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Abstract

We consider the problem of representing plans for

mixed-initiative planning, where several participants

cooperate to develop plans. We claim that in such

an environment, a crucial task is plan communication:

the ability to suggest aspects of a plan, accept such

suggestions from other agents, criticize plans, revise

them, etc., in addition to building plans. The com-

plexity of this interaction imposes significant new re-

quirements on the representation of plans. We describe

a formal model of plans based on defeasible argument

systems that allows us to perform these types of rea-

soning. The arguments that are produced are explicit

objects that can be used to provide a semantics for

statements about plans.

Introduction

Mixed-initiative planning involves the cooperation of
two or more agents collaboratively constructing and
possibly executing a plan. This includes situations
ranging from automated planning assistants, where a
machine aids a human in constructing a plan, to sit-
uations with multiple autonomous agents attempting
to co-ordinate their activities towards a common goal.
In all these situations, the agents need to talk about
plans. This paper develops a representation that sup-
ports such plan communication. While we have used
this to support a natural language mode of communi-
cation, it applies equally well to more formally defined
communication languages such as two machines might
use, or as might be used as the back-end for a graphical
human-machine interface.

The traditional representations of plans are inad-
equate for supporting communication about plans.
Formal models of plans (e.g., (McCarthy & Hayes
1969),(Chapman 1987)) typically define a plan as a se-
quence of actions. If agents communicated plans by
simply listing the sequence of actions to be performed,
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then this might be adequate. But this is not what hap-
pens. To see how agents communicate plans, we de-
signed an experiment that involves two people collabo-
rating on forming plans in a transportation planning do-
main involving train scheduling. The subjects could not
see each other, and could only communicate by speak-
ing into a microphone. Over thirteen hours of inter-
action have been collected and transcribed (see (Gross,
Allen, & Traum 1993)). In no case did one agent simply
describe the plan by describing a sequence of actions.
Rather, agents identified the overall goal, identified sub-
goals to focus on, identified important actions in the
plan, stated relevant facts that would help in the devel-
opment of the plan, identified problems with what the
other agent proposed, confirmed what the other agent
suggested, and requested clarification when suggestions
were not fully understood. Many of the details of the
plan are never mentioned at all, and yet are implicitly
agreed upon by the agents.

Clearly, the representation of a plan as a sequence of
actions accounts for very little of the actual interactions
that occur in a mixed-initiative planning scenario. This
is not to say that we must reject the notion of a plan as
a sequence of actions. It only points out that a planning
system that engages in mixed-initiative planning must
use a much richer representation. Similar conclusions
have been made by researchers interested in plan execu-
tion monitoring and plan modification and reuse (Hayes
1975; Drummond 1989; Kambhampati & Hendler 1992;
Kambhampati 1992). For these applications, it is im-
portant to represent the reasons why an action is be-
ing performed, so that an appropriate response can be
made if the action fails. It is also important to record
which effects of an action are important for the plan in
order to verify whether an action succeeded or failed in
the first place. This same information is crucial in plan
communication. It allows one agent to understand the
other agent’s motivation behind a suggested course of
action, which helps in identifying the specific role that
the suggested action should play in the plan.

Consider an example. Two agents, A and B, are co-
operating to construct a plan to transport medical sup-
plies to some location. To get the supplies there, the
agents need to first move them overland to the port,
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and then carry them by ship. A cargo ships leaves ev-
ery day at between 4:00 and 6:00. If the supplies are
moved by train to the ship, they will arrive at 5:00.
If they are moved by truck, they will arrive at 3:00.
Moving them by truck, however, will be three times
as expensive. Given this scenario, there are compet-
ing constraints on a solution. Ideally, one would like a
plan that guarantees to get the supplies there as soon
as possible, while spending the least amount of money.
Such a solution is not possible here, however. Further-
more, there is no single, global evaluation measure on
the worth of plans. Each of the agents may have differ-
ent priorities in evaluating plans, possibly focusing on
one factor and ignoring the others.

Given this setting, one possible interaction between
the two agents is as follows:
1. Agent A suggests shipping the supplies by train;
2. Agent B points out that the ship might leave at 4:00,

and thus the supplies would miss today’s ship;
3. Agent A points out that the ship might not leave

until 6:00, and thus the supplies would make today’s
ship.

At this point, the agents are at a standoff. They could
continue to argue in many ways. A might argue that
getting the supplies there today isn’t important, or B

might argue that the risk of missing the ship is unac-
ceptable. Or one of them might propose another plan:
4. Agent B suggests moving the supplies by truck in-

stead.
Assuming that agent A finds the cost of this option
acceptable, there would appear to be no arguments
against this plan, and thus it would be accepted by
both agents.

There are many problems to address in order to sup-
port the type of interactions in the example. In this pa-
per we are concerned with the formal representational
underpinnings. The representation proposed involves
applying techniques for representing arguments to a
logic of time, events and action, which supports reason-
ing about attempting actions and their effects. We have
explored the logic of time and action in depth elsewhere
(Allen & Ferguson 1994) and have applied it to plan
reasoning (Allen 1991). Here we explore the use of ex-
plicit argument structures in a direct inference system,
and show how, with a suitable logic of time and action,
they provide a very rich representation both for talking
about plans and for doing plan reasoning itself. This
representation is being used to support plan reasoning
in the TRAINS system at Rochester, where it supports
plan construction and plan recognition algorithms that
are used by a planning system that cooperatively builds
plans with a person.

The rest of this paper is organized as follows. First
we define argument systems formally, then apply the
model to representing planning knowledge. The preced-
ing example is used to illustrate the approach. Finally
we discuss some of the issues raised by this work.

Premises

Goals

Figure 1: Graphical representation of an argument

Argument Systems
In this section we present a formal description of an
argument system based on those of Loui (Loui 1987)
and of Pollock (Pollock 1987; 1992).

Basic Definitions
We assume a logical language with an entailment rela-
tion |=, and allow a set KB of propositions that spec-
ify domain constraints against which arguments can be
evaluated.

Definition 1 An argument step is a pair �Φ, p�,
written “Φ → p,” where Φ is a set of propositions (the
premises) and p is a single proposition (the conclu-
sion).

An argument step is to be read something like “Φ is
reason to believe p,” or “The truth of Φ lends support
to the truth of p.”

Am agent’s knowledge base includes a set of argu-
ment steps ∆ that the agent uses in its reasoning. Note
that in the case where we have large numbers of poten-
tial arguments, ∆ may be specified schematically.

Definition 2 An argument is a set of argument steps
{�Φi, pi�} drawn from ∆.

Definition 3 The premises of an argument A are
those propositions in the conclusions of steps with empty
premises, i.e., {p|�Ø, p� ∈ A}. The conclusions of an
argument A are the union of the premises of steps with
empty conclusions, i.e.,

�
{Φ|�Φ, �� ∈ A}.

We require that arguments be non-circular and that
both Premises(A) and Goals(A) be non-empty for any
argument A. In this case, arguments correspond to di-
rected, acyclic graphs labeled with propositions, such
as illustrated in Figure 1. An argument step �Φ, p� cor-
responds to a node labeled by p with children each la-
beled by an element of Φ. The sources of the graph
correspond to Premises(A), the sinks to Goals(A).

Conflict and Defeat
What makes argument systems interesting is the way
arguments can conflict over the status of some proposi-
tion. In this case, we need to define how certain argu-
ments are to be preferred over others.

Definition 4 Two argument steps �Φ, p� and �Ψ, q�
conflict if p and q are inconsistent.



In Pollock’s system, this form of conflict is called re-
buttal, and a second form, called undercutting, is also
permitted. The intuition is that in rebutting conflict
the value of some proposition is at issue, while in un-
dercutting conflict it is the applicability of a defeasible
rule that is in doubt. In our approach, following Loui,
we will impose certain criteria of defeat (below) which
to some extent obviate the need for undercutting. We
leave open the possibility, however, that it may be re-
quired in the future.

Given two arguments that conflict, we are interested
in preferring certain arguments over others. The follow-
ing definition, adapted from Loui, makes this explicit:
Definition 5 An argument A is at least as specific
as an argument B if there is a step �Φ, p� ∈ A and a
step �Ψ, q� ∈ B such that the steps conflict and Φ |= Ψ.
An argument is more specific than another argument
if it is at least as specific and the converse is not the
case.

Finally, we can put these pieces together and propose
the following:
Definition 6 An argument A defeats an argument
B if A conflicts with B and A is at least as specific as
B.
Definition 7 An argument A is undefeated if there
is no argument B that conflicts with A that is not itself
defeated.
There are complications in applying this somewhat cir-
cular definition to determine which arguments are un-
defeated. Pollock (Pollock 1992), for example, consid-
ers such phenomena as collective defeat and self-defeat.
The details are not necessary to an appreciation of the
formalism as regards planning.

Also, there might be other grounds for preferring one
argument over another besides specificity. Loui (Loui
1987) considers evidence, directness, and preferred
premise, for example. As well, there might be domain-
specific criteria, such as resource use or time limits in
a planning context. The specificity principle is gener-
ally accepted as appropriate and is sufficient for what
follows.

Plan Reasoning Using Arguments
In this section we describe the application of argument
systems to planning problems. We begin by describing
the representation of causal knowledge using defeasi-
ble rules and consider the qualification problem in this
light. We then present a formalization of the mixed-
initiative planning example presented earlier. This is a
short but interestingly complex example of a planning
problem that highlights the incrementality of argumen-
tation and the use of specificity. The example includes
reasoning about uncertainty and external events.

The approach is to express our defeasible knowledge
about actions and their preconditions and effects us-
ing rules in ∆. Arguments can then be constructed
supporting the fact that executing certain actions will

achieve certain goals. These arguments may be in
conflict with or defeated by other arguments. Un-
defeated arguments represent plans that will succeed,
given what we know and how long we searched for
counter-arguments. Of course, plans can be compared
or evaluated according to other factors besides defeat,
such as resource usage or time constraints. Note that,
among other things, this approach distinguishes goals
from other effects and makes the assumptions underly-
ing the plan explicit and thus available for reasoning.

Knowledge Representation
To keep the presentation as concise as possible, we will
use a very simple representation of time, namely a dis-
crete model where, given a time t, n(t) is the next time.
The representation can easily be generalized to either
a situation calculus representation or the more expres-
sive interval temporal logic (Allen & Ferguson 1994)
that we actually use. An important point is that action
attempts must be distinguished from their effects.

In order to do this, we introduce events as cognitive
objects that correspond to “something that happened.”
Event predicates are used to organize our causal knowl-
edge about the domain and are organized in a type hi-
erarchy. For example, a predicate like Load(et) is true
if the event et describes a loading event that occurred
at time t. Rules describe the necessary conditions given
that an event of a particular type occurred.

In order to reason about the agent’s abilities, we have
to introduce actions. Unfortunately, actions and events
are often confused, since, intuitively, for any action
there is an event corresponding to that action being
executed. To avoid this confusion, we will think of ac-
tions as sensory-motor programs that can be run by the
agent; this is basically the concept of action used in the
planning literature. There is a predicate Try(π, t, et)
which is true if program π is executed at time t (or over
interval t in a more expressive logic) causing event et

to occur. Rules specify sufficient conditions for a pro-
gram’s execution to result in an event of a certain type.

Causal Knowledge and Qualifications
The fundamental issue in representing knowledge for
planning is how to capture the idea that execution of
an action causes a certain effect, at least under cer-
tain conditions. The traditional planning view would
be characterized something like the following:

Holds(preconds(a), t) ∧ Try(a, t, et) ⊃
Holds(effects(a), n(t)).

That is, if the preconditions of an action a hold at time
t and we attempt action a, then the effects will hold at
the next time point.1 There are many problems with
this definition, such as how to handle simultaneous ac-
tions, external events, and actions with duration. These
problems can be resolved, however, by using a richer

1
Traditional models wouldn’t have events, but we include

the et term for comparison with the later development.



temporal model, but for this paper such extensions are
not important. The important idea is the intuition that
actions do have preconditions, even if these are context-
dependent and subject to revision.

In the context of reasoning about actual situations,
what is troubling is the strength of the implication. It
does not make sense with this definition, for example, to
reason about execution of the action when only some of
the preconditions are known to be true. Indeed, in the
STRIPS model of planning, an operator cannot even
be applied (i.e., an action cannot be attempted) if all
the preconditions do not hold. In a more philosophical
sense, these axioms run into the qualification problem:
the problem that no matter how many preconditions
we write down, there will always be other things that
might happen that would invalidate the axiom. If these
axioms are based on the material conditional, the price
of encountering an unconsidered qualification is incon-
sistency.

The obvious move then is to weaken the definition to
use the defeasible connective “→” rather than the ma-
terial conditional. Then these definitions can be used in
arguments that execution of an action has some effect,
without saying finally that it must. We obtain some-
thing like the following, using the notation introduced
in the previous section:

{Holds(preconds(a), t), T ry(a, t, et)}→ Event(et)

where Event is an event-type predicate. The definition
of the event can continue to use the material condi-
tional:

Event(et) ⊃ Holds(effects(et), n(t))

This is not quite enough, however, because it doesn’t
capture the notion that somehow the precondition
should be true before attempting the action if it is to
succeed, even if we don’t know for sure that it this is the
case. Clearly we shouldn’t state that falsity of a pre-
condition implies that the action won’t succeed, since
there might be other conditions (known or unknown)
under which it would. But we can say that defeasibly,
as in

{¬Holds(preconds(a), t), T ry(a, t, et)}→ ¬Event(et)

In fact, these two rules form the extremes of a con-
tinuum of rules relating knowledge of preconditions to
successful execution of actions. Suppose we know that
φ1 and φ2 are preconditions for action a. Then a plan
that takes account of only φ1 is at least reasonable, if
not complete or even possible given other knowledge
about the world. But it is important to be able to rep-
resent such partial or incorrect plans if we are interested
in doing more than simply generating simple plans. In
this case, we will need additional rules in ∆ correspond-
ing to these “partial” argument steps. In fact, for every
action a with (conjunctive) preconditions φ1, φ2, . . . ,φn

and effects ψ, there corresponds a set of defeasible rules
organized in a lattice of specificity. The most specific
rule is the one in which all preconditions are present.

The least specific rule mentions no preconditions, i.e.,
Try(a, t, e) → Event(e), indicating that an action can
always be attempted, even if an argument that doesn’t
take note of preconditions may not be a very strong one.
There is a similar lattice of rules regarding the falsity
of preconditions and the non-occurrence of events.

Some comments are in order regarding this formula-
tion of causal rules. First, it is independent of the un-
derlying representation of time and action, so long as
action attempts can be distinguished from their effects
(i.e., the Try predicate, above). Second, the approach
is different from using a modal logic to express the
possibility and necessity intuitions involved in reason-
ing about preconditions. The most modal logic could
do is allow us to write that if a precondition is true
then an action is possible, and if it is false then the
action necessarily fails, for example. But in the defeasi-
ble reasoning approach, degrees of support are afforded
through the use of defeasible rules with more or less
specific antecedents. This is much closer to our intu-
itions about just what a precondition is, and also closer
to the way people talk about preconditions in collabo-
rative discourse about plans.

Finally, we believe that this approach to reasoning
about preconditions and effects of actions is the best
way to deal with the qualification problem. That is, the
agent considers qualifications as long as it can or until it
has considered all that it knows about, as reflected in its
set of defeasible rules. If subsequent qualifications are
encountered, they can be reasoned about given more
time, without denying that the plan developed previ-
ously supported its conclusions, however tenuously.

Planning Example
Recall from the example presented in the Introduction
that we have to get supplies X into ship S before it
leaves port P , and that there are two ways of transport-
ing the supplies. We will denote these by two actions
(programs): sendByTrain and sendByTruck. Then
assuming these actions have no preconditions, their def-
initions are given by the following rules:
{Try(sendByTrain(x, l), t, et)}→ Transport(et, x, l, 5)
{Try(sendByTruck(x, l), t, et)}→ Transport(et, x, l, 3).

Time units are measured in hours. The event predicate
Transport is defined as

Transport(et, x, l, n) ⊃ At(x, l, t + n),

The action of loading ship s with supplies x has as pre-
conditions that both the ship and the supplies must be
at the dock, yielding the following definition:

{At(x, l, t), At(s, l, t), T ry(load(x, s, l), t, et)}→
Load(et, x, s, l).

The definition of Load is

Load(et, x, s, l) ⊃ In(x, s, t + 1).

Finally, we have the information that the ship S leaves
port P between 4:00 and 6:00. Letting Td denote the



time of departure, we have that 4 ≤ Td ≤ 6 and defea-
sible rules:

Td > t → At(S, P, t)
Td ≤ t → ¬At(S, P, t).

Agent A’s initial plan, namely shipping the the sup-
plies by truck, is shown in Figure 2(a). Obviously, this
ignores the precondition that the ship be at the dock at
the time of loading. Figure 2(b) shows agent B’s a more
specific argument that argues that the loading will fail
if the ship leaves at 4:00. Figure 2(c) shows the equally
specific argument supporting the successful loading of
the supplies if the ship hasn’t left yet. Since neither ar-
gument is more specific, neither emerges as undefeated
and so, intuitively, neither plan is guaranteed. This is
as it should be given the uncertainty in the scenario.
Figure 2(d) shows the undefeated argument for using
the truck rather than the train.

The point of this example is to demonstrate the in-
cremental development of a plan when several agents
are involved. By representing the interaction as a pro-
cess of argumentation, we can account for interactions
that point out of difficulties with a current proposal,
or that propose alternative courses of action, as well
as many other interactions beyond the scope of a tra-
ditional planning system. Further, the arguments that
are built up explicitly include the types of information
typically added to planners to support, e.g., plan modi-
fication, while being formally well-motivated in terms of
defeasible reasoning. Of course, the particular example
used here is not particularly difficult for classical plan-
ning systems, although it does contain some compli-
cations involving uncertainty and external events that
would cause problems for many frameworks.

Towards A Language for Plans
The description of plans as arguments allows us to de-
fine a language in which plans are objects in the ontol-
ogy. Terms denoting plans are then given a semantics
in terms of plan graphs, where different predicates im-
pose different constraints on the interpretation (i.e., on
the graph). There are structural predicates, such as
ActionIn, Enables, Premise, Goal, etc., that are de-
fined in terms of the structure of the plan graph. Then
there are evaluation predicates. These include absolute
predicates such as Plausible or Impossible and relative
predicates that allow plans to be compared, for exam-
ple, according to resource usage or time constraints.
The view of mixed-initiative planning that emerges is
one where agents post constraints on the shared plan
using these predicates.

This language is being developed as part of the
TRAINS project (Allen & Schubert 1991; Ferguson
1994), an effort to construct an intelligent planning as-
sistant that is conversationally proficient in natural lan-
guage. The plan description predicates are used in the
interface between the language and discourse modules
and the domain plan reasoner. The manager’s utter-
ances are result in queries being made of or constraints

being posted on the plan. The plan reasoner communi-
cates the results in terms of plan description predicates
that satisfy the query or that needed to be added in
order to connect an utterance to the plan. These are
then used to generate responses or helpful suggestions,
since often information beyond the literal content of an
utterance must be added in order to incorporate it.

Discussion
There are many questions raised by this work, but space
permits discussion of only a few. First, this work has
clear similarities to the work on plan modification and
replanning mentioned at the outset. The difference is
that rather than developing data structures for tra-
ditional planners that retain information required for
other tasks, we consider planning within the context of
a general defeasible reasoning system. Thus, our work
can be seen as a generalization and formalization of that
work which can be applied to other problems involved
in plan communication. Our approach also abstracts
away from the underlying representation of action (i.e.,
STRIPS).

Konolige (Konolige 1988) applies defeasible reason-
ing to reasoning about events, in particular to the Yale
Shooting problem. The emphasis is on what types of
defeasible arguments are important in reasoning about
events as well as what information is necessary for ad-
judicating between these arguments. While the partic-
ular rules presented are largely an artifact of the sim-
ple representation of action, he argues convincingly for
the relative merits of argumentation systems compared
to indirect systems such as circumscription. He notes
the ability to include knowledge about applicability of
defeasible rules directly within the framework and the
incremental nature of argumentation that we have also
noted.

Konolige and Pollack (Konolige & Pollack 1989) di-
rectly apply the defeasible reasoning paradigm to plan
recognition in the context of plans-as-intentions. The
aim is to produce plausible arguments regarding the
intentions of other agents from observations of their ac-
tions, and from the undefeated arguments to extract
intentions that can be ascribed to those agents. The
difference between our approaches is that we see the
arguments as objects to be reasoned about rather than
using argumentation to reason defeasibly about inten-
tions. These are not irreconcilable viewpoints.

Conclusions
We have presented an explicit representation of plans as
arguments that a certain course of action under certain
explicit conditions will achieves certain explicit goals.
We believe that in realistic mixed-initiative planning
scenarios such a representation is necessary to capture
the wide range of reasoning that agents do with plans.
Basing the representation on argument systems pro-
vides a formal basis both for describing these forms of
reasoning and for defining the semantics of plans.



��✒
◗

◗
◗◗❦

✻

✻

.

②

✻

(b)

Transport(e0, X, P, 5)

At(X,P, 5)

¬Load(e5, X, S, P )

Try(sendByTrain(X,P ), 0, e0)

Try(load(X,S, P ), 5, e5)
Td = 4

¬At(S, P, 5)
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(c)

Transport(e0, X, P, 5)

At(X,P, 5)

Load(e5, X, S, P )

Try(sendByTrain(X,P ), 0, e0)

Try(load(X,S, P ), 5, e5)
Td = 6

At(S, P, 5)
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In(X,S, 3)

(d)

Transport(e0, X, P, 3)

At(X,P, 3)

Load(e3, X, S, P )

Try(sendByTruck(X,P ), 0, e0)

Try(load(X,S, P ), 3, e3)

✻
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(a)

Transport(e0, X, P, 5)

At(X,P, 5)

Load(e5, X, S, P )

In(X,S, 6)

Try(sendByTrain(X,P ), 0, e0)

Try(load(X,S, P ), 5, e5)

Figure 2: Four arguments about shipping supplies
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