Improving Big Plans

Neal Lesh, Nathaniel Martin, James Allen*
Computer Science Department
University of Rochester
Rochester NY 14627

{lesh,martin, james}@cs.rochester.edu

Abstract

Past research on assessing and improving plans in do-
mains that contain uncertainty has focused on ana-
lytic techniques that are exponential in the length of
the plan. Little work has been done on choosing from
among the many ways in which a plan can be im-
proved. We present the IMPROVE algorithm which
simulates the execution of large, probabilistic plans.
IMPROVE runs a data mining algorithm on the execu-
tion traces to pinpoint defects in the plan that most
often lead to plan failure. Finally, IMPROVE applies
qualitative reasoning and plan adaptation algorithms
to modify the plan to correct these defects. We have
tested IMPROVE on plans containing over 250 steps in
an evacuation domain, produced by a domain-specific
scheduling routine. In these experiments, the modified
plans have over a 15% higher probability of achieving
their goal than the original plan.

Introduction

Large, complex domains call for large, robust plans.
However, today’s state-of-the-art planning algorithms
cannot efficiently generate large or robust plans from
first principles. We have combined work on data min-
ing (Agrawal & Srikant 1995), qualitative reasoning
(Wellman 1990), planning (Nebel & Koehler 1995),
and simulation to construct the IMPROVE algorithm
which modifies a given plan so that it has a higher
probability of achieving its goal.

An algorithm for improving big plans is useful only if
big, but not especially robust, plans can be generated
to begin with. We believe domain specific and collab-
orative planning algorithms (e.g. (Ferguson, Allen, &
Miller 1996)) will produce such plans. In our experi-
ments, we use a greedy, domain specific algorithm to
produce plans with 250 to 300 steps in an evacuation
domain. This algorithm, however, ignores projected

Many thanks to George Ferguson, Mitsu Ogihara, and
Mohammed Zaki as well as the AAAT reviewers for com-
ments and discussion. This material is based upon work
supported by ARPA under Grant number F30602-95-1-
0025.

weather patterns and undesirable outcomes of actions
such as buses overheating or helicopters crashing,.

The IMPROVE algorithm repeatedly simulates the in-
put plan, analyzes the execution traces to identify what
went wrong when the plan failed, and then generates a
set of modifications that might avoid these problems.
Finally, the algorithm re-simulates to determine which,
if any, of the modifications best improves the robust-
ness of the plan. This whole process is repeated until
the modifications cease to improve the plan.

In the first step, we use a discrete event simulator
to generate execution traces based on a probabilistic
model of the domain. We show that simulation is an
attractive alternative to analytic techniques for deter-
mining the probability of a plan achieving its goal.
Simulation is linear in the length of the plan and fast
in practice. Further, the estimate produced by simula-
tion converges, as more simulations are performed, to
the true probability that a plan will achieve its goal.

In the second step, we use SPADE (Zaki 1997), a
sequential discovery data mining algorithm to extract
patterns of events that are common in traces of plan
failures but uncommon in traces of plan successes. The
patterns are used to determine what to fix in the plan.
For example, if the plan often fails when Busl gets
a flat tire and overheats, then IMPROVE attempts to
prevent at least one of those problems from occurring.

In the third step, we apply qualitative reasoning
techniques (Wellman 1990) to modify the plan to avoid
the problems that arose in simulation. For example, if
the problem is that a bus is getting a flat tire then this
step might suggest changing its tires.

Finally, plan modifications can necessitate further
planning. For example, adding an action to a plan
requires that the preconditions of the action be satis-
fied, perhaps by adding more actions. We show how
this problem is closely related to the problem of plan
re-use or adaptation (Nebel & Koehler 1995).

Below, we first formulate the plan improvement
problem. We then describe our four components: sim-

ulation, data mining, qualitative reasoning, planning.
We then present our improvement algorithm, describe
our experiments, and then conclude.

Formulation

In this section, we define our terms and specify the
input and output of the plan improvement problem.

The problem of planning under uncertainty has re-
cently been addressed by a variety of researchers. See
(Goldman & Boddy 1996) and (Boutilier, Dean, &
Hanks 1995) for comparisons of various approaches.
We use the representation of actions used by the Buri-
dan planner (Kushmerick, Hanks, & Weld 1995), which
allows for probabilistic and conditional effects, but not
for exogenous events or for actions to be executed in
parallel or have varying durations. In our actual sys-
tem, we allow for limited forms of all of these factors.

An action is a set of consequences { (t1,e1,p1),-..,
(tn,en,pn) }, where for every i, t; is an expression
called the consequence’s trigger, e; is a set of literals
called the consequence’s effects, and 0 < p; < 1 indi-
cates the probability that the action will have effect
e; if executed in a state in which ¢; holds. The trig-
gers must be mutually exclusive and exhaustive. For
our purposes, each action a; is associated with a set
of outcomes, such that there is a unique outcome label
o0;,1, for every possible effect ej, of action a;.

Let P[G | Z, A] be the probability of goal G holding
in the state resulting from executing action sequence
A from state Z. See (Kushmerick, Hanks, & Weld
1995) for an exact description of how to compute the
probability of a plan achieving a goal, as well as the
probability of a state resulting from executing a given
action from a given state.

A plan improvement problem is a tuple (A, G,Z,0)
where A is a sequence of actions, G is a goal, 7 is
the initial state, and O is a set of possible actions. A
solution to a plan improvement problem is a sequence
of actions A’ such that every member of A’ is also a
member of O and P[G | Z, A’] > P[G | Z, A].

The intent is that A’ will resemble A and could be
produced by applying a small number of simple oper-
ations (deleting, adding, or re-ordering actions) to .A.

Components

We now describe the four components of our system.

Simulation

In this section, we briefly describe how we simulate
probabilistic plans. Our simulator maps from an ini-
tial state and an action sequence to an execution trace
randomly chosen from the distribution of possible ex-
ecutions of the action sequence. To simulate a plan,

we start with the initial state and for each action we
“roll the dice” to determine the action’s effects and,
consequently, the next state. We repeat the process
for every action in the plan, to produce an execution
trace. For each simulation, we record which of the pos-
sible outcomes of each action occurred, as well as the
sequence of states that arose.

Since simulation explores only one possible execution
path at a time, the complexity of simulation is linear
in the length of the plan. Previous analytic techniques
for assessing plans are exponential in the length of the
plan (e.g. (Kushmerick, Hanks, & Weld 1995)).

We now briefly discuss the advantages of using sim-
ulation in probabilistic planning. Standard statistical
arguments (McClave & II 1982) show that simulation
converges in the sense that one can guarantee there is
a high probability that the estimate returned by simu-
lation is within some € of the true probability. What’s
more, the probability that the true probability, p, is
more than € away from our estimate is approximately
Zas2v/(p(1—p)).t For example, even making the most
pessimistic assumptions about p, 10,000 simulations
yields about a 95% confidence that the estimate is
within 0.01 of the correct answer. This is a lot of simu-
lations. But note that it is independent of plan length!
In contrast, adding a single action can double the work
required by an analytic technique.

Furthermore, a small number of simulations can be
used to reject a bad plan. Suppose a plan succeeds in
20 of 100 simulations and we need a plan that succeeds
with at least .6 probability. Reasoning about sample
size indicates that there is well over 99% confidence
that a plan that fails in 100 randomly chosen simula-
tion has lower than a .6 probability of succeeding.

Data mining for significant flaws

In this section, we describe how we use data mining
to determine what went wrong in the plans that failed
during simulation. The objective is a function which
outputs expressions of the form Prevent(a;, 0; ;) which
translates to “Iry to prevent action a; from having out-
come o; .” This process is more completely described
in (Zaki, Lesh, & Ogihara 1997).

Sequential discovery (Agrawal & Srikant 1995) is
the problem of mining patterns from sequences of un-
ordered sets of items, such as

ABCw— DE — EF — GHI
CDw— AB — CIJ — BG
AB— E—1J

'Values for z can be found in any statistics textbook.
For example, z.05 = 1.645, z.025 = 1.96 and z.005 = 2.575.

where A, B,C..J are items. The algorithms find pat-
terns that occur with high frequency. For example,
the sequence A — I occurs in all three of the above
sequences, and AB — E — I occurs in two of them.

We have applied the SPADE algorithm (Zaki 1997)
to the execution traces produced by the simulator.
We convert the ith trace into a sequence of actions
(A, ..., AL), where each action is represented as a set
composed of the action’s id, the action’s name, the pa-
rameters of the action, and the outcome of the action.
This is a simple transformation, in that we know that
action a; was executed at time 4 in every trace, and so
what varies from trace to trace is what outcome the
action had. For example, suppose that action ag is a
Move action on Busl from Delta to Abyss, and that in
the 12th simulation the outcome of ag was Flat, then
AL? would be:

(id8 Move Veh=Busl Frm=Delta To=Abyss Flat)

We then apply the SPADE algorithm to extract pat-
terns that occur with high frequency in the failed plans
but low frequency in the successful plans. An example
pattern the data mining algorithm might return is:

(Move Busl Flat) — (Move Busl Overheat)

which indicates that Busl gets a flat tire in one Move
action and overheats in a subsequent Move action.

We can be reasonably confident that significant
trends will emerge from our data mining, if we have
sufficient numbers of both successful and failed plan
traces. Let seq be some sequential pattern of events.
In order to correctly assess whether seq predicts fail-
ure, we need an accurate estimate of its frequency in
both the successful and failed plans. Let C; be the
probability that the frequency of seq in the successful
traces will be within some € of the true probability of
seq occurring in a successful plan. Similarly, let Cy be
the probability that the frequency of seq in the failed
plan traces will be within some € of the true probabil-
ity of seq occurring in a failed plan. The probability
that seq will be represented accurately in both success-
ful and failed plans is Cs x Cy, which will be high iff
both Cs and Cy are high. Thus, a significant trend is
likely to emerge if our simulations include a sufficient
number of both successful and failed plans.

If a pattern is common in failed plan traces but un-
common in successful traces then we speculate that
preventing this sequence from occurring might increase
the plan’s success rate. The sequence represents a
chain of events that causes failure and thus can be
broken by preventing any part of the chain from oc-
curring. For example, if data mining extracts the
pattern (id8 Flat) — (id17 Overheat) then we assert

Prevent(ag,Flat) and Prevent(a17, Overheat). But the
patterns might not include specific actions. Given the
pattern Flat — Overheat, we re-examine the simula-
tion traces to find actions that often resulted in a Flat
or Overheat.

More formally, we generate Prevent statements as
follows. Let P = (p1,1 > P1,2-- & Plyma)s s (Pna
Pn,2..« — Dn.m,) be the patterns returned by the data
mining routine. For every action a; and outcome o; 4,
let A be all occurrences of action a; in the simulations
where the outcome was o; . For every p,; € P, we
count the number of actions in 4 that p,; matches
(i.e. po; is a subset of the action in the trace). If
this number is above a user-defined threshold, normally
about .1 of the total number of traces, then we assert
Prevent(a;, 0;). The Prevent statements can be cal-
culated in a single pass through the execution traces
by keeping a separate counter for each action-outcome
pair for every p,; € P.

The highly structured nature of the database of plan
traces makes it difficult to mine rules that predict
failure. A compuational problem is that there are a
staggering number of highly frequent, but unpredic-
tive, rules such as (Move) — (Load) — (Move) which
appears in every plan trace. The typical strategy of
mining all highly frequent rules and then removing all
unpredictive ones is not efficient in this case. A second
problem is that the existence of one rule that predicts
failure, say (Busl Flat) — (Busl Overheat), implies
the existence of many related, equally predictive rules,
such as (Move Busl) — (Move Busl) — (Busl Flat) —
(Busl Overheat), since the Move action is so common.
(Zaki, Lesh, & Ogihara 1997) discusses these problems
and describes pruning stratagies for addressing them.

Qualitative reasoner

In this section, we describe a function for mapping from
a statement of the form Prevent(a;,0;x) to a set of
suggestions for changing the plan to decrease the like-
lihood that action a; will have outcome o; k.

The function SUGGESTCHANGES takes in the Pre-
vent statement, the original plan, the set of possi-
ble actions O, and also a set of qualitative rules QR.
The qualitative rules indicate positive and negative
influences among state variables, actions, and action-
outcome pairs. Informally,

e An action a; positively influences a boolean state
variable v; iff Plvj|a;] > P[v;], i.e. if v; is more
likely to hold in the current state if action a; was
just executed than otherwise.?

2Currently, we assert a positive influence only if there
does not exist any state in which executing a; decreases the
probability that v; will be true.

e A state variable v; negatively influences an ac-
tion outcome pair (a;,0;%) iff P[(as,0ik)|v;] >
P[{ai,0i,k)], i.e. if action a; is more likely to have
outcome o;, if v; is true in the state in which a; is
executed than if v; is false.

For example, if a; is the Change-Tire action then
a; might positively influence v; = TireConditionGood
which would negatively influence (ay, Flat).

Positive and negative influences can be combined
and chained in the obvious way: if a positively influ-
ences b and b positively influences ¢ then a positively
influences ¢. If a negatively influences b and b posi-
tively influences ¢ then a negatively influences ¢. And,
finally, if a negatively influences b and b negatively in-
fluences ¢ then a positively influences c.

Currently, we employ the following simple strategy
for inserting actions:

Func:SUGGESTCHANGES ({a;, 0;,k),{a1, .., ar},QR,0)

e If action @’ € O is not in ay, ..., a, and action a’ neg-
atively influences (a;, o) given the rules in QR then
assert Insert(a’, a;) which indicates that a' should be
inserted into ay, ..., a, prior to a;.

Currently, we hand code a set of qualitative rules QR
for the domain.

Our approach can be described as a simple case of
a qualitative probabilistic network (QPN) (Wellman
1990). QPNs are used to perform inference over qual-
itative influences. The complexity of determining if
one node positively or negatively influences another is
O(|V|?) where V is the number of nodes. These tech-
niques are thus suitable for large domains. We intend
to extend our use of qualitative networks to take more
advantage of their power including the ability to add
more than one action to the plan.

Recall that data mining focused our improvement
efforts on preventing some actions from having certain
outcomes. There are, however, many ways of making
it less likely that a given action will have a given out-
come. For example, one might add any action which
could make any aspect of the trigger of that effect false.
We believe that qualitative reasoning is a promising
technique for further focusing an improvement algo-
rithm on a subset of the possible ways of preventing
the sequences detected by data mining.

Plan adaptation

We have shown how analysis of simulated execution
traces can suggest modifications to improve the plan,
such as inserting an action. However, these modifica-
tions might result in an unexecutable plan. For exam-
ple, the new action may have unsatisfied preconditions.

We now address the problem of further modifying the
plan to accommodate the new changes.

Variations of this problem arise in case-based plan-
ning (Hammond 1989; 1990), transformational plan-
ning (Simmons 1988), or plan re-use or plan adapta-
tion (Nebel & Koehler 1995). In each case, a plan
that almost solves a given goal is modified, or re-
paired, to solve the goal. In particular our prob-
lem, can be mapped into a plan-reuse or plan adapta-
tion problem (Nebel & Koehler 1995), for which there
are several domain-independent algorithms including
SPA (Hanks & Weld 1995), PRIAR (Kambhampati &
Hendler 1992), and NOLIMIT (Veloso 1994).

We focus on SPA, which is based on the SNLP
partial-order planner (McAllester & Rosenblitt 1991).
Planning by adaptation is similar to planning from first
principles. The primary difference is that search begins
from the plan to be adapted rather than from a null
plan. As a consequence, plans can be refined by re-
tracting elements from, as well as adding elements to,
the plan.

Plan adaptation is suitable for large plans in that
the complexity of plan adaptation is not exponential in
the length of the given plan. The complexity is, how-
ever, exponential in the number of adaptations needed
to repair the plan. In the worst case, of course, the
entire given plan will be dismantled and a new plan
built up. We do not expect our system to find such
repairs. Rather, we are encouraged by the fact that
small repairs to large plans are feasible even though
large repairs to large plans are not. Our hope is that
as new techniques are developed for generating plans
more efficiently, these same techniques will extend the
extent to which large plans can be repaired.

In the previous section, we showed how to generate
suggestions of the form Insert(a’, a;). We now describe
the INSERTACTION function which inserts action a' be-
fore action a; in the given plan a4, ...,a,,. We can map
a call to INSERTACTION directly into a call to the SPA
plan adaptation algorithm. The basic idea is to gen-
erate two unique predicates ¢; and g2, and then add
g1 as an effect of a’ and as a precondition of a;. This
will force SPA to add o' in order to keep a; in the
plan. Additionally, we add ¢2 as an effect of a; and as
a precondition of the goal so that SPA cannot remove
a; from the plan, since no other action can achieve gs.
We set g1 and g2 to be false in the initial state.

However, the SPA function is only defined for deter-
ministic STRIPS operators, as opposed to the proba-
bilistic actions used in our formulation. To bridge this
gap, formally, we would have to extend SPA or instead
rely on abstract models of our probabilistic actions.?

3We are not claiming that either option is

For our system, we have implemented a domain-
specific version of INSERTACTION. The input and out-
put of our domain-specific program satisfy the SPA in-
put/output specification, but the internals of the pro-
gram resemble a scheduling routine more than a plan-
ning routine. It is very fast, but does not perform any
general purpose reasoning. We describe the domain-
specific INSERTACTION below, in the section describ-
ing the domain.

Plan improvement algorithm

In this section, we put together the pieces described
above to form the IMPROVE algorithm.

As shown in figure 1, the first step of IMPROVE is to
simulate the input plan many (typically 1000) times.
We then feed the traces into the data mining algo-
rithm, which produces a set of statements of the form
Prevent(a;, 0;) which translates to “Iry to prevent
action a; from having outcome o; .” We then use the
qualitative reasoning function, SUGGESTCHANGES to
convert each Prevent statement into a set of suggested
changes, of the form Insert(a’, a;) which translates to
“Insert action a' before action a; in the plan.

We then call INSERTACTION on each Insert state-
ment which returns a new plan or nil, if it couldn’t pro-
duce a plan with a' before a;. If INSERTACTION does
return a plan, for the statement Insert(a’, a;), then the
plan will contain a’ but other actions may have been
added, removed, or re-arranged as well.

At this point we have a new set of plans. IMPROVE
calls the simulator on each new plan to estimate the
probability the plan has of achieving the goal. If any
new plan has a better chance that the original plan,
then the plan with the highest probability is chosen and
the process is repeated on it. Otherwise, the original
plan is returned.

Experimental validation

We now describe experiments that measure IMPROVE’s
ability to increase the probability of goal satisfaction.

Domain

We tested our system in an evacuation domain con-
sisting of 35 cities, 45 roads, 100 people, 2 buses, a he-
licopter and a variety of bus maintenance equipment.
Buses and helicopter can move between cities (only by
road for buses), pick up and drop off people and equip-
ment and also apply a variety of bus maintenance ac-
tions. Buses can carry 25 people and helicopters can
carry 1 person at a time. The goal is for all people to
be in one specified city by a specified time.

straightforward.

Func. ImprOVE({{a1,...,an},G,Z,0), OR, k)
e Set A" = {a1,...,an}
e Repeat

1. Simulate plan A’ k times from state Z.

2. Set base to be the number of simulations in which G
holds in the final state in the trace.

3. Call the data mining routines on the simulated traces
to produce a set of statements of the form
Prevent(a;, 05, k).

4. For each statement Prevent(a;, 0;, k) call
SuGGESTCHANGES({a;, 05,1), A4’ ,OR,0), and collect
all the results into a set of statements of the form
Insert(a’, a;).

5. Set TEST = 0.

For each statement Insert(a’,a;) call
INSERTACTION(d', aj,{a1, ..., an },Z,G,0). If
INSERTACTION returns a plan,then add it to TEST.

6. For each plan A; in TEST, simulate the plan k times
from state Z and count the number of times that G
is true in the final state.

7. IF no plan A; scored better than base in step 6, then
RETURN(A),
ELSE set A’ to the plan that scored the highest in
step 6.

Figure 1: The IMPROVE algorithm

The plan fails if a bus gets stuck or breaks down
or a helicopter crashes. Buses can also malfunction
in a variety of other ways, such as getting flat tires
or overheating, that do not cause the plan to fail but
can cause delays and make other malfunctions more
likely. Each road has properties, such as being steep or
bumpy, which make certain malfunctions more likely.
For every malfunction, there is a maintenance action,
such as adding coolant to prevent overheating, that will
drastically reduce the probability that the malfunction
will happen for a fixed amount of future driving. The
maintenance actions, however, have preconditions of
having one or two tools. The tools are at various cities
on the map, and so adding a maintenance action can
require a side trip to pick up the tool.

Finally, there is also a storm which makes certain
malfunctions more likely. In each experiment, we ran-
domly choose when and where the storm will hit and
how fast it will move. Additionally, we vary the num-
ber and location of the people and tools, as well as
the probability with which various combinations of bus
malfunctions will cause the bus to break down.

We wrote a greedy scheduling algorithm that pro-
duces a plan to get all the people to the evacuation
point. This algorithm ignores all the stochastic factors
of the domain, such as weather and road conditions.

We also wrote a domain specific version of INSER-
TACTION. The primary use of it is to add bus mainte-

nance actions, which require various tools. First, the
algorithm adds the maintenance action to the plan at
the specified point. The algorithm then finds the city
with a required tool that is closest to the bus’s route
prior to the maintenance action. The algorithm then
adds a side trip to pick up the tool from that city. The
algorithm repeats the process until the bus has all the
tools required for the maintenance action.

Results

In each experiment, we generate a new random prob-
lem, which defines an initial state Z and then call our
scheduling routine to produce a sequence of move, load,
and unload actions ay, ..., a, to solve this problem. In
all our trials, the sequence contained at least 250 ac-
tions. We then call IMPROVE with a4, ..., a,, which re-
turns a new sequence of actions, typically with several
additional move, pickup, and maintenance operations.

To evaluate IMPROVE, we use the simulator to com-
pare the performance of original plan against the plan
that IMPROVE returns. We use the simulator because
the plans were too big to manage analytically.

As shown in table 1, our algorithm significantly im-
proved the given plan. The initial plans achieved their
goal about 82% of the time, and the improved plans
achieved their goal about 98% of the time. On average,
11.7 alternative plans were simulated per invocation of
IMPROVE.

Note that without the possibility of malfunctions,
the plans produced by the greedy algorithm would suc-
ceed 100% of the time. The IMPROVE algorithm does
not result in a more efficient schedule for evacuating
people, which we consider the “easy” part of the do-
main in these experiments. The “hard” part of the do-
main is to deciding which maintenance actions to per-
form, and when to perform them. While the greedy al-
gorithm can quickly generate a reasonable plan, it does
not have any mechanism for reasoning about which
maintenance actions to add.

To show that is not trivial to add maintenance ac-
tions to make the plan more robust against failure,
we compared IMPROVE against two “straw men” algo-
rithms. First, we tested the RANDOM algorithm which
repeatedly chooses five random maintenance actions,
uses the INSERTACTION algorithm to add them to the
plan, simulates the five new plans, and selects the one
with the best performance. RANDOM repeats the pro-
cess until no change improves the performance of the
plan. As shown, RANDOM only improved the plan
slightly. Adding a maintenance action can make the
plan worse because the side trips required to get the
necessarily tools can lead to other malfunctions and
also delay the plan so that the weather is worse.

initial final initial final number
plan plan | success | success plans
length | length rate rate tested
IMPROVE | 272.3 278.9 0.82 0.98 11.7
Random | 272.3 | 287.4 0.82 0.85 23.4
High 272.6 | 287.0 0.82 0.83 23.0

Table 1: Performance of IMPROVE, compared against
two simple. Results averaged over 70 trials.

iteration | number of | improvement | improvement
plans tested per plan of best plan

1 4.2 073 123

2 7.9 .016 .042

3 9.3 013 .028

4 16 012 .024

Table 2: Details of IMPROVE’s performance.

We also evaluated an algorithm we called HIGH
which works just like IMPROVE except that instead of
data mining, it simply tries to prevent the five mal-
functions that occurred most often, in each iteration.
As shown, this algorithm also performed very badly
demonstrating the need to focus repair efforts on the
defects in the plan that are most responsible for failure.

Many of the actions IMPROVE added were in ser-
vice of actions directly suggested by the data min-
ing and qualitative reasoning components. There
were at most four iterations of the simulation-mining-
reasoning-adapting cycle. In each iteration, one main-
tenance operation is inserted into the plan, and then
more actions are inserted to obtain the necessary tools
for that action. Table 2 shows how many plans were
considered per iteration of IMPROVE and the average
and best improvement, on average, of those plans.

The data mining routine was written in C++ and
run on an SGI with a 100MHz processor. The other
functions were written in LISP and run on a variety
of SPARC stations. Each test of IMPROVE took on
average, based on the ten runs we measured, 75 min-
utes. About 34 minutes was spent in data mining, at
a rate of 0.9 plans mined per CPU second. About 25
minutes was spent, on average, in simulation, at a rate
of 3.2 plans simulated per CPU second. Much of the
remaining time was spent generating the plan, doing
bookkeeping, and file-based I/O between the processes.

Discussion

We now discuss some limitations of our current ap-
proach. Although the repairs considered by our algo-
rithm can include many steps, they are all in service of
a single action added to prevent some outcome from oc-
curring. Many improvements, however, might require

several actions such as adding but later removing snow
chains from a bus, or adding coolant several times to
top off the radiator. Furthermore, we only mine the
execution traces for reasons that cause failure, instead
of also looking for patterns that predict success.

Furthermore, there may be a variety of opportunities
for improving the plan that never arise in the execu-
tions of that plan, such as substituting one action for
another, or using a helicopter rather than a bus to evac-
uate some city. Again, our approach will not currently
improve the plan in this way because we only focus on
preventing sequences that were common in the failed
simulated traces and uncommon in the successful ones.

Finally, there are ways of improving a plan besides
adding actions to it. For example, although we have
not described it, we have explored techniques for im-
proving a plan by re-ordering its actions. For example,
in our domain, we might first evacuate the cities that
the storm is going to hit first.

Related work

We now discuses several areas of related work.

Analyzing execution traces

Much work has been done on analyzing planning
episodes, i.e. invocations of the planner, to improve
future planning performance in terms of efficiency or
quality. (e.g. (Minton 1990)). In contrast, we analyze
execution traces to improve the quality of the plan at
hand, not the planning process. Both types of tech-
niques can be used in conjunction. But note that our
approach is relevant only in domains with uncertainty,
in which multiple executions of the same plan might
differ from each other.

(McDermott 1994) describes a system in which a
robot repeatedly simulates the execution of a plan
while executing the plan, with hopes of finding a more
robust alternative. Each error in the simulations is
considered a bug and categorized into an extensive tax-
onomy of plan failure modes. This contrasts to our
work, in which each simulation contains a great num-
ber of undesirable effects, such as buses getting flat
tires or overheating, and our analysis attempts to dis-
cover important trends that distinguish successful from
unsuccessful executions.

Plan repair

CHEF (Hammond 1990) is a case-based planning sys-
tem addresses many issues. We focus on those most
related to our work. CHEF composes a plan from
plans in its memory, simulates it, and then analyzes
the execution trace to improve the plan. CHEF em-
ploys a variety of repair strategies, including modify-
ing the plan to avoid a side-effect of an action. Much

of the similarities between CHEF and our IMPROVE
algorithm are superficial, however, in that CHEF was
motivated primarily by the idea of using episodic mem-
ory to perform planning. CHEF simulates a plan once
and performs an analysis of the result using a deep
causal model, and then applies repair-strategies that
have worked previously. In contrast we simulate our
plans hundreds of times and apply shallow, statistical
methods to pinpoint defects and apply general plan
adaptation techniques to repair plans.

The GORDIUS system (Simmons 1992) also applies
repair strategies to a plan, by replacing an incorrect
assumption which gave rise to the flaw. While our
notion of plan repair is certainly no more rich than
GORDIUS’s, we focus on flaws that arise not from a
defective assumption about the world but instead on
probabilistic trends that arise frequently in the execu-
tion of the plan. One limitation of GORDIUS is that
it can only resolve flaws that arise from a single mis-
taken assumption. We find problems that arise from
sequences of defects that cause the problem.

The overall spirit of our approach resembles robusti-
fication in (Drummond & Bresina 1990). Here, a reac-
tive plan is incrementally refined by detecting the state
in which it is most likely to fail and then producing
new instructions for that state. We use very different
techniques than theirs. We use data mining to detect
defects in the plan, rather than a set of heuristics to
identify bad states. Furthermore, we focus on repairing
a large, non-reactive plan to avoid the trouble, whereas
Drummond and Bresnia enhance a reactive plan to get
itself out of trouble once it has occurred.

(Alterman 1988) describes run-time repair of plans
by, for example, replacing a step that just failed with
a similar action. This is rather different that our ap-
proach of repairing plans in advance. We believe both
techniques are necessary. In our domain, for exam-
ple, there are maintenance actions which must be per-
formed before the error occurs and require advanced
planning to obtain the necessary tools.

Probabilistic planning

Classical planners have been extended to probabilis-
tic domains (e.g. (Kushmerick, Hanks, & Weld 1995;
Draper, Hanks, & Weld 1994; Goldman & Boddy
1994)). If this work scaled to the point where it could
produce as large plans as anyone needed, then there
would not be much need for our research on improving
plans. However, both the complexity and the branch-
ing factor of probabilistic planning is much worse than
classical planning, which itself has not produced very
large plans. We believe domain-specific and collabo-
rative techniques will yield large plans, which can be

used as the starting point for our IMPROVE algorithm.

Furthermore, this work addresses a crucial problem
that probabilistic planners also face: deciding how to
improve a plan that is not sufficiently reliable. In tra-
ditional planning, a plan has easily detectable flaws
(i-e. unsatisfied or threatened preconditions). A plan-
ner needs to address each flaw and if there are no flaws,
then the plan is sufficiently good. And it is these con-
ditions that enable backchaining to work so effectively.
In probabilistic planning, a plan might have no critical
flaws, but still not be sufficiently good. In this case,
there are many ways of improving the plan: for exam-
ple, the planner can add an action that will increase
the support of any of the preconditions in the plan.
To our knowledge, no system uses analysis of the plan
to guide the choice of what to work on next. In this
paper, we have explored the use of data mining and
qualitative reasoning techniques to focus attention of
a planner on how to improve a plan.

Conclusions

This work was motivated by the desire to work with
large plans. Our long term objective is to combine
work on simulation, data mining, qualitative reason-
ing, and planning to produce tools for developing large,
robust plans for complex domains. This paper has,
hopefully, shown that such a system is possible and
sketched out some of the key ideas.

We have shown that simulation, qualitative reason-
ing, and data mining are all well suited for working
with large plans. Plan adaptation is not as well suited,
but the complexity of improving plans is, at least, not
exponential in the length of the plan to be improved.

We have described and implemented the IMPROVE
algorithm which takes in a large plan, containing over
250 steps, and modifies it to improve the probability
of goal satisfaction by over 15% in our experiments.

References

Agrawal, R., and Srikant, R. 1995. Mining sequential
patterns. In Intl. Conf. on Data Engg.

Alterman, R. 1988. Adaptive planning. Cognitive Science
12:393-421.

Boutilier, C.; Dean, T.; and Hanks, S. 1995. Planning
under uncertainty: Structural assumptions and computa-
tional leverage. In Proc. 2nd European Planning Work-
shop.

Draper, D.; Hanks, S.; and Weld, D. 1994. Probabilis-
tic planning with information gathering and contingent
execution. In Proc. 2nd Intl. Conf. AI Planning Systems.

Drummond, M., and Bresina, J. 1990. Anytime Synthetic
Projection: Maximizing the Probability of Goal Satisfac-
tion. In Proc. 8th Nat. Conf. AI 138-144.

Ferguson, G.; Allen, J. F.; and Miller, B. 1996. TRAINS-
95: Towards a mixed-initiative planning assistant. In
Proceedings of the Third International Conference on Al
Planning Systems (AIPS-96).

Goldman, R. P., and Boddy, M. S. 1994. Epsilon-safe
planning. In Proc. 10th Conf. Uncertainty in Artifical
Intelligence.

Goldman, R. P., and Boddy, M. S. 1996. Expressive
Planning And Explicit Knowledge. In Proc. 3rd Intl. Conf.
AI Planning Systems.

Hammond, K. 1989. Case-Based Planning: Viewing Plan-
ning as a Memory Task. Academic Press.

Hammond, K. 1990. Explaining and repairing plans that
fail. J. Artificial Intelligence 45:173-228.

Hanks, S., and Weld, D. S. 1995. A domain-independent
algorithm for plan adaptation. J. Artificial Intelligence
Research 319-360.

Kambhampati, S., and Hendler, J. 1992. A validation
structure based theory of plan modification and reuse. J.
Artificial Intelligence 55:193-258.

Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An Algo-
rithm for Probabilistic Planning. J. Artificial Intelligence
76:239-286.

McAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In Proc. 9th Nat. Conf. Al 634-639.

McClave, J. T., and II, F. H. D. 1982. Statistics. San
Francisco: Dellen Publishing Company.

McDermott, D. 1994. Improving robot plans during ex-
ecution. In Proc. 2nd Intl. Conf. AI Planning Systems,
7-12.

Minton, S. 1990. Quantitative results concerning the util-
ity of explanation-based learning. Artificial Intelligence
42(2-3).

Nebel, B., and Koehler, J. 1995. Plan reuse versus plan
generation: a theoretical and emperical analysis. J. Arti-
ficial Intelligence 76:427-454.

Simmons, R. 1988. A theory of debugging plans and
interpretations. In Proc. 7th Nat. Conf. AI 94-99.

Simmons, R. 1992. The roles of associational and causal
reasoning in problem solving. J. Artificial Intelligence
159-208.

Veloso, M. 1994. Flexible strategy learning: Analogical
replay of problem solving episodes. In Proc. 12th Nat.
Conf. AT, 595-600.

Wellman, M. P. 1990. Fundamental concepts of qualita-
tive probabilistic networks. AI Magazine 44:257-303.

Zaki, M. J.; Lesh, N.; and Ogihara, M. 1997. Sequence
mining for plan failuresk. Technical Report URCS TR
671, University of Rochester.

Zaki, M. J. 1997. Fast mining of sequential patterns in
very large databases. Technical Report URCS TR 668,
University of Rochester.

