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Abstract. We compare the relative utility of different automatically computable
linguistic feature sets for modeling student learning in computer dialogue tutoring.
We use the PARADISE framework (multiple linear regression) to build a learn-
ing model from each of 6 linguistic feature sets: 1) surface features, 2) semantic
features, 3) pragmatic features, 4) discourse structure features, 5) local dialogue
context features, and 6) all feature sets combined. We hypothesize that although
more sophisticated linguistic features are harder to obtain, they will yield stronger
learning models. We train and test our models on 3 different train/test dataset pairs
derived from our 3 spoken dialogue tutoring system corpora. Our results show that
more sophisticated linguistic features usually perform better than either a baseline
model containing only pretest score or a model containing only surface features,
and that semantic features generalize better than other linguistic feature sets.
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1. Introduction

Computer tutoring dialogue systems exploit natural language interaction in an attempt
to improve student learning. A variety of features of natural language dialogue appear
useful for modeling learning during tutoring. For example, longer student turns and
higher percents of student words and turns were shown to correlate with learning in tu-
toring dialogues [1,2,3], as were specific dialogue acts (e.g., tutor feedback and question
types) [1,2,4,5,6], discourse structure features, and local dialogue context features [4,7].

However, such features differ both in terms of how sophisticated they are linguis-
tically and how easy they are to obtain. For example, turn counts represent surface lin-
guistic properties that are easily computed by tutoring systems. Dialogue acts represent
deeper pragmatic properties, but usually require manual labeling during system design
or in a system corpus, even if automatic labeling is developed from the manual labeling.

We hypothesize that more sophisticated linguistic features will yield stronger mod-
els of student learning, making the extra labor to obtain them “worth the effort” from a
system design point of view. These models can be used off-line to improve system dia-
logue design, or, if the model features are automatically computable in real time, on-line
in adaptive systems that respond during tutoring. [8,9] support this hypothesis; e.g. in
[8], students learned more from a system with more sophisticated dialogue feedback.

In this paper we examine this hypothesis, by comparing the utility of 6 linguistic
feature sets (Section 2.2) for modeling learning in our tutoring system (Section 2.1). The
feature sets represent different levels of linguistic sophistication and effort that our sys-



tem can automatically compute: 1) surface features, 2) semantic features, 3) pragmatic
features, 4) discourse structure features, 5) local dialogue context features, and 6) all fea-
tures combined. Prior work has not examined the relative utility of all these feature sets
for modeling learning. We use the PARADISE framework [10] (Section 3), which is an
application of multiple linear regression to dialogue system evaluation, to model learn-
ing. We train and test our models on 3 different train/test dataset pairs derived from our
3 spoken dialogue tutoring system corpora. Our results (Section 3.1) show that most so-
phisticated linguistic feature sets usually out-perform the baseline model and the surface
feature model. We also find that semantic features generalize better than other linguistic
feature sets, including those that are more labor-intensive to obtain.

2. Tutoring System Corporaand Linguistic Feature Sets
2.1. ITSPOKE System and Corpora

ITSPOKE (Intelligent Tutoring SPOK En dialogue system) [4] is a speech-enabled ver-
sion of the text-based Why2-Atlas tutoring system [11]. In ITSPOKE, the student first
types an essay into a web interface answering a qualitative physics problem. The back-
end parses the essay and extracts a set of dialogue topics concerning misconceptions or
incomplete explanations. ITSPOKE then engages the student in a dialogue that covers
these topics. After the dialogue, the student revises the essay, thereby ending the tutoring
for the problem or causing another round of dialogue/essay revision.

...... spoken dialogue excerpt at 6.1 minutes after start of problem. ..
ITSPOKE,: Good. Does the packet have an acceleration? If yes please specify its direction.
[ ShortAnswer Q, Advance, Depthl, Goal RepQ]
STUDENT 4: horizontally forward yes [Incorrect]
I TSPOKEs5: Well... To find the packet’s acceleration we will use Newton’s second law.
What is the definition of this law? [ LongAnswer Q, Push, Depth2, Goal RepO]
STUDENT 5: an object in motion tends to stay in motion until it’s act by an outside force
[Incorrect]
I TSPOKEsg: Well... Newton’s second law says that the net force acting on an object
equals the mass times the acceleration of the object. We can define Newton’s second law
as F=m*a. Hence what can we determine about the acceleration of the packet given that
we know the net force acting on it is not zero and points straight down? [ DeepAnswerQ,
Advance, Depth2, Goal Rep0]
STUDENT: I don’t know [Can’'t Answer]
ITSPOKE~7: Well... Since the net force F and the acceleration a are vectors, for the equation
F=m*a to hold they both need to have the same direction. <...more...> Does the packet have an
acceleration? If yes please specify its direction. [ ShortAnswerQ, PopUp, Depthl, Goal Repl]

Figure 1. ITSPOKE Annotated Dialogue Excerpt

We use 3 ITSPOKE corpora for this study, referred to as: S03, P05, and S05. The
user population of S03 is different from PO5 and S05, because it was collected for a
different purpose in a different year using a different recruitment method; all 3 corpora
use slightly different ITSPOKE versions. The same procedure was used to collect the
corpora: students with no college physics: 1) read a document of background material, 2)
took a pretest, 3) worked 5 problems with ITSPOKE (each problem yields 1 dialogue),
4) took a posttest. The SO3 corpus contains 20 students. The PO5 corpus contains 27
students. The SO5 corpus contains 27 students. Figure 1 shows a corpus excerpt.



2.2. Linguistic Feature Sets

We computed 207 linguistic features per student in each corpus. By “per student” we
mean each feature was calculated over all 5 dialogues of the student. Although all the
features can be automatically computed by our system, they represent different levels of
linguistic sophistication and effort. In addition, note that we computed all student turn-
based features from a human transcription of the student turns (rather than the speech
recognition output), both to estimate an upper bound on these features’ usefulness for
modeling learning, and to enable comparison with text-based tutoring systems.

1. Surface Feature Set: We computed 21 surface linguistic features per student;
some have been used to model learning in other systems [1,2,3]. 18 features represent
surface measures of student and tutor dialogue contribution. For each of the 6 groups in
Figure 2, we computed 3 features: Total Words, Total Turns, Average Words per Turn.
In addition, we computed 1 feature representing a temporal measure of total contribu-
tion: Total Elapsed Time, and 2 features representing speech recognition quality: Total
Timeouts and Total Rejections'. These features all require minimal effort to compute.

S: Student spoken turns (transcribed) ~ ST: Student and tutor spoken turns
T: Tutor spoken turns (transcribed) SE: Student contribution (spoken and essay)
E: Student typed essay turns STE: Student and tutor contribution (spoken and essay)

Figure 2. Groupings Representing Student and Tutor Contributions

2. Semantic Feature Set: We computed 38 semantic features per student. 24 fea-
tures represent semantic measures of student and tutor dialogue contributions. For each
of the 6 groups in Figure 2, we computed 4 features: Total Concepts, Average Concepts
per Turn, Concept-Word Ratio, Total Unique Concepts. Our notion of “Concept” distin-
guishes physics content words from other words in the dialogues. Our current method
of concept extraction required some additional effort to implement: we count all words
(concept tokens) in the student turns that appear in an online physics dictionary. This
“Total Concepts” value is used to compute the average and ratio. “Total Unique Con-
cepts” is computed by counting the number of different concepts (types) over all the stu-
dent turns. For example, STUDENT  in Figure 1 contains 2 Unique Concepts: “motion”
and “force”, and 3 Total Concepts: “motion”, “motion” and “force”.

Our remaining 14 semantic features represent the correctness of the meaning un-
derlying various surface forms of student answers (e.g., “down”, “towards earth”). I'T-
SPOKE automatically labels the correctness of recognized answers, although here we
use a version of correctness obtained by feeding the transcribed answers into ITSPOKE?.
We use 4 Correctness labels: Correct, Partially Correct, Incorrect, Can't Answer. Can't
Answer is used for variants of “I don’t know” (STUDENTS, Figure 1). For each of the 4
Correctness labels, we computed a Total, a Percent, and a Ratio to each other label.

3. Pragmatic Feature Set: We computed 14 pragmatic features per student. 8 fea-
tures are derived from automatically labeled dialogue acts, which required significant
effort to implement. In particular, in prior work we first manually labeled the tutor Ques-

' A Timeout occurs when ITSPOKE does not hear speech by a pre-specified time interval. A Rejection occurs
when ITSPOKE’s confidence score for its recognition output is too low to accept that output.

2These two versions of correctness produce an agreement of 91% (0.84 Kappa). We have used various
versions of correctness in prior studies [7,12,13].



tion Acts in the SO3 corpus [4].3 These dialogue acts codify the intent underlying tutor
questions. Our dialogues have a Question-Answer format; every ITSPOKE turn asks a
question. Our labels, Short, Long, and Deep Answer Question, distinguish the type of
ITSPOKE question in terms of its content and the type of answer it presupposes. Repeat
Question labels variants of “Can you repeat that?” after rejections. From our manual
annotations, we created a hash table associating each ITSPOKE question with a Ques-
tion Act label, and used it to automatically label the ITSPOKE questions in the other 2
corpora. For each of the 4 Question Act labels, we computed a Total and a Percent.

Our remaining 6 pragmatic features are derived from a Goal Repetition variable
conceived in prior work to track how often ITSPOKE goals repeat in a dialogue [12].
Each ITSPOKE question is associated with a goal, which repeats if it is not satisfied
earlier in the dialogue (see ITSPOKE? in Figure 1). For each student, we compute a Total
and a Percent over ITSPOKE goals repeated 0, 1, or 2 times (GoalRep0-GoalRep2).

4. Discour se Structure Feature Set: We computed 35 discourse structure features
per student, which derive from significant effort in our prior work showing that the dis-
course structure Depth and Transition for each ITSPOKE turn can be automatically la-
beled [7]. The Depth labels (Depth1-Depth4) represent the depth of the turn’s topic in
the structure. E.g., ITSPOKE, 7 in Figure 1 have Depth 1; ITSPOKE5; ¢ have Depth 2.
Here we computed a Total and a Percent for each of the 4 Depth labels.

The 6 Transition labels represent the ITSPOKE turn’s position in the discourse struc-
ture relative to the previous ITSPOKE turn. The first ITSPOKE turn after an essay is
labeled NewTopLevel. Each ITSPOKE turn at the same depth as the prior ITSPOKE turn
is labeled Advance (ITSPOKE, ¢ in Figure 1). The first ITSPOKE turn in a sub-topic
dialogue (which occurs after an incorrect answer to a complex question) is labeled Push
(ITSPOKE35). After a sub-topic dialogue completes, ITSPOKE pops up and either asks
the original question again, labeled PopUp (ITSPOKE7), or moves on to the next ques-
tion, labeled PopUpAdvance. After student turn timeouts and rejections, respectively, IT-
SPOKE’s question is repeated or some variant of “Can you repeat that?” is used, labeled
SameGoal. Here we computed a Total, a Percent, and a Ratio to each other label, for each
of the 6 Transition labels, yielding our remaining 27 discourse structure features.

5. Local Dialogue Context Feature Set: We computed 99 bigram features per stu-
dent, representing local dialogue context. These features were derived from prior work
that examined bigrams of discourse structure and correctness [7]. The bigrams consist
of the labels for two consecutive turns; in particular, bigrams of: 1) Correctness labels,
2) Transition labels, and 3) a Transition label followed by a Correctness label. For ex-
ample, in Figure 1, the Studenty~Students turn pair counts as an Incorrect~Incorrect
bigram. The ITSPOKE,~ITSPOKEj; turn pair counts as an Advance~Push bigram. The
ITSPOKE,~Student, turn pair counts as an Advance~Incorrect bigram.

Thus we have 16 possible Correctness bigrams, 36 Transition bigrams, and 24
Correctness-Transition bigrams. However, in this study we excluded rarely-occurring bi-
grams whose total was less than 2 on average across our corpora to reduce overfitting
in our learning models. For the remaining Correctness and Transition bigrams, we com-
puted a Total and a Percent (the denominator is total speaker turns). For the remaining
Transition-Correctness bigrams, we computed a Total, a Percent (the denominator is total
student turns) and a Relative Percent (the denominator is the Transition Total).

30ur Acts are based on similar labels in related work [5]. Two annotators labeled these Acts in 8 dialogues
in a parallel human tutoring corpus, yielding agreement of 90% (0.75 Kappa).




3. Student Learning Models

The PARADISE framework [14] uses multiple linear regression (MLR) to model a dia-
logue system performance metric (M) from an input set of dialogue features. The result-
ing model predicts M as the sum of N model parameters, p;, each weighted by a coeffi-
cient, w;. The model can then be used in system design, by treating p; as a benefit to be
maximized if w; is positive, or as a cost to be minimized if wW; is negative.

Many PARADISE applications model “user satisfaction” (e.g., [10,14,13]). We have
also used PARADISE to model learning [7,13], and MLR is used to model learning in
other tutoring research (e.g., [6]). We model learning gain by predicting posttest and
forcing pretest as the first model parameter; the stepwise procedure automatically selects
other features for inclusion in the model. However, as in [14], the procedure can only
select features that correlate with posttest controlled for pretest (at p < 0.1); this can help
prevent overfitting and reduce the average error of the model.

Here we train a learning model on each of our 5 linguistic feature sets, and from
all feature sets combined, to examine their relative usefulness. As a baseline, we train
a model with only pretest. Further, we train the 7 models on 3 different datasets corre-
sponding to all combinations of 2 corpora: SO3+P05, S03+S05, and PO3+S05. In each
case, we test the models on the third corpus. This allows us to investigate how well the
models perform and generalize with different user populations and system versions.

3.1. Results

Table 1 shows our 7 learning models trained on the S03+P05 corpora and tested on the
S05 corpus. The first column shows the feature set used to build the model. The second
column shows how many features in each set correlated and were included in the stepwise
procedure. The third column presents the trained model: each selected parameter and
its weight; larger weights indicate parameters with greater relative predictive power.*
The last two columns show how well the model performed on the training and test data,
respectively, in terms of the amount of Posttest variance accounted for by the model (R?).
For example, the model trained on Surface features contains Pretest and Total Elapsed
Time, and outperforms the Pretest model on the training data, but not on the test data.

Considering training, all models outperform the Pretest model. The Semantic, Local
Context®, and All models outperform the Surface model. The All model performs best,
and only contains Semantic and Local Context features. The Pragmatic and Discourse
Structure feature sets performed worst. No Pragmatic features correlated at p<0.1; one
feature correlated at p=.12 and was forced into the model for comparison.

Considering testing, only the Semantic model outperforms the Pretest model, and
Pretest is the strongest predictor in all models. This suggests both that Pretest is our most
generalizable predictor of Posttest, and that of our linguistic features, Semantic features
are the most generalizable. However, all sophisticated linguistic models outperform the
Surface model. This suggests that sophisticated linguistic features are “worth the effort”
and that it would be worthwhile to expend further effort extending these feature sets
to find more generalizable features. Finally, the Semantic model outperforms the All
model, suggesting that other procedures may be better than stepwise for developing an
“absolute” best learning model.

4These weights are the standardized coefficients (beta weights), i.e. based on scaling of the input features.
3 A fourth parameter in this model was excluded, because it was highly correlated with another parameter (R
> .70); inclusion of highly correlated parameters can affect the coefficients [14].



Table 1. Learning Models Trained on S03+P05 (47 Students) and Tested on SO5 (27 Students)

Feature Set # Feats Learning Model train R? | test R®
Pretest n/a 0.57*Pretest 0.319 0.377
+Surface 4 0.70*Pretest + 0.31*Elapsed_Time# 0.396 0.293
+Semantic 20 0.48*Pretest + 0.33*S_Concept/Word 0.501 0.386
+ 0.22*E_Unique_Concept#
+Pragmatic | 1 (p=.12) || 0.62*Pretest + 0.20*LongAnswerQ# 0.356 0.323
+Disc. Str. 3 0.46*Pretest - 0.27*PopUp/Advance 0.378 0.323
+Local 15 0.58*Pretest - 0.34*PopUp~Incorrect% 0.531 0.330
+ 0.34*Advance~Advance#
+All 42 0.51*Pretest + 0.41*Advance~Advance# 0.673 0.321
- 0.33*PopUp~Incorrect#
- 0.31*PopUp~Advance%
+ 0.29*STE_Concept/Turn

Table 2 shows our results for training on S03+S05 and testing on P0O5. This training
set and the prior one combine the 2003 and 2005 user populations; thus we expected
them to yield similar results and more generalizable models.

Table 2. Learning Models Trained on S03+S05 (47 Students) and Tested on P05 (27 Students)

Feature Set # Feats Learning Model train R? | test R?
Pretest n/a 0.54*Pretest 0.288 0.452
+Surface 3 0.56*Pretest + 0.23*SE_Words# 0.341 0.356
+Semantic 18 0.51*Pretest + 0.32*S_Concept/Word 0.392 0.524
+Pragmatic | 1 (p=.11) || 0.48*Pretest - 0.21*RepeatQ# 0.330 0.500
+Disc. Str. 6 0.58*Pretest - 0.26*PopUp/Push 0.352 0.278
+Local 20 0.60*Pretest - 0.32*PopUp~Incorrect% 0.482 0.304
+ 0.30*Push~Push%
+All 47 0.64*Pretest - 0.33*PopUp~Incorrect% 0.541 0.375
+ 0.26*STE_Concept/Word
+ 0.23*Push~Push%

Considering training, we see considerable similarity with the prior table. Again all
linguistic models outperform the Pretest model, and the Semantic, Local Context, and
All models outperform the Surface model; however, here the Discourse Structure model
does too. Again the All model is best and contains only Semantic and Local Context
features. The Pragmatic set again had one feature forced into the model for comparison.

Considering testing, we continue to see considerable similarity with the prior table.
The Semantic model again outperforms the Pretest model, and contains the two of the
same parameters as its counterpart in the prior table. However, here the Pragmatic model
also outperforms the Pretest model, which suggests that using only correlated features
may not produce an “absolute” best model. Again no other models outperform the Pretest
model. Again the Semantic, Pragmatic, and All models again outperform the Surface
model, although here the Discourse Structure and Local Context models do not. How-



ever, the All model contains the features of the Local Context model plus one additional
Semantic feature, and these Local Context features are derived from bigrams of Dis-
course Structure features. Overall our results in these tables suggest both that Semantic
features are our most generalizable linguistic predictors of Posttest, and that our other
more sophisticated linguistic feature sets are probably “worth the effort” too.

Table 3 shows our results for training on PO5+S05 and testing on S03. Since this
training set includes only 2005 students, we expected less similarity and generalizability.

Table 3. Learning Models Trained on P05+S05 (54 Students) and Tested on SO3 (20 Students)

Feature Set | # Feats || Learning Model train R? | test R?

Pretest n/a 0.64*Pretest 0.412 0.214

+Surface 1 0.59*Pretest - 0.21*Rejections# 0.452 0.259

+Semantic 8 -0.40*Incorrect/Correct + 0.35*Pretest 0.585 0.338
+0.24 S_Concept/Word

+Pragmatic 2 0.53*Pretest + 0.27*GoalRep0% 0.470 0.135

+Disc. Str. 7 0.55*Pretest - 0.23*Depth4% 0.455 0.145

+Local 28 0.40*Pretest - 0.31*PopUp~Incorrect# 0.567 0.284
+ 0.28*Can’tAnswer~Correct%rel

+All 46 -0.40*Incorrect/Correct + 0.35*Pretest 0.585 0.338
+ 0.24 S_Concept/Word

Considering training, we see more similarity than expected. Again all linguistic
models outperform the Pretest model; they all also outperform the Surface model. Again
the All model performs best; here however it is identical to the Semantic model and a
Semantic feature is the strongest predictor. Furthermore, Student Concept-Word Ratio
was consistently selected by the Semantic models in all tables, suggesting it is our most
generalizable linguistic feature. The Local Context model is again second best.

Considering testing, performance as expected is generally lower as compared to
the other tables, but we continue to see similarities. Although here all but 2 models
(Pragmatic and Discourse Structure) outperform both the Pretest and Surface models, as
in the prior tables, the Semantic model continues to performs best on testing.

4. Conclusionsand Current Directions

This paper examined the relative usefulness of linguistic feature sets for modeling learn-
ing in computer dialogue tutoring. We hypothesized that more sophisticated linguistic
feature sets would yield stronger learning models, making them “worth the effort” to
obtain. We built models from 6 different linguistic feature sets on 3 different subsets of
our 3 ITSPOKE corpora, then compared how the models generalized to new test sets.
Our results support our hypothesis. The Semantic models consistently outperformed
all models on testing, yielding our most generalizable linguistic features, with Student
Concept-Word Ratio present in every Semantic model and some Semantic feature(s) in
every All model. The Semantic and Local Context models consistently outperformed the
Surface model on testing. The performance of the Discourse Structure and Pragmatic
models was more variable, but the Pragmatic model outperformed the Surface model
on testing in two datasets, while in every dataset either the Discourse Structure model
outperformed the Surface model on training, or these features appeared in models (Local
or All) that did so. Moreover, no Surface features were selected in any of the All models.



Although our linguistic features can all be computed automatically, more sophisti-
cated features required more effort to conceive and implement than surface features. Our
results suggest it would be worthwhile to expend further effort to find more generalizable
sophisticated features. For example, we are extending our Semantic feature set to include
de-stemmed and synonymous concept words and phrases. We are extending our Local
Context features to include other bigrams. We will also add features based on recognized
student speech, as well as para-linguistic features, such as affective states.

We will also try other model-building procedures. We used PARADISE based on
our prior work in dialogue systems; this can be viewed as one method of data mining for
learning-related features. Although our models do not imply causality between model
parameters and learning, they suggest hypotheses about how learning can be increased,
i.e. by modifying the system to try to minimize negative parameters (costs) and max-
imize positive parameters (benefits). These hypotheses can be tested by evaluating the
new system. For example, the Surface Feature model in Table 3 suggests rejections are a
cost. We can test this by lowering ITSPOKE's recognition threshold so it rejects answers
less frequently. Incorporating our most generalizable parameters into system design will
likely have the most impact on learning in new user populations. However, the hypothe-
ses suggested by these parameters do not always suggest obvious system changes. For
example, we cannot directly manipulate the Student Concept-Word Ratio; increasing this
ratio may involve changing the system’s response during the tutoring.
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