Recognizing Noisy Romanized Japanese Words in Learner English

Ryo Nagata†, Jun-ichi Kakegawa‡, Hiromi Sugimoto*, Yukiko Yabuta*
†Konan University, ‡Hyogo University of Teacher Education, *Japan Institute for Educational Measurement, Inc.

Task: Recognizing Roman Words

- Target: text written by Learners of English
 - contain many Roman words (20% of diff. words)
 → decreases performance of NLP systems
- Major Obstacle to overcome
 - Learner English contains spelling errors
 - Spelling rules are often violated
 e.g., because → becaus, becose, becoue, becauese, becaus, becuse, bcaes, becaes

Initial (but failed) Idea

- By clustering algorithm
 - K-means clustering
 - Both words have different spelling systems
 - Feature: trigram based
 attribute: trigram value: occurrence of trigram

Results are...

- worse than random guess
- Example of resulting clusters
 Gerund/Present Participle (ending with -ing)
 Cluster 1
 ...
 ...
 Cluster 2
 ...
 ...
 all other words

difficult to cover all English words by a cluster
Reconsideration of the Idea

- Observation
 - Roman words have different spelling system
 rule 1: Roman words end with a vowel or \(n \)
 rule 2: A consonant is followed by a vowel

- The problem is spelling errors
 - the two rules would perfectly recognize
 Roman words if there were no spelling errors
 - rules + clustering

Proposed Method

Recognition by Rules

- Word to CV (Consonant Vowel) Pattern
 - e.g., SAMURAI \(\rightarrow \) CVCCVCCCV
 - fighter \(\rightarrow \) CVCCCVCCV

- Recognition using pattern matching
 \(^{[Vn]}(C[^Vn]+)^{*}\)
 \(\equiv \) sequences of CV,
 ends with V or n \(\rightarrow \) Roman word

Word to Feature Vector

- Word to trigrams
 - e.g., SUSHI
 ^\$^S^SU^SUS^USH^SHI^HIS^ISS$
 ^\$: beginning of word
 $: end of word

- Trigram to vector
 - attribute: trigram
 - value: occurrence of trigram

Evaluation

- Target essays
 - Writer: Jr. high
 - 117270 words
 - Number of different Roman words: 727

- Compared to
 - K-means clustering, Rule-based, SVMs

- English word list (20,000 words)
 - BNC (+10回/M words) & Ispell dictionary

- Performance measure: Recall, Precision

Training Data for SVM

- Roman instances
 - From a Japanese dictionary
 - Pronunciation entry to Roman words
 (using a transliteration tool KAKASHI)
 - Number of instances: 160000

- English instances
 - From the English word list
 - Number of instances: 20000
Recall Precision

Rule
K-means Proposed SVM

0.8

0.6

0.4

0.2

0

Experimental Results

Discussion

- Simple \(k\)-means clustering
 - does not work well
- Rule-based method performs well
 - Room for improvement
- SVMs outperform rule-based method
 - Training data do not cover misspelled words
- Proposed method performs equally/better
 - Initial centroids are obtained by rules
 - it adaptively learns plausible clusters

Characteristic Trigrams

Relation between size and performance

Analyzing False Negatives and Positives

- False negatives
 - words consisting of English syllable or word
 e.g., omiyage (souvenir) → om, age
 - English word: omnipotent, age
- False positive
 - misspelled words (94% of false positives)
 - Foreign words that follow spelling rules of Roman words
 e.g., pizza

Analyzing False Negatives and Positives

Conclusions

- A method for recognizing Roman words
 - step 1: obtain initial centroids by some rules
 - step 2: \(k\)-means clustering
- Advantages of proposed method
 - robust against spelling errors
 - requires only an English word list
- A tool based on the proposed method:
 http://www.ai.info.mie-u.ac.jp/~nagata/tools/