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Abstract

State of the art plan recognition for use in natural language dialogue systems has pro-
gressed in coverage of discourse phenomena and plan navigation strategies. Most systems,
however, suffer from several deficiencies, namely, they do not have a specific strategy for the
(inevitable) case where they make an incorrect hypothesis inference and they cannot handle
interleaved plan navigation, where a user jumps back and forth between several plans. In
addition, most plan recognition systems cannot handle the rich variety of possible natural
language utterances a dialogue system may receive as input, especially the case where a
language utterance corresponds to several actions which the system considers to be atomic.
We discuss previous work in plan recognition, especially in the area of dialogues systems.
We then describe a plan recognition system which can recover from incorrect inferences,
handles interleaved plan navigation, and handles several linguistic phenomena, including
support for natural language multi-action paraphrase.

This material is based upon work supported by the Office of Naval Research grant number N00014-95-
1-1088 and the Keck Foundation. Any opinions, findings, and conclusions or recommendations expressed in
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1 Introduction

Recognizing the underlying plans of a user within a natural language dialogue system
can make the difference between system that seems intelligent and helpful system and one
that seems sarcastic or dumb. Consider the following input that a dialogue system of the
future (embedded in a robot) might see (U1), together with several possible responses from
the robot.

U1: Do you have a watch?

S1: Yes, it’s 4:30.
S2: Yes, it’s a Rolex.
S3: Yes.

Depending on the underlying plan of the user, any one of these responses could be
considered to be appropriate, while the other two would be considered either rude or just
plain dumb. We will look at three different contexts/user plans, each of which has a distinct
appropriate response.

Context 1: A user looks at his arm, (sees nothing on it) and then approaches our robot
and utters U1.

The user’s plan here is to find out what time it is, and S1 is the appropriate response.
A response of S2 would make our robot seem like a dummy and S3 would be considered a
very rude response.

Context 2: The user and his buddy are arguing about what kind of watches robots tend
to have. The user turns to the robot and utters U1.

In this case, the user’s plan is to find out what kind of watch our robot has in order
to help him win his argument. S2 is the most appropriate response to make. Uttering S1
would seem a very odd response and, again uttering S3 would seem very rude. Here again,
it was very important for the robot to recognize what the user’s underlying plans were.

Context 3: The robot is trapped in a burning room with MacGyver1. MacGyver looks
around the room and tells the robot he has an idea. He grabs a roll of duct tape and a
pencil and then looks at the robot and utters U1.

MacGyver’s plan, of course, is to escape by building some sort of invention using duct
tape, a pencil, and a watch. S3 is the most appropriate response for our robot this time.
Responses S1 and S2 would be so inappropriate that they might make good lines in a
comedy movie with our poor robot playing the not-so-intelligent character.

1MacGyver is a television character who always escapes from dangerous situations by combining everyday
items into powerful inventions.
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Plan recognition is the process where, given a set of observations of the actions of an
agent (the acting agent), a second agent (the recognizing agent) tries to infer the goals and
plans of the acting agent. Plan recognition is typically divided into two types, which reflect
the acting agent’s attitude towards the recognition. Keyhole recognition is where the acting
agent is either unaware that the recognition is taking place, or is apathetic to it. In intended
recognition, on the other hand, the acting agent is actively trying to make known his plans to
the recognizing agent2. Both of these types of plan recognition are widely used by humans,
and, as we will discuss below, useful in a variety of applications. Natural language dialogue
systems (like our robot above) need to make use of both kinds of plan recognition, but
rely more heavily on intended recognition. Communication is a shorthand for intentions.
Usually, both parties desire for these intentions (i.e. plans) to be understood, which means
that the speaker (i.e. the acting agent) tends to structure his utterances in ways that will
make his intentions easily recognizable by the hearer (the recognizing agent).

In this paper we first discuss different applications which use plan recognition. We then
explore previous research which has been done on plan recognition, especially as it is used
in natural language dialogue systems. We discuss shortcomings of previous methods and
then describe a plan recognizer for a natural language dialogue system which overcomes
several of these shortcomings. We conclude by discussing our goals for future work.

2 Applications of Plan Recognition

Plan recognition is used in a wide variety of applications. In this section we explore
some of these areas and describe a few of the most prominent applications which use plan
recognition. The main areas we explore are user modeling, multi-agent interaction, and
natural language processing.

2.1 User Modeling

The field of user modeling has made wide use of plan recognition. We describe some
of the most prominent user modeling applications that use plan recognition, specifically in
the areas of operating systems, intelligent help systems and intelligent tutoring systems.

Operating Systems

Recognizing a user’s plan in an operating systems environment allows the system to
do many helpful things such as making suggestions, automatically fixing user errors and
offering auto-completion of tasks.

Huff and Lesser [HL82] built an intelligent system which aided computer programmers
in their day-to-day tasks.. The system watched user commands to UNIX, and, based on
those commands, would determine the user’s plan as it related to programming. It was

2A third type of plan recognition occurs when the acting agent is trying to thwart recognition of his
plans. Pollack [Pol86a] calls this an actively non-cooperating actor. Very little research has been done for
this third type of recognition, which may be why it is frequently not included in the typology.
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built to recognize the plans of programmers such as browsing code, editing, compiling, and
so forth. It would then use its knowledge of recognized plans in interpreting ambiguous
commands and repairing commands that had errors in them.

Lesh [Les98, LE95b, LE96, Les97, LE95a] built a plan recognition system which he
applied to user goals in the UNIX and WindowsNT environments. The system would watch
user’s successive commands and try to determine the goal they were pursuing. Although
Lesh never applied this plan recognition system to an overall system, such as Huff and
Lesser above, it could easily be applied to the same sort of activity.

Pachet and Giroux [PG95] describe a software engineering method that can be used with
any existing object oriented application to ‘spy’ on a user in order to make observations
for, or during plan recognition. This will allow systems like those mentioned above to be
‘plugged into’ any arbitrary system.

Intelligent Help Systems

Related to the work of plan recognition in operating systems, is that for intelligent help
systems. Recognition of a user’s current plan(s) can allow the system to give more directed
help than normal help systems can.

The Berkeley UNIX Consultant Project (UC) [Wil82, WAC84, WCL+89, May89, May92]
also performed plan recognition within the UNIX operating system, but with a slightly
different purpose. UC was a facility for helping beginning users learn to use UNIX. Users
could ask questions in English and get responses back from the system about how to operate
the system, accomplish different tasks, and so forth. UC would use plan recognition to
determine the intentions behind a user’s query, which would help it to generate a more
helpful response. In many ways, UC could be considered a natural language question-
answering system, but most of the plan recognition literature categorizes it here.

The WIZARD system [Fin83] also provided help in an operating system. This time
in the VAX/VMS environment. WIZARD watched the user’s actions and performed plan
recognition. When WIZARD detected that the user was using an inefficient method (i.e.
plan) to accomplish a task, (for example using copy followed by a delete instead of rename)
it volunteered helpful hints on how to accomplish the task more efficiently.

Bauer [BBD+93, BP93] implemented a intelligent help system for email. A plan recogni-
tion system would watch a user’s actions and then offer advice or help in a context-sensitive
way that would not have been possible without knowing the user’s plan.

Intelligent Tutoring

Greer and Koehn [GK95] give several examples of how plan recognition relates to di-
agnosis in intelligent tutoring. This includes recognizing the (erroneous) plan the student
was trying to use to construct a solution, and improving the model of a student’s overall
problem solving strategy.

Johnson [Joh95] suggests that, although plan recognition has a place in intelligent tu-
toring, it is not as important, since students may not have any plan that they are executing
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to try to solve the problem. He suggests, however, that there are some domains in tutoring,
as Greer and Koehn also suggest, do benefit from plan recognition.

2.2 Multi-agent Interaction

General research in multi-agent environments has also shown promise for using plan
recognition. The systems in [HDW94] and [VW01] use plan recognition in multi-agent do-
mains. In many domains, direct agent communication is either not possible, or is expensive,
and agents must coordinate their activity instead by observing the actions of other agents
and recognizing their plans. Both systems use this plan recognition to allow agents to
coordinate without explicit communication.

Plan recognition has also been used by the military for tactical decision making [AFFH86,
AFH89]. Enemy plans are recognized from observations of individual enemy ship and air-
plane activity.

2.3 Natural Language

One of the largest areas of plan recognition research has been in the field of natural
language processing. Human communication is filled with intended recognition, which al-
lows a more compact form of communication to happen. Any application which needs to
understand language needs to be able to recognize the intentions of the speaker.

We discuss here just a few of the many natural language applications which have uti-
lized plan recognition in areas of story understanding, machine translation, and, of course,
dialogue systems, which is the main focus of this work.

Story Understanding

Rumelhart [Rum75] noted that stories have structure, much in the same way that sen-
tences do. Several story understanding systems have employed plan recognition to try to
extract that structure. Two examples are the systems SAM (Script Applier Mechanism)
and PAM (Plan Applier Mechanism), which both came out of Schank and Abelson’s work
on scripts [SA77].

SAM [SA77, SR81] used scripts to understand various types of stories, including news-
paper articles. It could then use its analysis to summarize or paraphrase the story. It could
also answer questions about the story.

PAM [SA77, Wil78, SR81, Wil83] performed similar functions, using knowledge of both
scripts and plans to analyze plan-based stories.

Machine Translation

A good machine translation system needs to understand the speaker’s plans, goals, and
intentions. The Verbmobil system [KGN94] is a speech-to-speech natural language trans-
lation system for English, German, and Japanese. The system translates for businessmen
making appointments.
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Plan recognition in Verbmobil [Ale95] allows the system to track the discourse goals
[JKM+95, ABWF+98] of the dialogue participants. Knowledge of the current plans of the
participants allows for more robust and accurate translation.

Dialogue Systems

We now come to the application which is the main topic of this paper, that of dialogue
systems. Most recent work in plan recognition in natural language processing has focused
on its use in dialogue systems. Although there are potentially many systems we could
mention here (some of which we mention later), we only mention two. Carberry’s student
advisor system, and the TRAINS/TRIPS systems at the University of Rochester.

Carberry [Car90b] used plan recognition in a dialogue system which advised college
students about taking classes, getting degrees, and so forth. Recognizing the user’s plans
allowed the system to give appropriate and helpful responses to the student.

At the University of Rochester, research over the last decade has produced first the
TRAINS system [AS91, ASF+94], and now the TRIPS system [FA98, ABD+00, ABD+01,
AFS01].

The TRAINS dialogue system allowed the system and user to work together to try to
route trains to make deliveries across the eastern United States. We discuss plan recognition
in TRAINS in more detail in Section 4.6.

TRIPS is the next generation of the TRAINS project. TRIPS is a domain independent,
mixed-initiative dialogue system core, which can be easily ported to new domains. It has
successfully been ported to such domains as emergency evacuation, disaster relief, and
military resource allocation.

We are currently working to expand the TRIPS system capabilities and port it to a 911
operator domain. This domain, set in Monroe County, New York, allows the system and user
to work together to try to respond to 911-type emergencies. This is a much richer domain
which requires more sophistication from a plan recognition system. The work reported in
Section 7 was developed to serve as the plan recognition component in TRIPS.

3 Foundations of Plan Recognition

In this section we present two early pieces of research which are considered to be the foun-
dations of plan recognition. Although there were many other early general plan recognition
systems, almost all subsequent work on plan recognition has roots in these two systems. We
first discuss the BELIEVER system and then Kautz’ work on generalized plan recognition.

3.1 BELIEVER

One of the first plan recognition projects was the BELIEVER system [SSG78], which
showed that humans do indeed use plan recognition. In building BELIEVER, Schmidt, et
al conducted psychological experiments to see how humans do plan recognition. They then
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built the BELIEVER system Using these results. We will first describe their experimental
results and then the workings of their system.

The Experiment In the experiment, subjects were given a description of a sequence of
actions. At certain times between actions, the subject would be asked to summarize what
he thought the actor was trying to do3.

In their summarizations, the subjects would attribute beliefs and intentions to the actor,
particularly about his plans and goals. The subjects were doing plan recognition on the
observed actions.

One interesting observations made by the experimenters was that the subjects reported
their beliefs about the plans of a user as a single hypothesis, even when much ambiguity
existed. When details were not available, subjects would give a “sketchy hypothesis” for the
plan, such as “John is getting something to eat.” When further observations invalidated
this single hypothesis, a new hypothesis would be proposed which fit the new data.

In other words, these experiments showed that humans make the best guess they can
as to the plans of the actor they are observing, instead of keeping a disjunctive list of
possible user plans. As new data arrives, humans revise this hypothesis as necessary. As
Lesh points out [Les98], despite these findings, it is interesting that most plan recognition
systems since have done just the opposite, proposing many different possible hypotheses,
and then trimming them down as more data comes along.

The System The BELIEVER system was built to try to mimic the human plan recog-
nition behavior found in the experiments described above. BELIEVER was given a priori
knowledge of the world and about specific plans. It would then be given an observation,
from which it would build a plan hypothesis for the actor.

BELIEVER matched incoming observations into a pre-built expected plan structure. The
expected plan structure was a graph of actions which connected different enables/in-order-to
relations among the preconditions and results of the different actions. A set of propositions
existed which asserted the relationship between actions. A violation of a proposition would
result in that hypothesis being thrown out. Matched observations would then be put into
the grounded plan structure. Once all actions had been observed/grounded, the plan was
considered fully grounded.

When a hypothesis was deemed incorrect, (upon receiving another observation) the
hypothesis revision process would run. Depending on the class of revision (i.e. how the
hypothesis was deemed unacceptable), different rules would apply, which would generate
a set of possible revisions. These revisions were then checked and one selected. This
checking/selection algorithm was neither implemented nor defined in BELIEVER, however.

BELIEVER is probably the most similar system to our work. Our work differs, however
in several ways. First, BELIEVER performed generalized keyhole recognition, while our
system assumes the intended recognition setting of natural language dialogue. Secondly,

3Other experiments also asked subjects to recall the events or to predict what the next action would be.
This particular experiment, however, is the most relevant to our discussion.
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BELIEVER did not allow for hierarchical plans. Thirdly, our hypothesis revision process is
quite different from that of BELIEVER. BELIEVER’s revision process was never completely
defined, however was specified to generate and explore all revision possibilities. Our system
uses an undo mechanism to minimally change hypotheses and does not generate and consider
all possibilities. Lastly, BELIEVER’s plan recognition did not support interleaved plans as
ours does.

3.2 Kautz’ Generalized Plan Recognition

The other foundation work in plan recognition was that of Kautz [KA86, Kau87, Kau90,
Kau91]. Kautz cast plan recognition as the logical inference process of circumscription. This
logical cast on plan recognition allowed him to use the a very rich knowledge representation
(essentially that of first order logic), as well as to use temporal logic to represent actions
and time.

Kautz represented the space of possible plans as an event hierarchy, which included both
abstraction and decomposition (subaction) relations. Certain actions were labeled as end
actions, meaning that they were an end unto themselves, or an ultimate goal of an actor.

By making a few assumptions (such that this event hierarchy was complete), plan recog-
nition became a problem of circumscription. Observations (also representable in first order
logic), were used to infer plans non-monotonically. Minimalization was then used to further
reduce the deductions.

Although this model is able to account for interleaved plans, it suffered from most of the
problems we will discuss in later sections, including an exponential runtime and problems
with the assumptions made in the model. It also was not developed for the intended
recognition of dialogue.

4 Applying Plan Recognition to Natural Language Dialogue

We have already mentioned above that plan recognition is a vital part of natural language
understanding. It should come as no surprise, then, that a lot of work has been done on
using plan recognition in natural language dialogue systems. In this section we first explore
the theory of speech acts which ties dialogue and planning together. We then look at several
of the most notable computational systems and discuss their strengths and weaknesses.

4.1 Speech Acts

Austin [Aus62], Grice [Gri57, Gri69, Gri75], and Searle [Sea70, Sea75] all noted that
human utterances can actually cause changes in the world. The utterance “I pronounce
you man and wife” said by the right person in the right context actually causes two people
to be married. More subtly, the utterance of “John is in the kitchen” may have effect of
causing the hearer to believe that John is in the kitchen.

Utterances, then, can have preconditions and effects, the same as other non-linguistic
actions. Thus we can build plans that contain utterances as well as other actions. A full
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discussion of speech acts is beyond the scope of this paper. What is important to realize,
however, is that treating utterances like actions (speech acts) allows us to use our theory of
plan recognition within dialogue systems. A speaker constructs a plan, say to cause us to
believe that John is in the kitchen. His plan is to utter the words “John is in the kitchen”
to us. We (the hearer) then must be able to recognize what the speaker’s original goal
was (whether to inform us that John is in the kitchen, to get us to go into the kitchen (to
see John), to hint that we should not go into the kitchen (because John is in there), etc.)
Different planning contexts will result in different interpretations for the same utterance.

4.2 Allen, Cohen, and Perrault

Allen, Cohen, and Perrault were the first to computationalize the theory of speech acts.
They showed [CPA82] that, in question answering systems, users expected the system to
recognize their unstated goals in order to provide more helpful responses to questions.

Cohen [Coh78, CP79] concentrated on using plan synthesis together with speech acts
for natural language generation. Allen [All79, AP80, All83], on the other hand, used plan
recognition of speech acts for natural language understanding. We will concentrate here
only on Allen’s work.

Allen studied transcripts of actual interactions at an information booth in a Toronto
train station. A typical exchange was something like this [All83].

patron: When does the Montreal train leave?
clerk: 3:15 at gate 7.

Note that, although the patron only requested the departure time, the clerk also volun-
teered information about the departure gate as well. Presumably, the clerk recognized the
plan of the patron (to board the train), and realized that the patron would also need to
know where the train departed and volunteered that information as well. Allen called this
behavior obstacle detection.

Allen’s system took the direct speech act of the utterance, and, using certain inference
rules and heuristics to apply them, did backward chaining in order to infer the user’s true
plan. Heuristics included things such as, if a person wants P, and P is a precondition of
action ACT, then the person may want to perform ACT; or if a person wants to know if P
is true, they may want P to be true (or false).

Using these inference rules, the system was able to recognize not only indirect speech
acts, but also the user’s domain plan. However, the large search space and large number of
potential hypotheses made this approach unworkable in larger domains. Moreover, Allen’s
system only worked for one-utterance dialogues.

4.3 Multiple Utterance Plan Recognition

Carberry [Car87, Car90b] extended previous work to incrementally (utterance by utter-
ance) account for multiple utterances. She used a plan hierarchy similar to Kautz’ (above)

8



which held information about decomposition of plans in the domain. Her system explicitly
kept track of this hierarchy and filled it in as the user navigated and expanded different
nodes. This type of plan recognition system accounted for both bottom-up (talk about
actions first) and top-down (talk about goals first) dialogue.

Carberry’s system did plan recognition in a two-phase manner. The first phase did
local analysis on input, which tried to identify the speaker’s immediate goal, regardless of
context. Afterwards, one of these goals was chosen based on global analysis (the second
phase), which tried to fit one of these goals into the context of previous utterances.

Focus was an important part of this system. Carberry found that speakers usually
navigate and fill in the tree in a predictable way. Thus, if focus were on a certain node,
the system could calculate the most likely shifts of focus from that node. This allowed the
system to use context as well as dialogue behavior to filter among the possible immediate
goals from local analysis and place them into the context.

Our system uses focus much like Carberry’s, although, as we discuss below, we allow
a wider range of tree navigation techniques based on things like interleaved plans, which
Carberry does not account for. Also, Carberry’s system first generated all possible interpre-
tations and then filtered among them, making it vulnerable to a possible runtime explosion
in a larger domain. Our system uses context first to decide which options to explore.

4.4 Dialogue and Domain Plans

Litman and Allen [Lit85, Lit86, LA87, LA90] extended Carberry’s and Allen’s work
to better account for various dialogue phenomena. Although a dialogue’s focus is on the
domain, there seem to be several meta-layers which help ensure robust communication.

Essentially, Litman and Allen added a new layer to the plan recognition system, that of
problem-solving4 plans. Previous plan recognition systems had only accounted for domain-
level plans (as well as speech act level plans). Litman and Allen’s system was able to account
for a number of problem-solving phenomena, including that of clarification subdialogues.
For example, consider the following dialogue [LA90].

teacher: OK the next thing you do is add one egg to the blender, to the shrimp in the blender.
student: The whole egg?
teacher: Yeah, the whole egg. Not the shells.
student: Gotcha. Done.

The domain-level plan here one of cooking. The student’s first utterance, however is
caused by confusion in the dialogue. Instead of replying directly to the teacher’s instruction,
the student asks a clarification question, which is a problem-solving plan (i.e. that of making
sure he understands correctly). The teacher responds to this question and then the student
‘pops’ back down to the domain level again and says “Done.”

4Litman and Allen actually called these discourse plans. In light of subsequent work, however, these are
better characterized as problem-solving plans.
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Litman and Allen allowed this stack-like structure of dialogues and recognized not only
domain-level plans, but also the domain-independent problem-solving plans. This allowed
systems to more fully cover dialogue phenomena.

4.5 Other Plan Levels in Dialogue

There have been several efforts to extend the work of Litman and Allen, further cate-
gorizing the types and levels of plans that can exist in dialogue. We first discuss the work
of Lambert and then that of Ramshaw (and the extensions by Ardissono).

Lambert Lambert [LC91] proposed a three-level model of dialogue, consisting of the
domain and problem-solving levels of Litman and Allen as well as a level of discourse,
which specifically handled recognition of multi-utterance speech acts. Consider the follow
utterances, which, only taken together constitute a warning [LC91].

U1: The city of xxx is considering filing for bankruptcy.
U2: One of your mutual funds owns xxx bonds.

Their separation of discourse plans allows them to be able to recognize such speech act
like phenomena at a multi-utterance level.

Ramshaw During the same period of Lambert, Ramshaw [Ram89b, Ram89a, Ram91]
proposed a differently separated model (which was later extended by Ardissono [ABL96]).
Instead of a discourse level, Ramshaw proposed an exploration level. The intuition is that
some utterances are made simply in the attempt to explore a possible course of action,
whereas others are explicitly made to attempt to execute a plan.

This model allows the system to distinguish between the two cases, since, presumably,
different responses from the system would be required, although neither Ramshaw or Ardis-
sono make this point. This approach seems more adapted to domains where execution of
plans happens as the dialogue progresses. We discuss this issue in more detail in Section 6.3.

4.6 Plan Recognition in TRAINS

The TRAINS system [AS91, ASF+94] was an end-to-end speech dialogue system. The
real-time nature of the system presented a need a more tractable form of plan recognition.
Plan recognition is done in two stages. The first stage uses linguistic information to compute
and filter possible indirect speech acts. This filtered set is then sent to the main plan
recognition system. We discuss just the preprocessing phase below. The plan recognition
system is similar to that described by Carberry (above), enriched with a problem solving
model.
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Linguistic Preprocessing The linguistic preprocessor is the result of the work of Hinkel-
man and Allen [HA89]. They noted that previous plan recognition techniques, especially for
speech acts, disregarded many linguistic clues in the utterance, which can actually constrain
interpretations. Consider the difference between the following utterances [HA89].

U1: Can you speak Spanish?
U2: Can you speak Spanish, please?

At a direct speech act level, these two utterances look the same. However, the possible
interpretations differ. Whereas U1 can either be interpreted as a question of ability (“Do
you know how to speak Spanish?”) or a request (“Will you speak Spanish?”), U2 is only
interpretable as the later. The presence of ”please” constrains the interpretation.

Hinkelman built a set of rules for English based on these principles that would generate
and constrain possible indirect speech act interpretations of utterances. This process greatly
speeds up interpretation.

5 Problems with Prototypical Plan Recognition and Exten-
sions to Solve Them

The plan recognition systems that we have described so far are, in a way, considered to
be ‘prototypical’ within the field. However, several researchers have pointed out problems
with these models. This section presents work which has been done to try to correct some
of these problems, but, which has not really been integrated into the prototypical model in
the field.

5.1 User’s Incomplete/Erroneous Plans

This section could possibly be better labeled “when users make mistakes”. Most systems
described above contain the assumption that both the system and the user have exactly the
same knowledge about plans in a domain (and non-domain plans as well). Both Pollack
[Pol86a, Pol86b, Pol87, Pol90] and Quilici [Qui89] show that this assumption is not well-
founded, especially in situations where the user is a novice, and is interacting with the
system (an expert). In these cases, as well as in everyday interaction, users may have either
incomplete or incorrect knowledge.

Pollack’s solution suggests extending what is meant by the concept of ‘plan’ in the
normal literature. A plan, she suggests, can be divided into two concepts, a recipe (which is
a ‘plan’ of how to do something, which is what is typically thought of as a plan) and then,
what she calls a plan, which is a set of beliefs and intentions with respect to a recipe. The
additional model of beliefs and intentions about plans allow us to separately model what
we know versus what we believe the user knows (especially about plans). It also allows
us to be able to not only detect an erroneous plan, but also to detect, why the plan was
erroneous, which allows us to respond to the user in a more natural way, such as correcting
the user’s incorrect knowledge.
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5.2 System’s Incomplete/Erroneous Plans

This section speaks of the flip side of the section above. Another fixed assumption from
prototypical plan recognition systems is that the system’s knowledge is both correct and
complete. While this may be a reasonable, even desirable property in certain domains, it
is generally undesirable for several reasons. First, it places the great burden on the system
designer to enumerate and expand every possible recipe for every possible goal that the
system will have to recognize, adding possibly to engineering time, required storage space
for knowledge, and/or preexisting system limits. Secondly, in the rare event that the system
actually didn’t have all of the knowledge it needed (or had some incorrect knowledge), it
would be desirable for a user to be able to add or correct (planning) knowledge within the
system.

Robin Cohen’s group [CSSvB91, CSH94] has looked a little at this problem. Their
work allows a user to add either temporal details (via tense information) or novel plan
knowledge to the system. When a new plan recipe is added to the system, the system
uses its knowledge of action preconditions and effects to actually validate that the user has
entered a valid recipe. Their research only concentrated on the simple task of where the
user is describing his plan to the system. Work is still needed to see how to incorporate
this kind of system behavior into a normal dialogue setting. This includes work on how the
system can determine that it is wrong, and not the human, and thus correct its knowledge.

5.3 Ambiguity

One of the biggest problems with prototypical plan recognition is that there can be a lot
of ambiguity (especially as the domain gets bigger). Two approaches to this problem have
been taken. The first, somewhat unique approach to natural language dialogue, is the use
of clarification, i.e. querying the user to help resolve the ambiguity. The second is to use
uncertainty to allow the system to reason with the likelihood of any given interpretation.
We discuss these here.

Solution: Clarification Dialogue when Necessary

The most straightforward solution to the problem of ambiguity, which humans have been
shown to employ, is to just “wait-and-see” [SSG78]. If there is no need to disambiguate
at the present state, then there is no need to worry. Humans often infer as much as is
“reasonable” and when too much ambiguity is met, they just wait for more input to help
them disambiguate [SSG78].

Van Beek and Cohen [vBC91] suggest that, in dialogue systems, it is not always necessary
to resolve ambiguity to give a proper response. Oftentimes, the response would have been
similar regardless which plan (among the ambiguities) the user has. Alternatively, the
system can generate a reply which ‘covers’ all the ambiguous cases. This is especially useful
if the number of ambiguities is small.

When ambiguity does matter, Van Beek and Cohen suggest the other method which
humans use to resolve ambiguity, that of clarification. Clarification dialogue simply (directly
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or indirectly) solicits information from the user for disambiguation. In other words, if an
ambiguity exists, one simply needs to ask. This method is also used in [LRS99].

One downside of the clarification approach, however, is that, if done too often, it can
quickly throw a dialogue into disarray. Also, clarification is usually more effective if there
are only a few ambiguities to choose among. Clearly, if clarification is to be used, it must
be used sparingly. Other methods are also needed.

Solution: Using Uncertain Inference

The second approach to the problem of ambiguity is to use uncertain inference. This at
least gives each ambiguity some measure of probability which the system can use to further
weight its options. We discuss here some of the many approaches which have been used.

Dempster-Shafer Carberry [Car90a] showed how to incorporate Dempster-Shafer prob-
abilities to the focusing heuristics in her plan recognition system [Car90b] (described in
Section 4.3 above). Bauer [Bau94] described a plan hierarchy closure method to attach
Dempster-Shafer probabilities to any plan hierarchy.

Belief Networks Several systems have used Bayes Nets to integrate uncertain infer-
ence into plan recognition. In Albrecht, Zukerman and Nicholson [AZN98], dynamic belief
networks were trained to predict a user’s goal based on observed actions in a multi-user dun-
geon video game. Horvitz and Paek [HP99, PH00, HP00, PHR00] use dynamic Bayesian
Networks to recognize user intentions in several dialogue domains. Charniak and Goldman
[Gol90, CG91, CG93] built an entire natural language understanding system, including plan
recognition, in a unified dynamic belief network. Plan hypotheses were generated by piecing
together evidence (previous utterances, plan roles of items in the current utterance, etc.)
A priori probabilities of the likelihood of observations were then percolated through the
network to determine the overall likelihood of the hypothesis. As is discussed in Section 6.4
below, this system may be adaptable to the problem of incremental plan recognition.

Probabilistic Plan Libraries Calistri-Yeh [CY91] suggests a simpler system of placing
probabilities on edges in a Kautzian plan hierarchy. Combining this evidence allows an
overall likelihood to be computed for a hypothesis within the plan space. Calistri-Yeh’s
system also supports recognition of a range of types of erroneous plans, with likelihoods
computed for these erroneous plans as well.

6 Problems with Current Plan Recognition in Natural Lan-

guage Dialogue

In the previous section we described several problems with prototypical plan recognition
and some proposed solutions. Here we discuss outstanding problems with current plan
recognition systems, especially as they are used in the domain of natural language dialogue
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systems. In the next section we describe a system which provides a preliminary solution
to several of these problems, namely recognition of interleaved plans, repairing mistaken
inferences, and integration with linguistic representation.

6.1 Scalability and Runtime

Lesh [LE96] points out that previous plan recognition work has typically only been
investigated in domains where the number of goals were less than one hundred. This brings
up the question of whether these plan recognition techniques can be scaled up to domains
with thousands or even hundreds of thousands of goals and plans. Due to the exponential
runtime of most plan recognition systems, this is very doubtful. In fact, even in small
domains, plan recognition is still a very costly subroutine.

Although we consider this problem to be very much an open issue still, there have
been a few attempts to try to confront it. Mayfield [May92] suggests a very pragmatic
approach. His plan recognition system uses a utility function to determine if it should
continue to search for a solution. Thus his system weighs the tradeoff between accuracy
and utility. Because of the backward-chaining nature of typical plan recognition, a system
finds intermediate goals before finding an ‘ultimate goal’ (and END in Kautzian terms).
These partial results may be useful enough to a plan recognition system.

Of course, as Mayfield points out, utility can only be measured in an environment where
plan recognition is being used within a larger system. His plan recognizer would do the
best it could within a reasonable amount of time and then send the results to the next
phase of processing in the larger system. This component (which used the results of plan
recognition) would then know if the results it received from the plan recognizer were good
enough or not. If a higher-level goal, or more accuracy was needed, the component would
send the results back to the plan recognizer, which would continue its search until the time
factor outweighed utility. The process would continue in this manner until the consuming
component was satisfied.

Although this is not a cure-all for the scalability problem, Mayfield’s approach is defi-
nitely a step in the right direction.

Lesh [LE96, Les97, Les98] has taken plan recognition research to the next level of scala-
bility. Using automatic plan library construction techniques (see below), he has constructed
plan libraries in several domains which contain up to 500,000 goals.

Lesh’s research has been on goal recognition, which is a special case of plan recognition
where only the user’s goal is recognized, not the plan by which the user is trying to ac-
complish the goal. Lesh points out that goal recognition has several potential applications,
including that of intelligent interfaces. We also believe goal recognition can be used to
improve plan recognition. A fast goal recognizer could be used to sufficiently narrow the
search space to allow a slower plan recognizer to be applied afterwards.

Lesh’s goal recognizer performs in time logarithmic to the number of goals in the plan
library. It does this by using biases to prune away sections of incompatible goals.

We applaud Lesh’s efforts to scale up plan recognition systems. However, there is still
much work to be done in this area. Lesh’s algorithm only works in such fast time because
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his set of goals are represented in a subsumption hierarchy. Many of the 500,000 goals in
his system are actually conjunctions of more primitive goals. This subsumption allows his
algorithm to prune away huge sections of the search space at a time. It is not clear to what
extent dialogue-type goals could be represented in this representation. It is also unclear if
this new representation and recognition routine could use any the extensions to prototypical
plan recognition described in Section 5 (recognition of erroneous plans from the user, for
example). We believe that it would be worthwhile to try to ‘port’ Lesh’s techniques into
plan recognition for dialogue systems.

6.2 Portability to New Domains

Another big problem with plan recognition in dialogue systems is that of portability.
This actually encompasses two issues. First, most plan recognition systems have domain
specific heuristics, and it is not clear if these are applicable across domains even within
dialogue systems. Second is the problem of creation of new plan libraries for new domains.
We discuss the second issue here.

Creating plan libraries by hand is a slow and painstaking process. This process may
be acceptable for domain independent plans (such as discourse plans, meta plans, etc. as
discussed above), which are most likely a manageable number and need only be specified
once for any dialogue system. However, the need to hand craft new plan libraries for the
domain plans of new domains is a serious impediment to dialogue system portability5. The
slow process of hand construction of plan libraries is also a major problem to scaling up
plan recognition systems to domains of more than several hundred plans (see the discussion
above).

Again, we consider this an open issue. Lesh [LE96, Les97, Les98] suggests using concept
learning to automatically build plan libraries (at least libraries of goals). Concept learning
uses a set of primitives to hypothesize sets of goals in the domain.

A possible similar approach to construct a plan library (as opposed to a goal library)
would be to use a set of primitive actions as well as a planner. The planner could generate
possible plans in the domain for accomplishing certain goals. This is an area of our future
work (see Section 8 below).

6.3 Differentiation between Immediate Execution and Future Planning

One problem with plan recognition in dialogue systems is that of distinguishing if the
intention of a user’s utterance is to execute a plan (or action) or to simply add it to an
overall plan which is intended to be executed later. Most plan recognition systems have
either been in domains where the user (or system, or both) is actually executing the steps
of the plan as the discussion takes place (such as expert/apprentice domains), or where the
user and system are simply constructing a plan to be executed at some later time.

Of course, there are domains in which this activity is mixed. Consider the TRIPS 911
domain, where a user is working with the system to formulate and execute plans to rescue

5Portability of a core dialogue system is one of the goals of the TRIPS project [ABD+00].
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various victims around the county. Here, the user and system will formulate a certain plan
and execute it, and then formulate other plans. In certain situations which do not allow for
careful planning, the user may request that actions be executed without first formulating
a specific plan (such as sending an ambulance to a heart attack victim). Future plan
recognition systems will need to be able to recognize and deal with these kinds of domains.

Although Ramshaw and Ardissono’s work [Ram89b, Ram89a, Ram91, ABL96] provide
hints at how one might begin to structure such a solution, this problem has not yet been
addressed by the literature.

6.4 Incremental Understanding

Nearly all current dialogue systems operate at an utterance level of granularity. Human
dialogue is very different [Cla97]. In human-human dialogue, participants are clearly un-
derstanding and reacting at a much finer granularity. Back-channeling, interruptions, and
turn-taking are several examples that humans are understanding at a word-level at least.

Although continuous understanding is a problem area for all levels of natural language
understanding [Sto01], it is particularly problematic for plan recognition. Most plan recogni-
tion systems only work on a complete speech act, which means that the entire user utterance
must be said and processed before the plan recognition process ever begins. In order to
build dialogue systems which are capable of continuous interaction, this is a problem which
must be overcome.

The only dialogue system we know of that attempts to do incremental understanding is
DUG–1 [NMJ+99]. This system, however does not attempt to do plan recognition. It works
in a simplified domain of booking rooms for presentations, which only requires basic slot
filling for understanding. Continuous understanding is provided by keeping and filling, in
parallel, all ambiguous versions of the slots, and then ranking the best by a set of heuristics.
It does not seem that this approach would generalize to plan recognition.

There is hope of a possible solution, which may be able to be built on the belief network
plan recognition system of Goldman and Charniak [Gol90, CG91, CG93] (described in
Section 5.3 above). Although the focus of their research does not appear to be incremental
understanding, we believe that there are concepts in this work that could be used for
incremental plan recognition. Firstly, their system seems to already support a limited form
of incremental plan recognition. Their system treats each filler of a plan role as a separate
evidence node in the belief network. An event (i.e. action type) without any fillers can
be added to the network and cause net plan hypotheses to be formed. Event rolls can be
added separately as well, although Goldman and Charniak did not allow them to lead to
new hypotheses, only to affect the likelihood of preexisting hypotheses. They state the
ambiguity problem as the reason for this disallowance.

With their system, upon hearing and understanding what type of event has occurred,
the event node can be added to the network and begin to cause new hypotheses to be
proposed. There is still much work to be done in this area, however we believe that it may
be possible to start such work on the base of Goldman and Charniak’s belief network plan
recognition.
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6.5 Interleaved Plans

Another outstanding issue for plan recognition systems is recognition of interleaved
plans, especially when one action shared among two or more plans. Lesh [LE96] suggests
a method for goal recognition which simply treats the two goals as a single conjoined goal,
although it is unclear how such a representation could be used in a dialogue system which
needs to explicitly keep track of each goal, as users may want to perform problem solving
activities on each goal separately, regardless if they were explained in an interleaved way.
Below we present an algorithm which can account for interleaved goals and still keep each
goal (and associated information) separate.

6.6 Repairing Mistaken Inferences

One topic that has typically been absent in the discussion of plan recognition systems
for dialogues is this. What happens when the system makes the wrong hypothesis? Many
of the natural language systems discussed above to not seem to have a repair mechanism.
The system is based on the assumption that all previous hypotheses were correct. When
a mistake has been made, probably the only thing these systems could do would be to
re-recognize all of the previous input, keeping in mind the new evidence we have received.

Logical systems like Kautz’ treat plan recognition as non-monotonic reasoning, so incor-
rect inferences can be changed by new evidence. However, most natural language systems,
([Car90b, LC91, Ram91] for example), use heuristics and seem to have no mechanism for
correcting incorrect inferences.

Our system below follows more closely along the human model discussed in [SSG78],
and is able to recover from incorrect hypotheses in light of new evidence.

6.7 Integration with Linguistic Representation

The last problem with current plan recognition in dialogue which we discuss is per-
haps the most amorphous, since it deals with integrating plan recognition into a larger
system. Most plan recognition work, even for dialogue systems, has either been a stand-
alone proof-of-concept system, for which input was ‘magically’ converted in the absence of
a computational front end, or has been part of a system with limited processing capability
of natural language input. Either way, the knowledge representation has been more geared
towards plan recognition and, as pointed out by Di Eugenio [DE95], has not been very
linguistically motivated. If plan recognition systems in dialogue are going to be useful at a
general level, they must be able to function with more linguistically motivated input which
can be processed by state-of-the-art natural language processing systems.

Below we propose the a system preprocessor, which converts linguistic actions into their
planning atomic actions. We also tie linguistics and planning together by having a linguistic
description field in our plan library, which allows understanding of more general linguistic
signals such as “use instrument”.
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7 Our Plan Recognition System

We have created a plan recognition system for use in the TRIPS dialogue system [AFS01,
ABD+01, ABD+00, FA98] that overcomes several of the shortcomings mentioned above. In
this section we describe this system, which we plan to integrate into the TRIPS system
this summer. We first talk about motivations for the system and how it needs to interact
with the TRIPS system. We then describe knowledge representation in the system and the
plan recognition algorithm. Finally we discuss how this system overcomes several of the
above-mentioned shortcomings of current plan recognition systems, namely: dealing with
interleaved plans, repair of mistaken inferences, and a linguistic decomposition preprocessor,
which allows the system to be more fully integrated with natural language input.

7.1 Motivations

As stated above, the motivation for this project was the TRIPS dialogue system. (For a
general overview of TRIPS see Section 2.3 above). We desired to extend the plan recognition
principles used in the TRAINS project [All97, FAMR96] (also described in Section 4.6
above), as well as improving and expanding both the range and accuracy of plan recognition.
The plan recognition system herein described will be integrated into TRIPS over the next
few months.

In analyzing the domain of TRIPS-911 (a dialogue system for handling 911 emergencies),
we found examples of phenomena that current plan recognition systems could not process.
We will discuss these phenomena later as specific motivations for some of the features of
our plan recognition system. First, however, we describe the overall TRIPS architecture
and then how plan recognition (within the Task Manager component) interacts with the
rest of the system.

In AI applications, plan recognition never occurs in a vacuum. Rather it is just one piece
of a complex architecture of components with which it must interwork in order to provide
desired result. These next few sections show plan recognition within TRIPS. We will then
describe some of the plan phenomena one can encounter in the TRIPS-911 domain.

TRIPS Architecture

TRIPS6 has a modularized, asynchronous, agent-based, message passing architecture.
Figure 1 shows a generalized view of the architecture.

As shown in Figure 1, multi-modal input comes in to the system either through speech
recognition, the keyboard, or other GUI interaction. This input is then passed to the Parser,
which outputs a list of (direct7) speech acts which describe the input.

6This section only provides very high level details of the system (those needed to understand the inter-
action of plan recognition). For more details about architecture see [AFS01, ABD+00], or our webpage at
http://www.cs.rochester.edu/research/cisd/.

7As opposed to indirect speech acts [Sea75], the processing of which is described below.
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Figure 1: TRIPS Architecture

These speech acts are then sent to the Interpretation Manager, which is the main inter-
pretation agent of the system. The Interpretation Manager, attempts to resolve all refer-
ences in the input (via the Reference Manager), and the, using the method of Hinkelman
and Allen [HA89, FAMR96] (also Section 4.6 above), computes a set of preliminary indirect
speech acts that the input could account for. It then asks the Task Manager to evaluate
each of these possibilities. The Task Manager (more details below), uses plan recognition
to attempt to fit the new evidence into its existing plan structure and returns a score that
describes how well the proposed indirect speech act integrates with the current state of the
plan recognizer.

The Interpretation Manager then passes its best interpretation on to the Behavioral
Agent. This autonomous agent then deals with the input as it sees fit (i.e. by accepting
and performing the request, tabling the request in order to perform some more urgent
action, etc.) The Behavioral Agent then communicates its intentions and/or results to the
Generation Manager, whose job it is to communicate this back to the user in a socially and
linguistically coherent manner.

Again, this has been just a quick overview of the system architecture. But, it gives us
enough detail to be able to discuss in more detail how plan recognition fits into the system
by describing the Task Manager.

The Task Manager

The Task Manager, as one of its many jobs, performs plan recognition in the system.
The purpose of this section is not to describe the actual plan recognition (which is described
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later), but to discuss the interaction of the plan recognition with the rest of the system.

As stated above, the input to the plan recognizer is an (indirect) speech act hypothesis
(generated by the Interpretation Manager), and the output is the problem solving (planning)
act the user intended with the speech act, and a score of goodness, which the Interpretation
Manager uses to decide which (problem solving) interpretation of the input is the best. It
then sends it off to the Behavioral Agent.

Interesting Plans from the TRIPS-911 Domain

Many of the plan recognition systems mentioned above were designed to be used in a
specific application. Carberry’s focusing heuristics [Car90b], for example, were developed
from intuition from student advising dialogues. Grosz’ [Gro78, Gro81] observation that dia-
logues tend to follow the structure of the task was obtained by looking at expert/apprentice
dialogues.

However, what is true for one domain, may not necessarily (or to the same degree) be
true in another. In student advising dialogues, people do probably tend to flush out a plan
in a certain order. Also, in expert/apprentice dialogues where actions are being executed
during the dialogue, it is certainly true that the dialogue will tend to follow the (temporal)
order of the task at hand.

We believe that, by looking at examples from more and more domains, we are slowly
beginning to see the wide range of plan navigation strategies that humans use in dialogue.
We believe that within the TRIPS-911 domain we have found a new (at least to plan
recognition in dialogue) such strategy, that of interleaved plans.

Before we look at this phenomenon, though, let us first consider a ‘normal’ bottom up
exchange in this domain, which will serve as a comparison.

Dialogue 1

U1: Send Ambulance 1 to Irondeqoit Mall
U2: Pick up the person there
U3: Go to Strong Hospital
U4: And drop the person off there

Dialogue 1 is a prototypical example of a bottom-up, single plan navigation sequence.
The user’s goal is to rescue (i.e. get to a hospital) the person at Irondeqoit Mall (to Strong
Hospital). The user’s plan is to send Ambulance 1 to the mall, pick up the person, take him
to Strong Hospital, and drop him off. This sequence follows both Carberry’s and Grosz’
observations of focusing. The user focuses on one goal, and even navigates it in the same
temporal order that its actions will take.

Now, however, let us consider an interleaved example that seems plausible enough in
this domain where it is sometimes more efficient (in terms of execution time) to interleave
the actions of plans.
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Dialogue 2

U1: Send Ambulance 1 to Irondeqoit Mall
U2: Pick up the person there
U3: Go to Midtown Plaza
U4: Pick up the person there
U5: Now go on to Highland Hospital
U6: Drop off the person from Midtown there
U7: Go on to Strong Hospital
U8: And drop off the Irondeqoit person there

In Dialogue 2, the user has two goals: to rescue the person at Irondeqoit Mall (to Strong
Hospital) and to rescue the person at Midtown Plaza (to Highland Hospital). Note that
the first of these goals is identical to that of Dialogue 1.

Instead of navigating the details of one goal and then the other, the user switches between
the two. Why is this? It turns out in this domain that combining (i.e. sharing and/or
temporally interleaving) the steps of multiple plans can actually result in a more efficient
executing (in this case in terms of time taken). Midtown Plaza and Highland Hospital are
‘on the way’ from Irondeqoit Mall to Strong Hospital, and thus combining steps results in
a more efficient plan throughput. We will call this phenomenon plan synergy. We do not
believe that plan synergy is not limited to 911 domains. There are many domains in which
one could imagine plan synergy to be naturally occurring, and thus potentially utilized by
humans. For this reason, a general plan recognition system for natural language dialogue
must be able to handle interleaved plans, and, as a result, plans which share actions.

7.2 Knowledge Representation

This section discusses the knowledge representation of our system. We first describe
the representation of speech acts (which are input to the system). We then discuss the
representation of objective frames and finally we discuss how actions are represented in
our system. This system uses a simplified version of the knowledge representation used in
TRIPS.

Speech Act Input

The input to the plan recognition system (from the Interpretation Manager), is a refer-
ence resolved speech act. We describe here the knowledge representation of speech acts only
insofar as is necessary to understand the plan recognition mechanism. For more information
about knowledge representation in TRIPS, see [FAMR96].

The content of a speech act is essentially a logical form from the parser. Each event has
a number of argument slots which are filled with other events or entities or with variables
when they are not indicated by the speaker. The domain dependent parser [FAMR96, All94]
maps ambiguous surface verbs onto relevant domain events. Figures 2 and 3 show examples
of surface strings and their corresponding speech acts.
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(REQUEST

:contents

(move BUS1 GREECE-MALL))

Figure 2: Speech Act for “Send bus one to the mall in Greece”

(REQUEST

:contents

(use

AMB1

(achieve

(at-loc P-PITTS STRONG))))

Figure 3: Speech Act for “Use an ambulance to get the person from the Pittsford fire station
to Strong Hospital”

Figure 2 shows a simple speech act. The speech act type is REQUEST. In the contents,
the surface verb “send” has been mapped to the predicate move in the logical form. The
all-caps entries BUS1 and GREECE-MALL are world entities which have been resolved from
the referring expressions “bus one” and “the mall in Greece” respectively. Implicit in this
compact representation is that the predicate move has two arguments. The first (occupied
in this example by BUS1) is a vehicle and the second, a destination. If the input had not
(explicitly) specified one of the arguments, say, for example, in the sentence “move to the
mall in Greece”, the corresponding speech act contents would use an (implicitly) typed
variable, as shown here.

:contents

(move ?v GREECE-MALL)

The speech act in Figure 3 shows how propositions can be nested. The outer level
has the predicate use, the second argument of which is a proposition, namely, achieve
(mapped from the verb “get”). Achieve also takes a proposition, which is (at-loc P-PITTS

STRONG). The handling of nested propositions adds a layer of complexity to systems which
match observed actions bottom-up (as for the speech act in Figure 2).

Another complication is that, although the parser is domain specific and maps verbs
onto predicates which represent relevant senses in the domain, it has no knowledge of what
the system planner considers to be ‘atomic actions’ in the domain. This is an example of
the mismatch between linguistic and planning representation discussed in Section 6.7 above.
Consider the following utterance and corresponding speech act (where “here” refers to the
mall in Greece).
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U1: Take the person here to Strong Hospital with Bus 1

(REQUEST

:contents

(transport P-GREECE BUS1 GREECE-MALL))

The transport action takes three arguments: a person (P-GREECE), a vehicle (BUS1),
and a location (GREECE-MALL). Transport is not an atomic action in the planner, which
knows nothing about it. However, we still use this linguistically motivated representation.
We describe our strategy for dealing with this incongruity of representations in Section 7.4
below.

Plan Representation

Our representation of plans is hierarchical and similar to that of Carberry [Car90b] and
Allen [FAMR96, All97]. As Allen notes [All97], a dialogue system must not only keep track
of the goal and ‘plan’ (as defined by a set of temporally ordered atomic actions), but also how
the (hierarchical) steps of the plan relate to each other. This is especially true in domains
where the user and system are constructing a plan to be executed at some later time. Users
will often want to revisit parts of the plan and do revisions, comparisons, etc. We will call
(along the lines of [AFS01, ABD+01]) this augmented representation an objective and the
set of (possibly) hierarchical actions that accomplish an objective, a solution.

An objective is comprised of several elements (besides just the goal statement), which
help in plan recognition as well as in providing the rich information needed to support user
dialogue as discussed above. For the remainder of this section we discuss each of these
elements. Further sections describe in detail the representation of solutions and of atomic
actions. We discuss the RescuePerson objective as a detailed example. The following are
elements of an objective.

Goal The goal describes the desired end state of the objective. This is what is typically
thought of as a goal in planning literature and will not be discussed further here.

Resources This is a list of typed variables that are considered resources for the objective.
A resource is typically something that is considered ‘scarce’ in a planning domain and that
must be allocated in order to find a solution. See [AFS01, ABD+01] for a more detailed
discussion of resources.

Input Variables We start with frames for abstract objectives. Input variables instantiate
the objective. Typically these are parameters which distinguish this objective from other
similar objectives. This is a typed list of variables which are instantiated as the dialogue
progresses.
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Linguistic Description As stated above, we are not doing plan recognition in a vacuum,
but are using it to support linguistic dialogue. The linguistic description of an objective
describes (in slot-argument form) the goal of the objective, its resources, and so on. This
description is used to interpret domain independent linguistic constructs which are used to
specify parts of a plan. Further details of this process are given below.

Solutions The set of solutions (plans) for this objective which have been discussed. A
common activity in problem solving is actually discussing different solutions for an objective,
comparing them, and so forth. This representation allows us to model this behavior in the
dialogue. The representation of a single solution is discussed below in more detail.

Focused Solution This is a pointer to which solution is currently in focus (i.e. being
developed, evaluated, etc.)

Constraints The set of constraints on the objective.

Solutions

As stated above, a solution is what is typically called a ‘plan’ in the plan synthesis
literature. It is an ordered set of (hierarchical) actions whose execution is intended8 to
bring about the goal(s) of the objective.

A solution is a set of expected actions and agreed actions. Before a dialogue begins, an
solution has a set of expected actions that constitute a common recipe for that plan. As
actions are grounded with a user, they are moved from the set of expected actions to the
agreed action list. This builds expectations into the recognizer, which behavior was also
found in humans [SSG78].

Atomic Actions

Atomic actions are represented as an action predicate with arguments (much like the
move example above). In addition, each action is followed by a list of preconditions that
must be true at the time the action is executed.

An Example: The RescuePerson Objective Frame

To illustrate the above sections, and to serve as a base for further discussion of the
plan recognition system, we consider the RescuePerson objective frame, which is shown in
Figure 4. This frame represents the objective of rescuing a person (i.e. getting them to a
hospital) in a 911 domain. We will briefly discuss each of its features.

Goal The goal is to get a person (?p) to a hospital (?h).

8For an in-depth discussion of what exactly constitutes a plan, see [Pol90]
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(RescuePersonFrame

:goal (at-loc ?p ?h)

:ling-desc (:id D1 :predicate Rescue :theme ?p

:goal ?h :instrument ?v)

:resources ((Vehicle ?v) (Hospital ?h))

:input-vars ((Person ?p) (Ailment ?a) (Location ?l))

:constraints ((Hospital ?h) (Person ?p) (Vehicle ?v)

(Location ?l) (Ailment ?a) (has ?p ?a)

(treats ?h ?a) (at-loc ?p ?l))

:focused-solution S1

:solutions ((:id S1

:agreed-actions

NIL

:expected-actions

(((move ?v ?l) NIL)

((load ?p ?v) ((at-loc ?p ?l) (at-loc ?v ?l)))

((move ?v ?h) ((in ?v ?p)))

((unload ?p ?v) ((in ?v ?p) (at-loc ?v ?h)))))))

Figure 4: The RescuePerson Objective Frame

Resources Resources are a vehicle (to carry the person) and a hospital.

Input Variables Input variables are the person, their ailment, and their current location.

Linguistic Description The linguistic description contains the predicate Rescue (i.e.
“rescue a person”), with the theme being the person, the goal (in a linguistic sense) being
the hospital, and the instrument being the vehicle. These provide, as the name denotes, a
linguistic description of this objective.

Solutions The solutions contain just one solution (since we haven’t discussed any solu-
tions yet), which has a typical recipe in its expected actions. The recipe is to move the
vehicle to where the person is, load the person into the vehicle, move the vehicle to a
hospital, and unload the person. Individual preconditions constrain this to be a solution
which actually accomplishes the goal (discussed above). The load, for example, has the
preconditions that both the vehicle and the person be at the location ?l. The second move

has a precondition that the person still be in the vehicle when it is moved, and so forth.

Constraints These are general constraints on the solution. Some of these constrain types
on variables (i.e. ?p has to be a person, ?v a vehicle, etc.) Others provide additional
constrains such that the hospital of our solution must be able to handle cases of the ailment
the person has and so forth.
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7.3 Algorithm

In this section we describe the basic plan recognition algorithm used in our system. In
later sections we discuss additional details of the algorithm which allow us to handle the
phenomena as we discussed in Section 7.1 above.

In our restricted domain, we do not utilize hierarchical plans, although we believe the
concepts here can be easily extended to handle such a model9. Instead, a user’s overall
objective simply consists of a set of RescuePerson objectives, each of which corresponds to
the rescuing of a particular person.

The system keeps track of all objectives, present and past. This allows the user to always
go back and query10 about previous objectives. Objectives which are fully instantiated,
and are out of focus are determined to be grounded, while recently discussed objectives, or
objectives which have not fully been instantiated are pending. This dichotomy allows us to
see where to look to ‘fit’ new input in to the existing plan structure.

Whereas many other plan recognition systems generate a large number of possible inter-
pretations, ours does not. We attempt to follow the observation that humans only generate
one hypothesis, which is then revised when necessary [SSG78]. Details of this hypothesis
revision mechanism are described later.

Linguistically, humans use a number of (sometimes mixed) plan navigation strategies
to convey their intentions. In a top-down strategy, the human first explicitly states their
goal, and then explores the various details. In a bottom-up strategy, the human describes
individual actions, from which the system must recognize the implicit goal. Humans also
use domain independent linguistic constructs to specify certain planning level roles. We
describe below how our system recognizes plans with input from different plan navigation
strategies. Our system is also capable of handling compound statements with linguistic
roles. We describe this lastly below.

Top-down Recognition

In a top-down strategy, the user states their explicit goal. Consider the following input
from the user.

U1: Let’s get the person from the Pittsford fire station to Strong Hospital

The speech act content of this statement is

(achieve

(at-loc P-PITTS STRONG))

9Indeed, that is one of the subjects of our future work (see below)
10Queries, comparisons, and other problem solving actions will be supported in a future version of the

system.
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Notice that the verb “get” from above has been recognized by the parser as the achieve
sense of the word. The algorithm recognizes that achieve is used to describe goal state-
ments. A goal statement such as this is a sign that the user is moving focus to a new
objective, so the system looks through its plan library to see if the goal statement matches
(unifies with) the goal of any of the objective frames in the objective library.

In this case, (at-loc P-PITTS STRONG) unifies with the goal (at-loc ?p ?h) in the
RescuePerson objective. We then instantiate the unified variables (?p and ?h) throughout
the entire frame and check the solution preconditions and general constraints. If these are
ok, then we have a match.

This (partially) instantiated objective is then placed on the list of recognized objectives.
It is now salient and activated for possible further input relating to this objective11.

Bottom-up Recognition

Another strategy used by humans is to describe the solution action by action, by which
the hearer is expected to recognize their plan. Consider this set of bottom-up commands
from the user12.

U1: Send Bus 1 to the mall in Greece
U2: Pick up the person there
U3: Now go to Rochester General Hospital
U4: And unload the person there

Let us consider this example in the context of several previous objectives that the user
and system have been discussing. Here, with statement U1, the user intends to move focus
to a new objective. The speech act content for U1 is (move BUS1 GREECE).

We know from our ontology that move is an action. We first try to match this to an
expected action of any pending objectives. Objectives are searched in order of how recently
they have been mentioned. We discuss below several cases where this does match (falsely)
a pending objective, but for now, we will assume that this did not match any expected
actions.

If no match is found with pending objectives, we hypothesize that the user is moving on
to a new objective. The system searches through its objective library for an expected action
in one of the typical recipes which matches this move. In this case, a match is found with
the first move action in the RescuePerson frame. Variables are instantiated and constraints
are checked as described above. This checks out, so we move this action to the agreed
actions list, and add this instantiated frame to our list of pending objectives. The state of
the frame is shown in Figure 5.

11Within the real TRIPS system, the plan recognizer only returns this to the Interpretation Manager as
its hypothesis for the intention. This is then passed to the Behavioral Agent, which, if it decides to so
update the shared plan, instructs the plan recognizer (i.e. Task Manager) to update its structures. In our
discussion, however, we will assume this happens seamlessly in order to simplify the explanations.

12For simplification, we have omitted system responses in these and other examples.
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(RescuePersonFrame

:goal (at-loc ?p ?h)

:ling-desc (:id D1 :predicate Rescue :theme ?p

:goal ?h :instrument BUS1)

:resources ((Vehicle BUS1) (Hospital ?h))

:input-vars ((Person ?p) (Ailment ?a) (Location GREECE))

:constraints ((Hospital ?h) (Person ?p) (Vehicle BUS1)

(Location GREECE) (Ailment ?a) (has ?p ?a)

(treats ?h ?a) (at-loc ?p GREECE))

:focused-solution S1

:solutions ((:id S1

:agreed-actions

(((move BUS1 GREECE) NIL))

:expected-actions

(((load ?p BUS1) ((at-loc ?p GREECE) (at-loc BUS1 GREECE)))

((move BUS1 ?h) ((in BUS1 ?p)))

((unload ?p BUS1) ((in BUS1 ?p) (at-loc BUS1 ?h)))))))

Figure 5: RescuePerson Frame after U1

(RescuePersonFrame

:goal (at-loc P-GREECE ?h)

:ling-desc (:id D1 :predicate Rescue :theme P-GREECE

:goal ?h :instrument BUS1)

:resources ((Vehicle BUS1) (Hospital ?h))

:input-vars ((Person P-GREECE) (Ailment HA) (Location GREECE))

:constraints ((Hospital ?h) (Person P-GREECE) (Vehicle BUS1)

(Location GREECE) (Ailment HA) (has P-GREECE HA)

(treats ?h HA) (at-loc P-GREECE GREECE))

:focused-solution S1

:solutions ((:id S1

:agreed-actions

(((move BUS1 GREECE) NIL)

((load P-GREECE BUS1) ((at-loc P-GREECE GREECE) (at-loc BUS1 GREECE))))

:expected-actions

(((move BUS1 ?h) ((in BUS1 P-GREECE)))

((unload P-GREECE BUS1) ((in BUS1 P-GREECE) (at-loc BUS1 ?h)))))))

Figure 6: RescuePerson Frame after U2
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(RescuePersonFrame

:goal (at-loc P-GREECE ROC-GEN)

:ling-desc (:id D1 :predicate Rescue :theme P-GREECE

:goal ROC-GEN :instrument BUS1)

:resources ((Vehicle BUS1) (Hospital ROC-GEN))

:input-vars ((Person P-GREECE) (Ailment HA) (Location GREECE))

:constraints ((Hospital ROC-GEN) (Person P-GREECE) (Vehicle BUS1)

(Location GREECE) (Ailment HA) (has P-GREECE HA)

(treats ROC-GEN HA) (at-loc P-GREECE GREECE))

:focused-solution S1

:solutions ((:id S1

:agreed-actions

(((move BUS1 GREECE) NIL)

((load P-GREECE BUS1) ((at-loc P-GREECE GREECE) (at-loc BUS1 GREECE)))

((move BUS1 ROC-GEN) ((in BUS1 P-GREECE))))

:expected-actions

(((unload P-GREECE BUS1) ((in BUS1 P-GREECE) (at-loc BUS1 ROC-GEN)))))))

Figure 7: RescuePerson Frame after U3

(RescuePersonFrame

:goal (at-loc P-GREECE ROC-GEN)

:ling-desc (:id D1 :predicate Rescue :theme P-GREECE

:goal ROC-GEN :instrument BUS1)

:resources ((Vehicle BUS1) (Hospital ROC-GEN))

:input-vars ((Person P-GREECE) (Ailment HA) (Location GREECE))

:constraints ((Hospital ROC-GEN) (Person P-GREECE) (Vehicle BUS1)

(Location GREECE) (Ailment HA) (has P-GREECE HA)

(treats ROC-GEN HA) (at-loc P-GREECE GREECE))

:focused-solution S1

:solutions ((:id S1

:agreed-actions

(((move BUS1 GREECE) NIL))

((load P-GREECE BUS1) ((at-loc P-GREECE GREECE) (at-loc BUS1 GREECE)))

((move BUS1 ROC-GEN) ((in BUS1 P-GREECE)))

((unload P-GREECE BUS1) ((in BUS1 P-GREECE) (at-loc BUS1 ROC-GEN))))))

:expected-actions

NIL

Figure 8: RescuePerson Frame after U4
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Notice that we now have several expectations about further actions in the solution of
this objective. Since we have instantiated the vehicle as BUS1, we now expect a load of a
person into BUS1. Other expectations can also be seen in the same figure.

When we receive the input for utterance U2, (load P-GREECE ?v), we follow the same
procedure outlined above. This time, we find a match right away in the pending objectives.
The most recently mentioned objective is the one we have just created, and its load action
matches. The search stops here. We do not search any further, either through other
pending objectives or through possible new objectives once we have found a match. If an
older pending objective is still waiting for a load, it will not confuse the system. Most likely,
only one load will match and pass the constraint check. If not, we believe that humans
(following focusing principles) will only consider the most recent, as it is the most salient
objective. Recall that dialogue is intended recognition. The user is trying to convey his
intentions in the most straightforward manner possible.

This utterance also provides us with the person variable. We also assume that we knew
previously that P-GREECE has the ailment of a heart attack (HA), which fills in our Ailment
variable. The result of utterance U2 is shown in Figure 6.

The next two utterances, (move ?v ROC-GEN) and (unload P-GREECE ?v), are likewise
matched, as shown in Figures 7 and 8. Notice that after the second move is mentioned, the
system predicts the final unload perfectly. Input of the expected unload confirms our
prediction, and it too is moved to the agreed actions list.

Linguistic Role Filling

Besides just mentioning actions or goals, users also sometimes use domain independent
linguistic descriptions to signal objective rolls. Consider the following dialogue.

U1: Let’s get the person from the Pittsford fire station to Strong Hospital
U2: Use Ambulance 1

Notice that U1 is the same utterance from our top-down navigation example above, and
processing of this utterance precedes exactly as described in Section 7.3. After the user has
stated his goal, (at-loc P-PITTS STRONG), the system has instantiated the person (?p)
variable, as well as the hospital (?h). However, it is still not clear which vehicle the user
intends to use. Utterance U2 has a local form of (use AMB1). Here, the predicate use is
recognized as a domain independent linguistic strategy which specifies an instrument. The
system then tries to unify the specified instrument (AMB1) with the :instrument slot in the
objective’s linguistic description. Constraints and preconditions check out, so we now know
what vehicle we should use.

Compound Statements

The previous example may be stated more concisely by a user. Consider the following
utterance.
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U1: Use Ambulance 1 to get the person from the Pittsford fire station to Strong Hospital

The logical form of this statement is

(use

AMB1

(achieve

(at-loc P-PITTS STRONG)))

Here we have a goal statement (with achieve) embedded in a linguistic role description
(with use). The system handles embedded cases by recursion. It first considers the achieve,
which is the same as the example above. The use is then considered in the environment of
the instantiated objective from the achieve. If constraints and preconditions check out, for
both of these, we have found our answer. Otherwise, the search is continued until a match
which satisfies both of these is found.

7.4 Linguistic Decomposition

One problem with the approach of bottom-up plan recognition described above is that
the original solution recipe (i.e. the expected actions) are a set of ‘atomic’ actions. Linguis-
tically, however, there are many ways to describe an action, or even set of actions. Consider
the following dialogue.

U1: Send Ambulance 2 to Marketplace Mall
U2: Take the person there to Highland Hospital

Utterance U1 is similar to the move predicates we have already seen, except, instead
of using the verb “move”, the user has chosen the verb “send”. The TRIPS parser al-
ready handles this by recognizing that this “send” is semantically the same as our move

predicate and mapping it onto that predicate. In fact, its logical form is just (move AMB2

MARKETPLACE). So, different ways of expressing an action is already handled in the parser.

Utterance U2, however, does not quite correspond to any of the actions we have seen
before. The verb “take” here seems to, in fact, include the last three actions of our solution
recipe, namely, loading a person, moving a vehicle to a location, and unloading the person.
The parser does not notice this and give us three different actions. The logical form given to
us by the Interpretation Manager is (transport P-UR STRONG ?v). Transport does not
match any one atomic actions in our solution recipe. We do not want, however, to preclude
the user from using this sense of “take”.

The fact that actions and groups of actions can be expressed in many different ways
linguistically is a very big problem in dialogue systems. Our approach to the group of
actions problem is to use a preprocessing step which decomposes predicates into a compound
statement of atomic actions, which can then be processed by the mechanisms described
above (and below).
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Compound linguistic predicates are decomposed by a library of simple decomposition
rules. For example, the decomposition rule for “transport” is

(transport ?p ?h ?v) --> ((load ?p ?v)

(move ?v ?h)

(unload ?p ?v))

Plan recognition can now run normally on this generated compound statement. This
simple decomposition step allows our plan recognizer to handle a much richer set of natural
language input.

7.5 Interleaved Plans

In these last two sections, we examine how the plan recognizer handles the plan naviga-
tion phenomena described in Section 7.1. In this section we describe how simple interleaved
plans are recognized. In the next section we describe how the system revises hypotheses
that are determined to be incorrect by further evidence.

Let us consider Dialogue 2 (reprinted here for convenience), which was an example above
of an interleaved plan in the 911 domain. We show that the plan recognition algorithm can
handle this interleaved plan navigation without need for revision.

Dialogue 2

U1: Send Ambulance 1 to Irondeqoit Mall
U2: Pick up the person there
U3: Go to Midtown Plaza
U4: Pick up the person there
U5: Now go on to Highland Hospital
U6: Drop off the person from Midtown there
U7: Go on to Strong Hospital
U8: And drop off the Irondeqoit person there

The first two utterances proceed just as a normal bottom-up dialogue, filling in the move
and load of an objective. However, when utterance U3 is received, the attempt to match
it to the third move of the objective fails because Midtown Plaza is not a hospital.

The system then hypothesizes that the user is discussing a new objective and finds a
match with the first move of another RescuePerson objective. Utterance U4 then matches
with the load of this new objective, which is the most recently mentioned, and therefore
the first searched.

Utterance U5 could match the second move of either objective, but since the second
objective is the most salient, we search this one first, and upon finding a match, we do not
search any further. Utterance U6 confirms this hypothesis when we drop the people from
Midtown Plaza off there.
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Utterance U7 matches the second move of the original objective (since all actions of
the second objective are already agreed), and finally we match the final unload. Planning
experts may notice that the ‘plan’ in our solutions is not canonical in the sense that the
second move does not leave from the place we originally picked up the people. However,
since the precondition for the move that the people stay in the vehicle has not been violated,
this solution actually does accomplish the goal.

It is also important to mention here again, that there are many points in this dialogue
that would be ambiguous to one of the plan recognition systems above. However, our algo-
rithm does not even generate or explore any of these ambiguities. Our heuristic of stopping
at the first fitting hypothesis helps us avoid some of the runtime expansion problems that
most plan recognition systems have13. Our heuristics also define an implicit method of
choosing between these (otherwise logically equivalent) hypotheses.

7.6 Hypothesis Revision

The previous section showed how interleaved plans are handled by the recognition sys-
tem, and how (potential) ambiguities are solved. However, there are several places in
Dialogue 2 where the system was essentially ‘lucky’ in choosing the hypotheses it did. For
example, the user could have just as easily dropped off the person from Irondeqoit Mall
(the person in the first objective) at Highland Hospital instead of the person from Midtown
Plaza, in which case our previous hypothesis that the move to Highland was part of the
second objective, would have been incorrect. In this section we discuss how the system
recovers from such incorrect hypotheses.

We will take as an example, however, an even more complicated example. Dialogue 3 is
the same as Dialogue 2 except we substitute Rochester General Hospital for Midtown Plaza
(as indicated below).

Dialogue 3

U1: Send Ambulance 1 to Irondeqoit Mall
U2: Pick up the person there
U3: Go to Rochester General Hospital
U4: Pick up the person there
U5: Now go on to Highland Hospital
U6: Drop off the person from Rochester General there
U7: Go on to Strong Hospital
U8: And drop off the Irondeqoit person there

Note that the only change we have made is from Midtown Plaza to Rochester General
Hospital. Recall, however, that in the original example, U3 was the point at which we knew
that the user was constructing a new objective, since Midtown Plaza wasn’t a hospital. In
the case of Dialogue 3, however, our matching step will match this as the second move of the

13Although we still have to search through the entire plan library when finding a new objective. We also
have to deal with the ambiguity that arises when more than one objective is matches on a new objective
search.
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first objective. This seems like a natural hypothesis to make at this point. All things being
equal, after hearing U3, we would expect the user to be taking the person from Irondeqoit
Mall there. We trace though the recognition process from this point (U4).

U4 is a load of the person at Rochester General. This does not match anything in
the current objective (we have already loaded the person from Irondeqoit Mall), so we
hypothesize that this is part of a new objective and search our objective library. We
find a match with the load in a new RescuePerson objective. Because of the implicit
temporal constraints on the order of actions, we would have expected a move before the
load. Whenever a match is not the first item in the list of expected actions, we search
(in order of most recent first) all previous actions we have encountered to see if there is
a match. In this case we find the previous move (U3) matches the first move of the new
objective. This means that this move is now playing a role in two solutions. We also do not
alter the previous hypothesis that the move was part of the previous objective.

Utterance U5 is a move to Highland Hospital. Before we begin searching this, we notice
that this action causes us to violate the precondition on the unload of the first solution that
the vehicle be at the hospital when the unload occurs. This lets us know that our current
hypothesis about that objective is incorrect in some way. We begin to ‘undo’ updates we
have done to this objective, beginning with the most recent, which was the move to Highland
Hospital (U3). After undoing U3, the above-mentioned precondition is no longer violated,
since the variable ?h is no longer bound to Highland Hospital.

We now try to reassign actions we have undone. We see, however, that the move from
U3 was already playing a role in the second objective, so there is no need to try to reassign
it.

Now that all constraints have been handled, we process the new move from U5, which
now fits in to the second move of the second objective. The rest of the example now proceeds
as described above, without need for further hypothesis revision.

There are still issues to be worked out with this method (see below). However, we
believe that this solution is a step in the right direction. It allows us to account for several
phenomena that most other plan recognizers cannot. It also takes into account the fact that
we are doing this plan recognition in a dialogue system. It makes use of the intended nature
of communication to reduce the search space considerably, as well as to reduce ambiguity.
It also contains processing and information which make it easier to integrate linguistic and
planning knowledge representation.

8 Conclusions and Future Work

We have described the current state of plan recognition, especially as it relates to natural
language dialogue. We have also discussed several problems with the state of the art, and
have discussed a plan recognition system which overcomes a few of these, namely interleaved
plans, hypothesis revision and integration with linguistic processing. Our system takes
advantage of the intended nature of plan recognition in dialogue in trying to process in a
more human-like manner.
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Immediate future work, as discussed above, is to integrate this plan recognition system
into the TRIPS dialogue system. This will necessitate coverage of a broader range of
problem solving activities, including queries about solutions, comparisons, and so forth.

We would also like to further investigate the issues of tying together planning and
linguistics (the linguistics-planning interface). The division of labor between these two areas
has not been explored much. Both camps seem to assume certain things from the other,
although not much coordination has taken place. We believe that plan recognition systems
have not yet taken into account the rich linguistic/discourse information available from
natural language input, which could help to improve plan recognition. We also believe that
any plan recognition system for natural language dialogue must account for the intentional
nature of communication, which has not been explored as far as it should be.

Another direction of future work we would like to pursue is along the lines of the goals
of the TRIPS project discussed in [ABD+00]. If dialogue systems are to be commercially
viable, we need to be able to build a domain independent core which can be easily specialized
to a specific domain. We are trying to build a dialogue system core which can be easily
portable to other domains. As we discussed above, porting plan recognition systems and
the associated plan/objective hierarchies has not been explored in much detail. We would
like to explore how to separate the core of a plan recognition system from the domain
specific knowledge and heuristics and to find a way to be able to easily port this core to
new domains.
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