pseudo-oracle (automatic)
@ Captures surface similarity
@ Keeps a generated paraphrase when its n-gram recall is higher than
that of the original when compared to a test item
@ Could still be noisy
@ Manual
@ Captures semantic similarity
@ Keeps a generated paraphrase only if it has novel n-grams compared to
training items

They validate the quality of generated paraphrases.

Jin et al (Ohio State) Paraphrasing and Mem models June 5 @ 13th BEA 28 / 35



Generated paraphrases in training data

System Full Acc | Rare Acc
StackedCNN 79.02 46.54
MA-CNN 75.22 51.78

~ StackedCNN w/ GPs | 78.45 | 53.04
MA-CNN w/ GPs 75.33 | 56.14***

Test results for the stacked CNN ensemble and the memory-augmented CNN
classifier (MA-CNN) with the manually filtered paraphrases. The gain brought by
the adding the automatically generated paraphrases into training data for
MA-CNN is highly significant (p = 1.6 x 107*, McNemar's test).
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Ablation of filtering methods

System Rare Acc
MA-CNN 51.78
+Pseudo-oracle 54.87
+Pseudo-oracle+Manual 56.14

Test results for the memory-augmented CNN classifier (MA-CNN) with different

filtering techniques.
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Quality of generated paraphrases

Paraphrases Rare Acc
No paraphrases 51.78
+Lexical substitution 53.16
+Neural Machine Translation 55.22
+Both 56.14

Test results for the memory-augmented CNN classifier (MA-CNN) with different
subsets of the manual filtered paraphrases generated using different paraphrase
methods.
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Combining the stacked CNN and the MA-CNN

System Full Acc | Rare Acc
StackedCNN 79.02 46.54
MA-CNN 75.33 56.14
Combiner 79.86*** 50.98

Test results for the combiner as well as the two combined subsystems: the stacked
CNN ensemble trained with gold and the memory-augmented CNN classifier
trained with gold and generated paraphrases. The gain compared to stacked CNN
on full accuracy is highly significant (p = 1.9 x 10=°, McNemar's test).
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Conclusion

Conclusion

@ Lexical substitution is good and neural back-translation is better.

o Memory-augmented CNN classifier is better on low frequency labels
with a smaller model.

@ MA-CNN and StackCNN can work together to be better.
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Conclusion

Future work

@ Automatic filtering
@ Advanced paraphrasing

o deep generative paraphrasing
e syntactic paraphrasing
e using aligned paraphrases to induce paraphrase templates
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Conclusion
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