
Integrating Natural Language Understanding and Plan Reasoning in
the TRAINS-93 Conversation System

�

D. R. Traum
�
, J. F. Allen

�
, G. Ferguson

�
, P. A. Heeman

�
, C. H. Hwang

�
,

T. Kato
�
, N. Martin

�
, M. Poesio

�
and L. K. Schubert

�

Abstract
This paper describes the TRAINS-93 Conversation System,
an implemented system that acts as an intelligent planning
assistant and converses with the user in natural language.
The architecture of the system is described and particular
attention is paid to the interactions between the language
understanding and plan reasoning components. We examine
how these two tasks constrain and inform each other in an
integrated nl-based system.

1 The TRAINS Project
The TRAINS project is a long-term research project to de-
velop an intelligentplanning assistant that is conversationally
proficient in natural language[Allen and Schubert, 1991]. The
TRAINS system helps a user construct and monitor plans
about a railroad freight system. The user is responsible for
assigning cargo to trains and scheduling shipments, schedul-
ing various simple manufacturing tasks, and for revising the
original plans when unexpected situations arise during plan
execution. Figure 1 shows a typical initial scenario. The
system aids the user in all aspects of this task by interacting
in natural language. In particular, the system typically will
perform the following tasks:
� Evaluating courses of action, calculating expected comple-

tion times, detecting conflicts, and so on;
� Filling in details of the proposed plan that do not require

the user’s attention;
� Suggesting ways to solve particular subproblems as they

arise;
� Presenting and describing the current state of the world and

how the proposed plan may affect it;
�
This material is based upon work supported by ONR/DARPA

under grant number N00014-92-J-1512, the US Air Force under
Rome Laboratory researchcontract number F30602-91-C-0010, and
ONR under research grant number N00014-90-J-1811���

traum, james, ferguson, heeman,
hwang, martin, schubert 	 @cs.rochester.edu Uni-
versity of Rochester; Rochester, NY, 14627-0226.


kato@nttnly.ntt.jp NTT Network Information Systems
Labs; 1-2356 Take, yokosuka-shi, Kanagawa 238-03 JAPAN.�

poesio@cogsci.ed.ac.uk University of Edinburgh,
Centre for Cognitive Science, Edinburgh, EH8 9LW, Scotland, UK.

� Dispatching the plan to the different agents in the world,
including the train engineers and factory users;

� Interpreting reports back from the engineers and factory
users in order to monitor the progress of the plan and to
anticipate problems before they arise; and

� Coordinating the correction and modification of plans with
the user.

While we aim to produce a functioning system, the system
itself is not really the goal of the effort. Rather, the domain
is a tool for forcing our research to address the problems that
arise in building a complete dialogue system. For instance,
the dialogue module must be able to handle a wide range
of everyday discourse phenomena rather than handling a few
selected problems of theoretical interest. While this approach
focuses our research directions, the solutions that we seek
are general solutions to the phenomena rather than specific
solutions that happen to work in the TRAINS domain. The
TRAINS project currently has several main foci of research:
� Parsing and semantically interpreting utterances as they

arise in spoken language, including sentence fragments,
repairs and corrections;

� Accounting for the discourse behavior present in natural
dialogue;

� Representing the reasoning and control of the discourse
agent, including reasoning about plans in the TRAINS
domain as well as the plans that drive the system’s behavior
in the dialogue itself; and

� Providing the knowledge representation and reasoning
tools that are needed for planning and scheduling in real-
istic size domains, including reasoning about time, events,
actions and plans.

Four prototypes of the TRAINS system have been devel-
oped, one per year starting in 1990. We feel that most of the
issues to be discussed at this symposium were raised at one
point or the other during our work of developing and refining
the TRAINS system. In the final analysis, we can say the
system “understands” NL input from the user if it executes
the plan as the user expects.1 More locally, the system can

1Actually, this condition is too strong, as a user might fail to
convey expectations properly, so a more realistic objective might be
to execute a plan according to expectations of an observer of the
conversation.



Dansville

Avon

Bath

Corning Elmira

Engine E1

Banana Warehouse

Boxcar

Boxcar

Boxcar

Tanker car

Orange Warehouse

Engine E2

Engine E3

Boxcar

OJ Factory

Figure 1: Trains World Set-up for Dialogue Collection

assume it understands a particular utterance if it can produce
a coherent interpretation of the utterance, both in terms of
the additions to the plan, and in terms of discourse structure
expectations and conventions.

2 Modules of the TRAINS-93 System
Figure 2 shows the modules of the 1993 implementation of the
TRAINS System, as well as the main flow of communication
between modules.

�

�

�

�
�

�
�

�� � ������� 	




 
��




�
� � ���

�
�� �

NL Input

Parser

Dialogue Manager

Plan Executor Plan Reasoner

TRAINS World & Agents

SAD SA Interpreter NL Generator

NL Output

Figure 2: TRAINS System Architecture

As the figure indicates, the language interpretation modules
are tightly integrated with the planning and plan execution
task modules. Granularity of interleaving in the implementa-
tion is at the sentential utterance level. Each utterance (from
either the user or the system) is processed up to the dialogue

manager (which calls the domain reasoner to disambiguate
hypotheses about meaning and to update the representation
of the current plan). Information from the planner can be
used as a basis for forming NL responses, e.g., acceptances,
rejections, or repairs of plan-based suggestions.

2.1 Parsing and LF-Computation
The first module in the interpretationprocess is a parser which
takes an utterance and produces a representation that com-
bines the result of syntactic analysis and of lexical interpre-
tation. We use A GPSG style grammar that makes extensive
use of a feature system including subcategorization features
and several feature principles governing feature percolation.
Each rule in the grammar consists of a syntactic rule coupled
with a corresponding semantic rule. This allows us to build
the interpretation compositionally in the sense of Montague’s
semantics.

The computed representation is an unscoped logical form
(ULF) in Episodic Logic [Hwang and Schubert, 1993].
Episodic logic is a very expressive knowledge and semantic
representation which is capable of representing the nuances
of a natural language, including tense and aspect, purposes,
goals and plans, causes, facts, beliefs, surface speech acts, and
various kinds of adverbials. A ULF is an underspecified in-
terpretation in that it involves unscoped operators (e.g., quan-
tifiers and coordinators) as well as indexical operators/terms
(e.g., speech act operators, tense operators, and pronouns).

2.2 Scope and Deindexing
The task of the Scope and Deindexing module, SAD-93, is to
‘deindex’ (i.e., fix the value of) context-dependent aspects of
an utterance’s content such as referential expressions. The in-
put to SAD-93 is the underspecified representation produced
by the parser. The output is the set of alternative hypotheses
about how to resolve the ambiguity that are suggested in the
given context.



SAD-93 arrives at an hypothesis by applying discourse
interpretationrules with varying strength, all of which operate
directly off the underspecified interpretation. The decision to
integrate scope interpretation with other aspects of pragmatic
interpretation reflects the thesis put forth in [Poesio, 1994]
that the scoping preferences of human subjects result from
the interaction of several discourse interpretation processes.

2.3 Speech Act Analysis
The speech act interpreter is responsible for determining what
the speaker means by her utterance. For instance, when a
speaker utters “there are oranges at Corning”, (as in utterance
3-7 in the conversation presented in Figure 3, below) she
might be saying this to inform the hearer of this fact, to
check whether the hearer agrees with this, to question the
hearer about whether this is the case, or as a suggestion to
use the oranges in the current plan. These alternatives are
not all mutually exclusive. The speech act interpreter builds
a list of hypotheses about the speech act interpretations of an
utterance.

Rather than working from fully scoped and deindexed
forms, the speech act analyzer, like the Scope and Deindexer,
takes the unscoped Logical Form as its input. By working off
of the unscoped Logical Form, the speech act analyzer can
make use of clues that are present in the surface form, such
as modals and left-clefts to aid in the analysis, clues which
would be blurred by scope and deindexing. After both the
speech act analysis and scope and deindexing are completed,
the result of scope and deindexing is incorporated into the
speech act hypotheses passed on to the dialogue manager for
verification.

2.4 Dialogue Management
The dialogue manager is responsible for maintaining the flow
of conversation and making sure that the conversational goals
are met. For this system, the main goal is that an executable
plan which meets the user’s goals is constructed and agreed
upon by both the system and the user and then that the plan
is executed.

The dialogue manager must keep track of the user’s current
understanding of the state of the dialogue, verify the hypothe-
ses about intentions behind utterances of the user, send system
intended speech acts to the NL generator to produce system
utterances, and send commands to the domain plan reasoner
and domain plan executor when appropriate. The dialogue
manager is described in more detail in [Traum, 1993].

2.5 Domain Plan Reasoning
The plan reasoner provides planning and plan recognition
services and performs reasoning about the state of the world.
The system must explicitly represent the plan(s) under con-
sideration, since the user’s utterances must be recognized in
terms of their contribution to the current plan. In our frame-
work, plans include explicit statements of what the goals of
the plan are and, importantly, the assumptions underlying the
plan. Assumptions can arise both during plan recognition
(to fill in details left unspecified by the user but necessary to
connect the current utterance to the plan) and during planning

(for example, persistence assumptions). Since these assump-
tions often drive the dialogue, we are developing an explicit
representation of plans as arguments based on assumptions
[Ferguson, 1992].

The TRAINS plan reasoner supports interleaved planning
and recognition (as necessary in processing dialogue), and ex-
ports a variety of functions to other modules of the system, in
particular the dialogue manager. The dialogue manager uses
the results of plan reasoning to disambiguate speech act inter-
pretations, update beliefs, and generate new conversational
elements (e.g., an ambiguity detected by the plan reasoner
could cause a clarification sub-dialogue to be started).

2.6 Plan Execution

The plan executor takes a plan and sends the necessary com-
mands to the individual agents (engineers, factory and ware-
house attendants) to have that plan carried out in the simulated
world. It also monitors the progress of the plan (communi-
cating with these agents as they perform their tasks) to make
sure the plan execution is successful.

The plan executor also performs two additional services
for other modules. It can aid the planner by making choices
among a set of alternatives presented by the planner (e.g.,
a choice of which among a set of alternative paths to take
between destinations).

The executor also gathers the information that allows it
to make better choices on subsequent queries. It bases its
decisions on constraints on probability that are inferred from
observations, from probabilities asserted by the programmer
and from facts inferred from its knowledge base. The executor
gathers information by observing events in the world and
inferring the type of events that caused the observation. It then
updates the statistics on the events observed and the events
inferred. The principles behind the executor’s operation are
described in more detail in [Martin, 1993].

2.7 TRAINS World Simulation

The TRAINS World is a detailed simulation of action execu-
tions by agents on world objects. It is used for plan execution
and monitoring (since, as far as the system is concerned, it is
the real world). The intentions of the system have no direct
bearing on the behavior of the World. Actions will take place
regardless of the system’s goals. The World implements a
dynamic physical model unknown to the system. The only
way the system can effect change in the world is through
sending directives to the agents in the world: engineers, fac-
tory managers, etc. If they receive the messages (some may
be lost), they execute the requested actions. These actions
may or may not have the consequences anticipated.

2.8 NL Generation

The NL Generator takes speech act representations produced
by the dialogue manager and converts them to natural lan-
guage text which is then “uttered” as output to the user (and
fed back through the language analysis modules).



3 Example Dialogue
Figure 3 shows a (slightly edited) dialogue collected as part
of the study in [Gross et al., 1993], in which a person played
the part of the system. The dialogue concerns the TRAINS
world situation given in Figure 1. The current implemen-
tation can interpret the user utterances in this dialogue and
provide the appropriate system responses, while building up
an executable plan.

1 U: We better ship a boxcar of oranges to Bath
by 8 AM.

2 S : Okay.
3-3=6 U: So we need to get a boxcar to Corning

where there are oranges.
3-7 U: There are oranges at Corning.
3-8 U: Right?
4 S : Right.
5-1 U: So we need an engine to move the boxcar.
5-2 U: Right?
6 S : Right.
7-1=2 U: So there’s an engine at Avon.
7-3 U: Right?
8 S : Right.
9=13 U: So we should move the engine at Avon,en-

gine E1, to Dansville to pick up the boxcar
there.

14 S : Okay.
15-2=4 U: And move it from Dansville to Corning.
15-5=7 U: Load up some oranges into the boxcar.
15-8=10 U: And then move it on to Bath.
16 S : Okay.
17 U: How does that sound?
18-3 S : That’s no problem.
19 U: Good.

Figure 3: The dialog processed by TRAINS-93.

4 Domain Constraints on NL Interpretation
Tasks

The domain itself and the tasks of plan reasoning and plan exe-
cution constrain NL interpretation in a number of ways. Con-
sider for example the interpretation of NPs. In the TRAINS
domain, there is a fixed number of engines and train cars, so
that in the situation represented in Figure 1, any talk of “an
engine” must eventually boil down to E1, E2, or E3. On the
other hand, in this domain all train cars are equivalent for all
purposes; therefore it is never the case that an indefinite is
interpreted specifically (see, for example, utterances 3-3=6 or
5-1).

Another important characteristic of the task is that two
‘domains of conversation’ are actually involved: the situation
described by the map, and the ‘possible situation’ described
by the plan. This affects the interpretation of referential
expressions, for example, that can refer either to some object
in the plan (see, e.g., “the boxcar” in utterance 5-1) or to some
object “in the world” (“the boxcar there” in 9=13). Tense
interpretation is similarly affected. Ambiguities may result;

information about the plan is often necessary to disambiguate
between likely candidates for referential expressions.

Plan recognition will serve as the ultimate arbiter for the
meanings of utterances. For example, an utterance which
suggests an action to be performed will generally have more
profound effects than merely adding the mentioned action to
the plan — plan recognition is performed to incorporate the
action into the known part of the plan, linking up the action
itself with whatever else is needed to connect the action to
the eventual goal, and adding this whole structure to the plan.
This extra connective material (which might include other
actions to be performed) can be thought of as the implicatures
of the utterance. The utterance cannot really be said to have
been understood without understanding how it fits in with the
rest of the conversation (in this case the rest of the plan).

Information returned from plan recognition can be used to
respond to the user in a variety of ways. If the plan recognizer
cannot link up the current suggestion to the plan, some sort
of clarification is in order. Similarly, if a suggestion could be
linked up in any of several different ways, this is also a good
time for a clarification. If quite a bit of material is needed to
incorporate the action into the plan, then it might be a good
idea for the system to try to check this material explicitly,
otherwise an acknowledgement of some sort is in order. If
the system recognizes the connection, but finds the suggested
additions nonoptimal, it may reject the suggestion and offer
a counter proposal.

As well as incorporating suggestions by the user into a
plan using plan recognition, the domain plan reasoner can
elaborate plans on its own. Often the level of detail mentioned
by the user is insufficient to actually carry out the objective
in the world. The plan reasoner can fill in missing pieces
using standard planning techniques. If the dialogue manager
judges these additions significant enough, they will need to be
suggested back to the user in so that the system can maintain
with the user a shared view of the plan.

5 NL Interaction Constraints on Domain
Plan Reasoning

The embedding of the domain plan reasoner within the con-
text of a dialogue system also poses many constraints on the
plan reasoning process. Most importantly, the plan repre-
sentation language must be expressive enough to represent
the kinds of things people say about plans in cooperative di-
alogue. For one thing, the representation needs to be able
to represent incorrect or sub-optimal plans in order to cor-
rectly express the content of natural language utterances about
plans. The system should then be able to reason about why
the plans are incorrect or sub-optimal and then use the results
of such reasoning to drive the dialogue towards repairing or
refining the plan. Also, the plans under discussion are rarely
completely specified, nor are they necessarily described in a
systematic way. Our experience in collecting TRAINS dia-
logues shows that people jump around to various aspects of
plan that they consider salient.

In a dialogue setting,plan recognition and planning must be
interleaved. Plan recognition is performed to determine the
content of the user’s utterances, and planning is used to fill out



details of the plan or to criticize previously-specified details.
Both of these operations need to be performed in the context of
different sets of beliefs and assumptions. These requirements
mean that the plan reasoner must be able to reason from an
arbitrary plan description in an arbitrary knowledge context,
making incremental changes in accord with user suggestions
(e.g., utterances 1, 3-3=6, 5-1, 7-1=2, etc.).

The conversation setting also provides extra resources to
a plan reasoner that an off-line system would not enjoy. For
many computational problems (e.g., NP-complete problems),
proof construction is difficult, yet proof verification is rela-
tively easy. If the plan reasoner had to come up with a plan on
its own (even for a simple goal in a simple situation such as
the example in Figure 1), it would run across many decision
points, and many of the choices would lead to inefficient or
unworkable plans. Allowing the user to make suggestions
helps focus the search within a smaller search space.

Both when planning and when performing plan recogni-
tion, the domain plan reasoner is confronted with a number
of choice points without any principled basis to choose one
path over another. The executor can sometimes help, on the
basis of its experience in similar situations, yet this may not
always be sufficient (the executor may not have seen similar
situations enough times). The only other alternative for a
stand-alone domain plan reasoner is to choose randomly.

In an NL system, however, more options are available. An
important task of the NL components of TRAINS is to ex-
ploit ‘surface’ cues and conversational implicatures to help
the domain plan reasoner by focusing its search. Particular
constructions such as purpose clauses and cue words (e.g.,
“so” and “and”) provide important clues as to how the plan
fragments described by utterances are related. Conversa-
tional implicatures based on Gricean maxims similarly play
an important role: e.g., to suggest that the actions described
by utterances 9=13 to 15-8=10 are related and temporally
ordered.

In a NL system it is also possible for the planner to ask
the user for a preference whenever alternative plans are avail-
able. Similarly, if the plan recognition process becomes too
difficult (in the current implementation, this amounts to the
search expanding beyond a preset depth without the system
being able to incorporate the current event in the plan), the
plan reasoner can signal the dialogue manager to request a
clarification.

6 Discussion
Of particular interest is how the notion of plan is used dif-
ferently by different modules. To the scope and deindexer, a
plan represents a possible situation, which can be a resource
for determining the referents of event and object descriptions.
To the speech act interpreter and dialogue manager, a plan is
an object which can contain various components (e.g., events,
goals). To the plan reasoner, a plan is an argument that an
eventuality (the goal) will occur. To the plan executor, a plan
is a list of instructions which must be translated into com-
mands to send to the simulated agents in the world. Recon-
ciling the ontological requirements of the separate modules is
a problem that must be addressed by any system attempting to

closely integrate natural language understanding, discourse,
and planning in a principled way. The TRAINS project is an
investigation into these issues; the TRAINS system distills
the state of the art in formal work in several fields into a
functional, interactive program.

The interest of the TRAINS project lies in the general-
ity and theoretical defensibility of the multiple components
that have been integrated into a single working system. This
emphasis on well-foundedness ensures that the overall archi-
tecture and component integration are not simply a reflection
of practical needs in a narrow task domain, but a possible gen-
eral model of task-oriented dialogue agents. Our progress to
date shows that our theoretical emphasis is not an impedi-
ment to practical implementation. Some small but realistic
dialogues such as the one in Figure 3 are already handled
by the system, without “shortcuts” in the requisite parsing,
semantic interpretation, speech act analysis, dialogue man-
agement, plan inference, and world simulation. While the
amount of knowledge possessed by the system remains small,
the way that knowledge is represented, manipulated, and in-
tegrated into cooperating modules is in principle transferable
to any other type of cooperative, task-oriented conversational
domain.

References
[Allen and Schubert, 1991] Allen, James F. and Schubert,

Lenhart K. 1991. The TRAINS project. TRAINS Tech-
nical Note 91-1, Computer Science Dept. University of
Rochester.

[Ferguson, 1992] Ferguson, George 1992. Explicit represen-
tation of events, actions, and plans for assumption-based
plan reasoning. Technical Report 428, Computer Science
Dept. University of Rochester.

[Gross et al., 1993] Gross, Derek; Allen, James; and Traum,
David 1993. The TRAINS 91 dialogues. TRAINS Tech-
nical Note 92-1, Computer Science Dept. University of
Rochester.

[Hwang and Schubert, 1993] Hwang, C. H. and Schubert,
L. K. 1993. Episodic Logic: A situational logic for natural
language processing. In Situation Theory and its Applica-
tions, V. 3, CSLI, Stanford, CA.

[Martin, 1993] Martin, Nathaniel G. 1993. Using Statistical
Inference to Plan Under Uncertainty. Ph.D. Dissertation,
University of Rochester, Computer Science Department,
Rochester, NY 14627.

[Poesio, 1994] Poesio, Massimo 1994. Discourse Interpre-
tation and the Scope of Operators. Ph.D. Dissertation,
University of Rochester. forthcoming.

[Traum, 1993] Traum, David R. 1993. Mental state in the
TRAINS-92 dialogue manager. In Working Notes AAAI
Spring Symposium on Reasoning about Mental States:
Formal Theories and Applications. 143–149.


