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Abstract

We present in this paper a statistical model for language-
independent bi-directional conversion between spelling and
pronunciation, based on joint grapheme/phoneme units1

extracted from automatically aligned data. The model is
evaluated on spelling-to-pronunciation and pronunciation-to-
spelling conversion on the NetTalk database and the CMU
dictionary. We also study the effect of including lexical stress
in the pronunciation.  Although a direct comparison is difficult
to make, our model’s performance appears to be as good or
better than that of other data-driven approaches that have been
applied to the same tasks.

1. Introduction

The problem of spelling-to-pronunciation (S2P) conversion
has been studied to a large extent in the context of text-to-
speech systems, which usually require an intermediate
phonemic representation. Also, a significant amount of
research on S2P conversion has stemmed from work on
psycho-linguistic models of reading aloud [2]. The reverse
problem, of pronunciation-to-spelling (P2S) conversion, has
received far less attention. A new impetus to research on
automatic P2S and S2P techniques has arisen in connection
with the recent advances in large vocabulary continuous
speech recognition, and especially in spontaneous speech
recognition, where it has become more and more important to
find a way of dealing with words outside the recognizer’s
vocabulary and with pronunciation variants that differ from
the known baseforms. Moreover, as the technology is being
transferred to new languages, it has become increasingly
important to find automatic techniques that would avoid long
cycles of development and maintenance of pronunciation
dictionaries by expert lexicographers.

Many S2P conversion techniques fall into two major
categories: rule-based systems and pronunciation by analogy
(PbA) systems. The first derive pronunciations by dictionary
lookup, and if this fails, by successively applying carefully
crafted pronunciation rules to the input word. PbA systems use
some measure of similarity between words to retrieve partial
pronunciations for fragments of the input word, which are then
concatenated to obtain the final pronunciation. An excellent
review (and critique) of these two approaches can be found in
[3], which, to our knowledge, gives the only extension of the

                                                          
1 Here, the term grapheme is used with the sense of
"functional spelling unit" corresponding to a single phoneme
(cf. [1]). In principle, we allow the possibility that a grapheme
may correspond to multiple phonemes in order to handle
diphthongs, insertions, and pronunciations of single letters.

PbA framework to be applied to P2S conversion. [4] contains
an extensive review of different S2P techniques and a
comparative evaluation.

There are comparatively fewer studies on the P2S
problem. An interesting approach is presented in [5], where a
hierarchical framework incorporating several levels of
linguistic description is used for bi-directional conversion.

Other bi-directional models are presented in [6,7,8,9],
although not all include P2S evaluations. [10] describes an
HMM-based approach to the P2S problem. These are all based
on statistical finite-state transduction methods, which are data-
driven techniques that attempt to infer probabilistic
transformation rules from large databases of
spelling/pronunciation pairs. Our work continues in this
tradition.

Specifically, we developed probabilistic techniques to
align spellings with pronunciations automatically. From the
resulting alignments a set of grapheme-to-phoneme (GP)
correspondences (following the terminology in [3]) is
induced. An n-gram model trained on data aligned according
to this set of correspondences can then be applied for bi-
directional conversion between spelling and pronunciation.

In the next section we present the theoretical formulation
of our model. We devote most of the paper to describing the
model design, the evaluation methodology, and the results of
the evaluation. We conclude with a discussion in which we
relate our model and its performance to other approaches.

2. The bi-directional model

2.1. Inferring correspondences (alignment)

As a first step to building a pronunciation model, the spelling
and pronunciation of each word in the training data need to be
aligned. Many of the current approaches to the S2P problem
work under the assumption that a one-to-one alignment
between letters and phonemes is available. To do the trick, the
phoneme set is augmented with a null (pseudo-) phoneme, and
with special double phonemes standing for diphthongs and
other groups of phonemes that correspond to one letter (e.g.,
/T_S/, /K_S/, etc.). Besides the arbitrariness of such data
manipulations (see, for example, [11], for arguments against
one-to-one correspondences), this is also problematic from a
technical point of view: data aligned on a strict one-to-one
basis is difficult to obtain, and doing it automatically
introduces yet another level of imprecision [12]. Moreover, as
will be seen in section 3., we found that it is possible to have
more than two phonemes corresponding to one letter (at least
for English; this is, of course, a language-dependent issue).

We decided to avoid these problems by automatically
aligning the graphemic and phonemic strings presented in the



input. The resulting grapheme-to-phoneme correspondences
are constrained to contain at least one letter and one phoneme.
The set of correspondences, with an associated probability
distribution, is inferred using a version of the EM algorithm
[13]. Due to space limitations, we refer the reader to [14] for a
detailed exposition of the learning process. Examples of
correspondences induced from the two data sets are given in
section 3.

Because our alignment procedure is fully automatic and
purely statistical (in that it does not use linguistic information
like phonetic categories), and does not require seeding with
manually-designed correspondences, it can be readily applied
to other languages. For the time being, however, we have
applied it only to English.

2.2. The joint n-gram model

N-gram models are used successfully in speech recognition
and other applications for statistical modelling of sequences of
data. They are flexible and compact, and fast decoding
algorithms exist for them. In [15] an n-gram model is
described that  predicts words and syntactic/semantic tags
simultaneously. Analogously, we can define a pronunciation
model that is based on joint grapheme/phoneme pairs. This
idea was also adopted in the stochastic grammar  approach of
[6] (the particular instantiation that they use is, in fact, a
bigram model), and in the multigram model of [9].

Formally, if the spelling of a word w is γ(w) = l1l2...ln, and
its pronunciation is π(w) = p1p2...pm, where li are letters, and pi

are phonemes, we associate with it the joint probability
P(γ(w), π(w)).

Then, the S2P task can be formulated as finding, for the
input γ , the most likely transcription π*:

),(maxarg* πγπ P= (1)

Similarly, the P2S task can be formulated as finding, for
the input π , the most likely transcription γ*:

),(maxarg* πγγ P= (2)

In the joint GP correspondence model, for every GP
alignment a = 〈g, f〉1,N = 〈g1,N, f1,N 〉 of a word, where each unit
〈g, f〉i = 〈gi, fi〉 is a correspondence between the grapheme gi

and the phoneme unit fi, we define the probability
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The conditional probability distributions Q represents the joint
grapheme/phoneme probability model.

We can express P(γ, π) in terms of Q, by summing over all
possible alignments a of γ and π allowed by the set of GP
correspondences:
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where we denote by A(γ, π) the set of allowable alignments.
Finally, combining (1) with (4), and (2) with (4), we

obtain the equations of the S2P and P2S tasks, respectively,
based on the joint grapheme/phoneme probability model:
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A bi-directional joint n-gram model Q’(a) is obtained by
restricting to a given size the contexts in the conditional
probability Q. The joint n-gram probabilities are estimated
from aligned data using a standard maximum likelihood
approach.

In decoding, the space of all possible alignments that
match the input is searched; this can be done efficiently for n-
gram models, but the summation in equations (5) and (6) may
still be too expensive. A common approach is to replace the
summation with maximization. The Viterbi algorithm [16] can
accomplish the search efficiently.

The most common problem associated with n-gram models
is that the number of probabilities to be estimated can be large,
and thus a very large amount of data would be needed for
training. When there isn’t sufficient data for training, the
model can be smoothed using lower-order models or class-
based models [17,18].

Another deficiency of the n-gram models is that the
context span is fixed and quite short. Many linguistic
phenomena which have been modelled with n-grams may
involve long-range dependencies. A typical solution to this
problem is to augment the model’s vocabulary with multi-unit
tokens which may be designed manually or automatically [19].

3. Evaluation

Although the technique just described is language-
independent, so far we only conducted an evaluation on
English. We used two sets of data, the NetTalk manually
aligned dictionary [20], and the CMU pronunciation
dictionary [21]. The first was chosen because many S2P
techniques have been tested on this data, and so, even if
evaluation conditions may differ from one approach to
another, it may serve as an indication to where we stand
compared to the state of the art. The second data set is much
larger, and contains many abbreviations, proper names, and
loan words. Also, as this dictionary was primarily designed for
continuous speech recognition, it incorporates many
deviations from standard baseforms (allophonic variations,
deletions, insertions). Only part of this dictionary was
manually proofed. Thus, this dictionary provides an
opportunity for more comprehensive and more realistic
testing, especially for the P2S conversion.

We are also interested in predicting accented phonemes.
Both dictionaries include stress markers in the pronunciation,
but in the NetTalk transcriptions some of the stress markers
are assigned to null phonemes. It would not have been difficult
to correct this deficiency, but the results would not have been
comparable to those in the literature. Therefore, we only tested
the conversion of graphemes to accented phonemes on the
CMU dictionary, which doesn’t have this problem.

The ultimate measure of performance for both conversion
tasks is the word accuracy (WACC), i.e., a transcription is
counted as correct if and only it coincides with the one given
in the dictionary. A decision has to be made when there may
be possible correct outputs, as is the case with homographs
and homophones. Our model does not encode syntactic and/or



semantic information about words, which would be required
for making such a decision. We decided against the common
ad hoc approach of removing homophones and homographs
from the data. A statistical model can output several
hypotheses if they have close scores, or an n-best list, and it
could be left to other modules in a natural language system to
decide which one best fits whatever linguistic constraints there
might be (e.g., part of speech).

In our scoring strategy, whenever a word had several
pronunciations in the test set, the result of the S2P conversion
was matched against the one yielding the minimal phoneme
error rate (PER). A similar strategy was applied for P2S
conversion, when a pronunciation would correspond to
different spellings, by choosing the word with the minimal
letter error rate (LER). The symbol error rate is defined as the
number of total errors (deletions,  insertions, and
substitutions) over the number of all symbols.

Because some authors prefer to report symbol accuracy,
i.e., proportion of symbols correct to the number of all
symbols, we also provide phoneme accuracy (PACC) and
letter accuracy (LACC) results.

3.1. Experiments on the NetTalk dictionary

The NetTalk dictionary is publicly available and was
originally developed and manually aligned by Sejnowski and
Rosenberg for training the NetTalk neural network [20]. It
contains of 19,802 words, some with multiple pronunciations,
so that the total number of entries is 20,008. The phone set
uses 52 phonemes, including the null phoneme and five
double phonemes, to insure a one-to-one correspondence
between the letter string and the phoneme string. Three stress
markers are used, and two other markers provide syllabic
information. A detailed description of all the symbols can be
found in [22].

For the evaluation, we split the whole vocabulary in 10
randomly selected disjoint test sets of 1,980 words, in which
we then included, for each word, all the pronunciations in the
NetTalk dictionary. Corresponding to each test set, a training
set was formed by including all unique entries in the
dictionary for the rest of 17,822 words. The null phoneme was
eliminated from all the pronunciations.

The GP correspondences were obtained on the whole
database. 494 units were inferred, but in each of the training
sets around 480 units were typically used. Some examples of
correspondences are given in Table 1. The upper part of the
table contains some less straightforward, but obviously correct
correspondences, while the lower part contains some
obviously wrong correspondences, resulting from incorrect
alignments. It should be noted, however, that the notion of
"correct" correspondence is ill-defined, and we only rely on
the performance of the correspondence model in the
conversion tasks as a quality measure.

The correspondence model was then used for aligning the
data using an adapted version of the Viterbi algorithm [16]. A
back-off 4-gram model (the GP model) with Witten-Bell
discounting was then trained on the aligned data, using the
CMU-Cambridge Toolkit [23].

Cross-evaluation results for the S2P and P2S conversion
tasks are shown in Table 2. Closed test performance is
included, in which a model was estimated from the whole data
set. The high word accuracy shows that 4-grams are able to
describe quite well the information encoded in the dictionary,
thus having good potential for lexicon compression.

It has been found in other studies that vowel quality
confusion is the leading source of errors in S2P conversion.
Indeed, we found that substitution between a schwa and
another vowel is responsible  for a full 13% (absolute) of word
errors.

NetTalk CMU
eigh /e/ ’S /AH0 Z/
che /S/ U /Y AH0 W/
xi /K/ Z /T S/

ngue /G/ EAULT /OW1/
oub /W/ IST /AH0/
pbo /b/ EB /EH1/

r /Y/ M /IY1 EH1 M/
ic /A/ C /IY1/

Table 1: Examples of GP correspondences inferred from
the NetTalk and the CMU dictionaries.

S2P WACC [%] PACC [%] PER [%]
closed 93.75 98.70 1.31

GP 63.93 91.74 9.00

P2S WACC [%] LACC [%] LER [%]
closed 91.01 98.51 1.89

GP 58.13 92.22 10.03

Table 2: S2P and P2S closed and open test results for the
NetTalk task.

3.1.1. Class-based smoothing

Classes of correspondences were obtained using the greedy
algorithm for automatic classification described in [18]. We
used the implementation found in the SRILM toolkit [24]. A
3-gram class-based model was built, and then interpolated
with the baseline 4-gram. We assigned a weight of 0.1 to the
class-based model. The training and testing were done on the
first of the 10 pairs of evaluation data.

Table 3 shows the results on both P2S and S2P for
smoothing with 400 and 300 classes (there were 476
correspondences in the training set). The GP1 model is the
baseline (the slightly lower word accuracy, compared to the
cross-evaluation average reported in Table 2 indicates that this
particular test set has a larger proportion of difficult words).
The class-based interpolated models are indicated by the
number of classes in each.

S2P WACC [%] PACC [%] PER [%]
GP1 63.3 91.8 8.9
400 63.7 92.0 8.7
300 63.5 92.0 8.8

P2S WACC [%] LACC [%] LER [%]
GP1 57.8 92.2 9.8
400 57.9 92.1 9.8
300 57.9 92.1 9.8

Table 3: S2P and P2S results for the class-based
smoothed models.

A small improvement can be seen on all measures on the
S2P task; there is no significant improvement on the P2S task.



It appears that it would be most beneficial to use classes for
only a small number of units, as otherwise over-smoothing
may occur.

3.1.2. Chunk-based models

In speech recognition, including a number of phrases (multi-
word units) into the vocabulary of an n-gram model has been
shown to lead to some improvement. Useful phrases can be
found automatically by iteratively "gluing" together the most
promising sequences of two units. Various techniques have
been used to measure how promising a sequence is (sometimes
called "stickiness" measures): bigram frequency, mutual
information, change in bigram log-likelihood, etc. [25].

In two pilot experiments, we tested the usefulness of
augmenting the vocabulary of our basic model some  multi-
correspondence units (chunks). In the first experiment, we
used bigram frequency as a stickiness measure, and in the
second was based on mutual information (MI). In each case,
the training data was processed to replace all the appropriate
correspondence sequences with chunks. We then estimated
chunk-based 4-gram models and interpolated them, with equal
weights, with the baseline model. We note in passing that the
interpolated chunk-based model is theoretically a multigram
model [9], although it is estimated differently.

Unfortunately, the results for the chunk-based models
were rather disappointing. Frequency-based models had a
lower performance than the MI-based ones. On the S2P task,
the MI-based chunk models were slightly worse than the
baseline. On the P2S task, adding up to 200 MI-based chunks
actually showed some increase in performance, but a very
small one.

Although these experiments were not compelling, we
believe that, with more careful (but, admittedly, more time-
consuming) joint optimization of the number of chunks and
the interpolation parameters, the technique will eventually
prove useful. We were encouraged by the fact that the chunks
that were found included a number of morphologically
meaningful units, like affixes (e.g., "-ize", "-ing", "-ment",
"inter-", "-ism", etc.), words that appear often in compounds
(e.g., "man", "hand", "form", "port), and also some frequently
co-occurring letter units with special pronunciation (e.g., "qu"
- /k w/, "ng" - /G k/, etc). However, frequent sequences are
also predicted well by the baseline model; from our
preliminary analysis we conclude that augmenting the
vocabulary with chunks based only on low-frequency
sequences with high mutual information will in fact be
beneficial.

3.1.3. Models based on one-to-one correspondences

The above results situate our approach among the best that
have been applied to this task. This could be due to the fact
that the model is based on more meaningful GP
correspondences, or to the fact that the model represents
jointly the graphemic and the phonemic dependencies.

In a final set of experiments, we compared our model to a
joint 4-gram model based on one-to-one correspondences
(model 1-1). The estimation procedure was exactly the same as
for model GP1. As these correspondences have been
thoroughly checked by hand, this gives us an opportunity to
check how good the automatically learned GP
correspondences really are.

Also, in order to asses the benefits of using some extra
information, we built two other one-to-one 4-gram models in

which we included in the training data the stress markers for
the first one (model 1-1/S), and for the second both the stress
markers and the syllable markers (model 1-1/SS).

We trained and tested these three models for the S2P task
on the first of the 10 pairs of evaluation data. In order to
compare the performance of these models to that of the GP1
model, all the markers and the null phonemes were removed in
the output of the 1-1/S and 1-1/SS models before scoring.

Results are shown in Table 4. Compared to the GP1
model, the one-to-one models had a slightly (but consistently)
lower word accuracy, but the phoneme accuracy and error rate
were practically the same. These results allow us to conclude
that the GP correspondences inferred are very reliable, and
that the occasional errors probably don’t have a big impact on
the results (quite likely, the erroneous correspondences occur
only once in the data). However, the one-to-one models
performed quite well, given that they use less context, which
gives us confidence that much of the power of our approach
resides in modeling joint dependencies.

S2P WACC [%] PACC [%] PER [%]
GP1 63.3 91.8 8.9
1-1 62.7 91.8 8.9

1-1/S 62.5 91.7 8.9
1-1/SS 62.9 91.8 8.8

Table 4: Comparison between the model based on
inferred correspondences and models based on manually

designed one-to-one correspondences

3.2. Experiments on the CMU dictionary

The CMU pronunciation dictionary consists of more than
119,000 words, with a total of over 127,000 pronunciations.
The phone set is composed of 39 phones. Lexical stress is
indicated with one of three stress markers (0 = no stress, 1 =
primary stress, 2 = secondary stress).

We reserved 12,000 words for testing (12784 different
pronunciations, if stress is included), and the rest of the
dictionary (about 90%) was used for training.

This dictionary contains many critical words with
uncommon pronunciations, which is the reason most other
approaches evaluated on it showed poor performance relative
to the results on other English dictionaries. We chose,
however, not to remove any words from the corpus.

From the training data we inferred two sets of  GP
correspondences, one with non-accented phonemes, and one
with accented phonemes. The correspondence sets included
1115 and 1554 units, respectively. Some examples are given
in table 1, above. As can be seen, there are many more units
than were found on the NetTalk dataset. This is due to the
large number of proper names, many of foreign origin,
abbreviations, and non-standard pronunciations that include
various phonological deviations from baseforms. We give
below examples of a few uncommon correspondences and
dictionary entries in which they occur:

<J, /HH/> and <ILL, /IY1/> in "TRUJILLO"
<R, /AA1 K T ER0/> in "DR"
<U, /UW0 W/ > in "GRADUATE"

Table 1 contains an example of correspondence containing
the apostrophe. This is the only non-alphabetic character



allowed; all other were removed. We constrained the
correspondences not to allow it as the sole component of the
graphemic part, but to attach it to one of the neighboring
graphemes.

Again, we built back-off 4-gram models with Witten-Bell
discounting based on the Viterbi-aligned training data. Open
test results for these models are given in Tables 5 to 7. The
GP-S models are based on units with non-accented phonemes,
and the GP+S models on units with accented phonemes.

A class-based smoothed GP-S model, based on 900
classes, showed almost no improvement over the basic model
on the S2P task and 0.4% (absolute) WACC improvement on
the P2S task.

Although the CMU task would seem more difficult than
the NetTalk task, the availability of a large amount of data for
training makes for significantly higher results for S2P
conversion. The same is not true, however, for P2S
conversion. The fact that each phoneme appears in so many
correspondences makes the task a very difficult one, indeed.

It is remarkable that including stress information in the
training data improved the word accuracy in S2P conversion
(Table 6). Also, the availability of stress information in the
input for P2S conversion seemed to help a little.

We found that the apostrophe caused a large number of
insertion errors in the P2S conversion, it being responsible for
close to 4% (absolute) word errors.

S2P WACC [%] PACC [%] PER [%]
GP-S 71.5 93.6 7.0

P2S WACC [%] LACC [%] LER [%]
GP-S 50.3 91.2 11.5

Table 5: S2P and P2S open test results for the CMU task
using non-accented phonemes.

S2P WACC [%] PACC [%] PER [%]
GP+S 72.3 93.8 10.9

Table 6: S2P open test results for the CMU task using
accented phonemes in the training data and non-accented

phonemes for testing.

S2P WACC [%] PACC [%] PER [%]
GP+S 62.6 91.0 9.6

P2S WACC [%] LACC [%] LER [%]
GP+S 50.6 91.6 11.2

Table 7: S2P and P2S open test results for the CMU task
using accented phonemes.

4. Discussion

Because of the lack of standardized data sets and evaluation
methodology, it is difficult to compare the performance of the
joint n-gram model to that of other approaches. We will make
an attempt, though, to relate our model to the state of the art.
This will provide us with an opportunity to make some
comments on the differences in evaluation methodology
between various approaches, and to indicate some of the
strengths of our model.

The 63.4% word accuracy in S2P conversion obtained on
NetTalk is comparable to the best  results obtained on this
database. In [22], a 64.8% word accuracy is reported, with a
model based on decision trees (ID3). However, the authors
acknowledge using the test set for development, which may
have lead to "overfitting" the test set. Also, they used only
1,000 word for testing and the rest for training. In [26], a PbA
approach based on overlapping chunks achieves 63.96%
WACC in a 10-fold cross evaluation, but 0.5% of all words
were not pronounceable. In our model we use backing-off,
which guarantees that every word will receive a pronunciation.
A similar PbA model is described in [3], where a 65.5%
WACC is obtained using the combined scores given by five
different scoring strategies. The optimal combination was
chosen post hoc. The best single strategy fared at 63%. In this
study all homographs and the two one-letter words were
removed for the purpose of S2P evaluation. Finally, a 65.8%
WACC is reported in [27], with another decision tree model
(CART); this model benefited from several smoothing
techniques and from rescoring with a trigram phonotactic
model. We noticed in the S2P output several errors stemming
from inappropriate vowel and/or stress patterns; a phonotactic
model might help correct such errors as well as some of the
schwa substitution errors. Similarly, for the reverse
conversion, it would be interesting to see if a graphotactic
model may be of use.

On the CMU dictionary, [12] reports a 62.79% WACC in a
S2P task including accented phonemes, using a decision tree
(ID3) model. This is about the same as our model’s
performance on the same task (62.6%). However, the authors
used a hand-designed set of correspondences which failed to
provide alignments for a relatively large part of the dictionary
entries; these were removed from dictionary prior to
evaluation. The already mentioned CART-based model of [27]
achieved a 73.1% WACC (using non-accented phonemes) on
the top 60,000 most-frequent words from the dictionary, as
found in the NAB News corpus.  The only other approach that
we know of that was tested on the whole data (an earlier,
smaller release, though), without removing any of the critical
words is the statistical model described in [28]. This model is
factored into a phonotactic model and a "matching" model,
each of these being a mixture of models encoding different
context dependencies. The 57.2% WACC obtained with this
model is very low compared to the performance of the joint n-
gram, even considering the fact that their model was trained on
less data. This may be another indication that the joint model
is a better alternative .

To our knowledge, no other technique has been applied on
either the NetTalk data or the CMU dictionary for P2S
conversion. [3] includes experiments in this direction on
NetTalk, but the technique described there makes the
unrealistic assumption that the null phonemes are present in
the input [29].

There are many ways this work can be continued, some of
which are under way. One avenue is to explore the use of word
frequency in the training of the joint n-grams. In a pilot study
on the NetTalk data, we found that using some word frequency
information may lead to an up to 1% (absolute) increase in
word accuracy. We would like to test this approach on other
languages, in order to better asses its language-independence
feature and to compare it to systems that have not been tested
on the NetTalk and CMU dictionaries. A few other
possibilities have already been mentioned above.



We also intend to apply this work in the context of a
speech recognition system for recognizing out-of-vocabulary
words and for generating pronunciations for specialized
domains.

There is ample room for optimizing the structure and the
parameters of our models. It appears, though, that the joint n-
gram model already has reached the level of performance of
the best data-driven approaches reported in the literature.

5. Conclusion

We described the joint grapheme/phoneme n-gram model, a
statistical model for bi-directional spelling-to-pronunciation
conversion, based on automatically inferred minimal
correspondences between graphemes and phonemes. Our
method is fully automatic, language-independent, and builds
on the successes achieved by n-gram models in other areas of
language processing. An initial evaluation showed that this
approach compares favorably to other data-driven techniques.
We expect to see some improvements over the results
presented here by looking for better models in the joint n-
gram framework.
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