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ABSTRACT

We present a post-processing technique for correcting errors com-
mitted by an arbitrary continuous speechrecognizer. The technique
leverages our observation that consistent recognition errors arising
from mismatched training and usageconditions can be modeled and
corrected. We have implemented a post-processor called SPEECHPP
to correct word-level errors, and we show that this post-processing
technique applies successfully when the training and usage do-
mains differ even slightly; for the purposes of the recognizer, such
a difference manifests itself as differences in the vocabulary and
in the likelihoods of word collocations. We hypothesize that other
differences between the training and usage conditions yield recog-
nition errors with some consistency also. Hence, we propose that
our technique be used to compensate for those mismatches as well.

1. INTRODUCTION

Wherever we can guarantee that the training conditions for our
speechrecognizer will match the conditionsof usage, we can expect
good recognition performance with confidence. Second, wherever
we know in advance how the usage conditions will vary from the
training conditions, we can design our recognizer to account for
that variability. For example, we may know that previously unheard
speakers will use our recognizer without much variability in accent
or dialect, and we can expect good accuracy. This paper, and
indeed this workshop, deals with a more challenging scenario: we
would like to successfully deploy continuous speech recognition
technologyin settings where we have no knowledge about the usage
conditions. In other words, we face the challenge of recognizing
speech coming from a speaker through an unknown channel.

Possible mismatches between the training and usage conditions can
occur as differences in any of the following:

� domain (vocabulary and word collocations)
� language
� speaker
� pronunciation (speaking rate, dialect, accent, etc.)
� speaker’s acoustic environment
� microphone
� other properties of the channel from speaker to recognizer

For example, we have observed that a mismatch in the domain of
discourse results in vocabulary mismatch and a mismatch in the
frequency of collocations among vocabulary words. We have also
observed that a continuous speech recognizer trained for a particular
domain will commit errors with reasonable consistency whenever a

speaker attempts utterances in another (even only slightly different)
domain.

Our objective is to reduce speech recognition errors. We present
a straightforward technique for modeling and correcting consistent
recognition errors. We hypothesize that differences (other than
in the domain) between the training and usage conditions yield
recognition errors with some consistency also. Hence, we propose
that our technique be used to compensate for those mismatches as
well. We acknowledge that when the source of the error is known
and the mismatch is well-understood, other techniques will most
likely be superior.

We model the channel from the speaker to the output of a given rec-
ognizer as a noisy channel. We have implemented a post-processor
called SPEECHPP as a Viterbi beam-search that employs language
and channel models. These models are constructed with no precon-
ceptions of the channel’s nature; in this sense, the channel is un-
known. For training, SPEECHPP requires only an adequate amount
of human-transcribed speaker utterances gathered under the usage
(i.e., test) conditions and transmitted through the test channel and
through the recognizer. (We have found that a few thousand words
of test data are sufficient.) The channel model is derived by compar-
ing the human transcriptions and the recognizer output in a manner
similar to that used for statistical machine translation.

1.1. Mismatched Domain

To date, our experiments have involved a mismatch in the domain
of discourse. We have used ATIS (airline travel information) data
for training the recognizer and TRAINS-95 (train route planning) [1]
data for testing. Here are a few examples of the kinds of errors that
occur when recognizing spontaneous utterances in the TRAINS-95
domain using Sphinx-II [5] running with models trained from ATIS
data. In each example, the words tagged REF indicate what was
actually said, while those tagged with HYP indicate what the speech
recognition (SR) system proposed. As the first example shows,
many recognition errors are simple word-for-word confusions:

REF: RIGHT SEND THE TRAIN FROM MONTREAL
HYP: RATE SEND THAT TRAIN FROM MONTREAL

In the second example, a single word was replaced by more than
one smaller word:

REF: GO FROM CHICAGO TO TOLEDO
HYP: GO FROM CHICAGO TO TO LEAVE

Perhaps surprisingly, for such a domain mismatch a simple one-
for-one word substitution channel model is sufficient to yield sub-
stantial increases in word accuracy. Some further improvements in



word accuracy result from augmenting the channel model with an
account of word fertility in the channel.

1.2. Clients and Servers

Several research labs have considered making speech recognition
available on the Internet by running publicly accessible speech
servers. Such servers would likely employ general-purpose lan-
guage and acoustic models,but they would need to able to recognize
utterances in new domains from new speakers in potentially new
acoustical environments. For reduced error rates, the mismatched
conditions would necessitate one of two things:

� the server itself would need to adapt and maintain new models
for each speaker/connection;

� the remote client would need a way to model and correct the
errors committed by the server.

For the first option, given the data (collected under the usage con-
ditions) for training the SPEECHPP, the recognizer’s models can of
course be augmented, perhaps by interpolation with the new mod-
els. We will show that in the case where the recognizer’s language
model can be updated with data from a new domain, the post-
processor trained on the same new data can still provide additional
improvements in recognition accuracy.

For the second option, using a general-purpose SR engine makes
sense because it allows a system to deal with diverse utterances
from typical speakers in typical environments. If needed, the post-
processor can correct the general-purpose hypothesis in a domain-
specific or speaker-specific way to compensate for mismatches.
Using the general-purpose system in new domains or environments
requires only that the post-processor be tuned by passing a relatively
small training set through the channel and recognizer for observa-
tion; the general-purpose recognizer and its models can be reused
with little or no change. Note that the post-processor’s training set
must not necessarily be handled in batch mode; instead, the speaker
could opt to supervise the training of the post-processor with word
transcriptions in an online fashion. Because the post-processor is
light-weight by comparison, the savings may be significant. This
solution distributes the load of maintaining custom models among
the clients.

This work demonstrates that a modern continuous speech recog-
nizer can be used for robustly recognizing speech for which the
recognizer was not originally trained. Furthermore, a recognizer
can be used as a server with multiple unknown clients using un-
known channels, as long as the clients are permitted to enroll with
labeled speech.

2. THE MODELS AND ALGORITHM

We applied a noisy channel model and adapted techniques from
statistical machine translation (c.f. [3]) and statistical speech recog-
nition (c.f. [2, 6]) in order to model the errors that Sphinx-II makes
in our domain. Briefly, the model consists of two parts: a channel
model, which accounts for errors made by the SR, and the lan-
guage model, which accounts for the likelihood of a sequence of
words being uttered in the first place. Figure 1 illustrates the re-
lationship of the speaker, the channel (including the SR), and the
error-correcting post-processor.

More precisely, given an observed word sequence � � from the
SR, SPEECHPP finds the most likely original word sequence

��

by finding the word sequence � that maximizes the expression
P
� � ����� �	� P � � � , where

� P
� � � is the probability that the speaker would utter � ,

� P
� � ����� � is the probability that the SR produces the sequence� � when � was actually spoken.

For efficiency and due to sparse data, it is necessary to estimate
these distributions with relatively simple models by making inde-
pendence assumptions. For P

� � � , we train a word-bigram “back-
off” language model [7, 10] from hand-transcribed dialogues pre-
viously collected with the TRAINS-95 system. For P

� � � �
� � , we
build a simple channel model that assumes independent word-for-
word substitutions; i.e.,

P
� � � ��� �
����� P

��� �� � � � ��� (1)

The channel model is trained by automatically aligning the hand
transcriptions with the output of Sphinx-II on the utterances in
the (SPEECHPP) training set and by tabulating the confusions that
occurred. We say that a word is aligned with the word it produces.

This one-for-one model is insufficient for handling all SR errors,
since many are the result of faulty alignment, causing many-to-one
and one-to-many mappings. Accordingly, for the channel model we
relax the constraint that replacement errors be aligned on a word-
for-word basis. As we have seen, it is possible for a pre-channel
word to “cause” multiple words or a partial word in the SR output.
We will use the following utterance from the TRAINS-95 dialogues
as an example.

REF: TAKE A TRAIN FROM CHICAGO TO TOLEDO
HYP: TICKET TRAIN FROM CHICAGO TO TO LEAVE

Following Brown et al., we refer to the number of post-channel
words produced by a pre-channel word in a particular alignment
as the fertility of that pre-channel word. In the above example,
“TOLEDO” is said to have a fertility of two, since it yielded two
post-channel words. When a word’s fertility � is an integer value,
it indicates that the pre-channel word resulted in � post-channel
words. When a word’s fertility is a fraction 1� , then the word and��� 1 neighboring words have grouped together to result in a single
post-channel word. We call this situation fractional fertility.

We also borrow from Brown et al. the concept of an alignment,
such as Figure 2. To augment our one-for-one channel model, we

HYP:  TICKET   TRAIN  FROM  CHICAGO  TO  TO  LEAVE

REF:  TAKE  A  TRAIN  FROM  CHICAGO  TO  TOLEDO

Figure 2. Alignment of a Hypothesis and the Reference Transcrip-
tion.

require a probabilistic model of fertility and alignment. Our fertility
model consists of several components, one for each fertility value
we wish to model. For the component that models fertility two
events, we have a distribution P

� � �
1 � � �2 � � � . In other words,

we model the probability that pre-channel word
�

is replaced by
the two words

�
1 and

�
2 in the post-channel sequence. To build

the fertility two model, we count the number of times that each
pre-channel word

�
is recognized as a pair

� �
1 � � �2 and compute
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Figure 1. Recovering Word-Sequences Corrupted in a Noisy Channel.

P
� � �

1 � � �2 � � � accordingly. Similarly, for fertility one-half events,
we have a distribution P

��� � � �
1 � � 2

� .
Incorporating the fertility models, the channel probability for a
given alignment

�
of a pre-channel sequence � and a post-channel

sequence � � is the product of the probability of each piece of the
alignment; i.e.,

P
� � � � � ��� �
� � ����

j � 1

P
� � � ��� �	��

�

j

� � ��� �����
j

��� (2)

SPEECHPP searches among possible pre-channel sequences � for
the most likely correction of a given post-channel sequence � � .
The search pursues the sequence that yields the greatest value of
P
� � � � P

� � � � � � by building possible source sequences � one
word at a time and scoring them. At stage � of the search, each
hypothesis built at stage � � 1 is extended in all possible ways.
Possible extensions are dictated by the channel model components.
Given, the � -th post-channel word

� �� , if the channel model predicts
a non-zero probability that a particular pre-channel word (or words)
generated

� �� , then that pre-channel word(s) forms the tail of a new
hypothesis. Thus, each word

� �� in � � is exploded (or collapsed
with neighbors) using all possible combinations having non-zero
probabilities in the model. While the source hypotheses are built,
they are scored according to the language model and the channel
model so that the most promising hypotheses can be pursued first.
The search is efficient because it is dynamic programming on partial
pre-channel sequence hypotheses, and because all partial hypothe-
ses falling below a threshold offset (a beam) from the best current
hypothesis are pruned. This is a Viterbi beam-search (c.f. [4, 8]).

3. EXPERIMENTAL RESULTS

3.1. Simple Channel Model

This subsection presents results based only on the one-for-one
channel model and a back-off bigram language model. Having
a relatively small number of TRAINS-95 dialogues for training, we
wanted to investigate how well the data could be employed in mod-
els for both the SR and the SPEECHPP. We ran several experiments
to weigh our options. For a baseline, we built a class-based back-
off language model for Sphinx-II using only transcriptions of ATIS
spoken utterances. Using this model, the performance of Sphinx-II
alone was 58.7% on utterances in the TRAINS-95 domain. Note
that this figure is not necessarily an indictment of Sphinx-II, but
reflects the mismatch between the ATIS domain and the TRAINS-95
domain.

First, we used varying amounts of training data exclusively for
building models for the SPEECHPP; this scenario would be most
relevant if the SR were a black-box and we were unable to train
its models. Second, we used varying amounts of the training data

exclusively for augmenting the ATIS data to build new language
models for Sphinx-II. Third, we combined the methods, using the
training data both to extend the language models for Sphinx-II
and to then train SPEECHPP on the errors committed by the newly
trained SR.

The results of the first experiment are shown by the bottom curve
of Figure 3, which indicates the performance of the SPEECHPP
over the baseline Sphinx-II (at 58.7%). The leftmost square point
comes from using approximately 25% of the available training data
in the SPEECHPP models. The second and third points come from
using approximately 50% and 75%, respectively, of the available
training data. The curve clearly indicates that the SPEECHPP does a
reasonable job of boosting our word recognition rates over baseline
Sphinx-II. Also, performance improves with additional training
data, up to a word error rate reduction of 14.9% (relative). We
did not train with all of our available data, since the remainder
was used for testing to determine the results via repeated leave-
one-out cross-validation. The error bars in the figure indicate 95%
confidence intervals.
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Figure 3. Influence of the post-processor with additional training
data.

Similarly, the results of the second experiment are shown in the mid-
dle curve. The triangle points reflect the performance of Sphinx-II
(without SPEECHPP) when using 25%, 50%, and 75% of the avail-
able training data in its LM. These results indicate that equivalent
amounts of training data can be used with greater impact in the
language model of the SR than in SPEECHPP.

Finally, the outcome of the third experiment is reflected in the third
highest curve. Each diamond point indicates the performance of
the SPEECHPP using a set of models trained on the behavior of
Sphinx-II for the corresponding point from the second experiment.
The results from this experiment indicate that even if the language
model of the SR can be modified, then SPEECHPP trained on the
same new data can still significantly improve word recognition



accuracy on a separate test set, up to a word error rate reduction of
24.0% (relative). Hence, whether the SR’s models are tunable or
not, SPEECHPP is in neither case redundant.

3.2. Fertility Channel Model

We performed additional experiments using fertility models in the
channel. The results reported here are relative to those achieved
by the SPEECHPP reflected in the rightmost (diamond) point of the
third highest curve in the graph. Using the fertility two model
along with the one-for-one model used for that reference point, we
observed a 0.42% drop in substitutions, a 14.2% drop in insertions,
and an 3.78% rise in deletions. As expected, the model corrects
several insertion errors that were beyond the reach of the one-for-
one model. However, the fertility two model is clearly not perfect,
since it proposes corrections from two words to one word, causing
the number of deletion errors to rise.

A second experiment involved the fertility one-half model with the
one-for-one channel model. Here we have the reverse scenario
from the prior experiment, as the number of deletion errors fell
by 4.73%, and insertions rose by 6.78% over the base channel
model. We observed a 0.93% rise in substitutions. This is also not
surprising, since the model triggers search hypotheses in which one
word is expanded into two, sometimes erroneously. Unfortunately,
the total number of errors overall is slightly higher than without
this channel model.

Using all three models together, we observed an overall increase
in word accuracy of 0.32% (relative) beyond the third curve in the
performance chart. This result and similar results for the other ref-
erence points in the third curve comprise the fourth and uppermost
curve in the chart. Clearly, this curve falls within the confidence
intervals surrounding the points of the third curve. Although the
results are not statistically significant, they hold promise.

With regard to the small margins of improvement from our fertil-
ity models, we observe that the amounts of training data we have
used are still small. However, the techniques are sound, and we
expect that further refinements, such as smoothing (generalizing)
the fertility models, will improve performance. Our current efforts
focus on smoothing the fertility models using phonetic-level con-
fusions in order to improve their contributions. Results from these
experiments will be available in the near future.

4. CONCLUSIONS AND FUTURE WORK

We have presented a post-correction technique for overcoming
speech recognition errors, based upon a noisy channel model. A
recognizer using models trained for one domain does not perform
well on speech in a domain even closely related to the training
domain. Our experiments have shown that Sphinx-II does not per-
form well when moving from an air-travel information domain
to a closely related train-route planning domain: as shown, it
achieves less than 60% word accuracy on fluent utterances col-
lected in problem-solving dialogues with the TRAINS-95 system.
SPEECHPP can help in precisely such scenarios.

We hypothesize that this technique is more generally applicable
for overcoming the problems caused by mismatches between an
SR’s training environment and the test environment. The only pre-
requisite is an opportunity to observe the effects of the channel.
We plan to conduct experiments involving other kinds of training
versus usage mismatch, such as speaker gender mismatch.

We have also demonstrated that with or without the ability to tune

the models of the SR, we can use the SPEECHPP to boost word
recognition accuracy significantly. In the TRAINS-95 system, the
techniques presented here have yielded word error rate reductions
as high as 24.0% (relative).

Furthermore, the post-processing approach has an advantage over
lattice and N-best list rescoring approaches for reducing SR errors:
using its channel model, our post-processor can introduce words
that are not available in the SR module’s output (c.f. [9]). In the
near future, we plan to pursue the use of word-lattices in place
of simple word sequences and expect that they will provide more
useful hypotheses to compete in the post-processor’s search.
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