
1

Human-Machine Collaborative Planning
James Allen and George Ferguson

Department of Computer Science
University of Rochester

Rochester, NY, USA 14627-0226
{james,ferguson}@cs.rochester.edu

Abstract
This paper describes the design of computer
agents that can collaborate with humans in plan-
ning. It includes an explicit problem solving level
that mediates between the human-computer in-
teraction and the underlying automated plan rea-
soners. We also describe a plan reasoning system
that allows for incremental, interactive develop-
ment of plans to support collaborative planning.
This model has been used in a prototype system
in which untrained users can successfully de-
velop plans in a simple evacuation-planning do-
main.

Introduction
In many space applications, there is a great need
for automated techniques that can support human
planning and decision-making. This requires
taking a new approach to automated plan rea-
soning to support the type of interaction that is
most useful for humans. We think that this activ-
ity is best viewed as a collaboration between the
human and machine similar to how humans col-
laborate to solve problems. As with human col-
laboration, both participants bring their own spe-
cial skills to the process. By having humans and
machines work together, taking advantage of
each other’s strengths, we will be able to solve
harder problems and find better solutions than
either could find working alone. Even if a person
could ultimately produce the same quality plan,
the collaborative human-machine process will be
faster.
Collaborative planning requires capabilities often
not found in traditional planning systems. Most
important, the development of plans must be in-
cremental—allowing people to develop plans by
focusing on a small part of the plan, exploring
options, and making a few decisions before con-
sidering the rest of the problem. Effective inter-
active planning requires plan stability–which

means that plans should only minimally change
when new constraints are added. A system that
computes a new optimal plan at each step may
cause the entire plan to radically change at each
interaction, causing confusion and frustration to
the human participant. In addition, planning must
be accomplished without a fixed search strat-
egy—there is no simple systematic order (e.g.,
top-down, bottom-up) in the choice of subprob-
lems the human may chose to focus on next. Fi-
nally, the system must be open to innovation—it
must be able to build, under human direction,
plans it otherwise could not produce and be able
to validate and reason about such novel plans.
We have built a prototype of just such a system
in which a user collaborates with the system to
build plans to evacuate the inhabitants of a ficti-
tious island (Ferguson & Allen, 1998). The
framework described here is a specific instantia-
tion within a larger architecture for robust, dia-
logue-based mixed-initiative interaction (Allen,
Ferguson, & Blaylock, 2002; Allen et al, 2001).
We will not dwell on the general architecture
here, but rather focus on it as instantiated for
collaborative planning.
There are several contribution in this paper. The
first is the specification of a d o m a i n-
independent problem-solving level that medi-
ates between the communication management
and the actual reasoning capabilities of the sys-
tem. The second is the specification of a hybrid
plan reasoning system that supports the needs of
the human collaborator. We believe that far more
attention needs to be paid to the gap between the
abilities of automated reasoners and the needs of
human decision makers. The architecture we
propose bridges this gap and provides the foun-
dation for systems that can significantly enhance
human performance.

2

Collaborative Problem Solving
Figure 1 gives a high-level view of our approach.
Humans have objectives that they wish to
achieve, constraints on possible solutions, and
possibly solutions or parts of solutions to these
problems. These are not, of course, directly
available to the computer agent, but rather are
received via some kind of human-computer inter-
face. In our current system, we use a multimodal
interface combining natural language with
graphical displays. The output of the language
processing components is a series of communi-
cative acts that the system must respond to.
These acts are transformed into collaborative
problem solving acts that capture what the human
is trying to do1.

1 Of course, not all communication is about plans (e.g.,
consider greetings or clarifications of intent). Such acts are
ignored here as they are not the focus of this paper.

The problem solving level maintains the state
(and history) of the collaborative problem solv-
ing process. Using this state, it provides services
to help the conversation manager identify the in-
tended interpretation, and it then coordinates the
invocation of the specialized plan reasoners. The
specialized reasoners themselves are closest to
traditional AI technologies such as planners,
schedulers, knowledge bases, and the like. The
architecture supports the use of such components
on a “plug-and-play” basis, the idea being that
specific components can be assembled for a spe-
cific problem-solving task, possibly dynamically
as the problem solving proceeds.
Traditional planning representations and algo-
rithms, however, are often not directly suitable
for use in incremental, user-centered collabora-
tive planning. A planner that simply finds com-
plete plans given goals is not going to be much
use when the user wants to specify objectives in-
crementally, adding and removing constraints

Figure 1: Abstract view of collaborative problem solving architecture

USER

Objectives
Constraints
Solutions

GUI ... NLP ... etc.

Conversation
Management

Communicative
Acts

Discourse
Context

Problem
Solving
Manager

PS
State

Task-specific Reasoners
(Planners, Schedulers, KBs, etc.)

Collaborative
Problem Solving

Acts

Solutions

3

and suggesting partial solutions as the plan is de-
veloped.
The remainder of this paper describes our ap-
proach in more detail. The next section describes
the representation of the problem solving state
maintained at the problem solving level. This is
followed by a description of the tasks performed
by the problem solving level and their interaction
with the specialized reasoners. We then describe
the specific planning model we developed to
handle incremental interactive planning, and fi-
nally conclude with a discussion of related work
and open issues.

An Overview of the Problem Solving State
One of the main functions of the problem solving
manager (PSM) is the maintenance of the col-
laborative problem solving state and the history
of problem solving. We have developed a four-
level representation of plans that combines fea-
tures from several branches of AI planning to
meet the needs of collaborative problem solving.
The four levels are:

• Hierarchical Objectives: This is an abstract
specification of the objectives (i.e., goals)
being pursued. Objectives can be broken
down into sub-objectives with constraints
between them. This level of representation
provides much of the context for interpreting
new interactions, and supports HTN-like al-
gorithms for goal refinement and elabora-
tion.

• Task Structure (or abstract plan): This
level captures abstract solutions being con-
sidered for the objectives. Constraints on
possible courses of action are maintained to-
gether with causal connections and inde-
pendence assumptions. These abstract solu-
tions are a compact summary of a class of
possible concrete solutions under considera-
tion.

• Scheduled COA or “Straw Plan”: This
level captures a particular concrete course of
action that satisfies the constraints in the ab-
stract plan (produced by committing to vari-
ous choice options and scheduling the ac-
tions based on their expected durations).
This nominal straw plan is often presented to
the user to ground the interaction with a con-
crete proposal.

• Expected Scenario: This is a representation
of the state of the world during the projected
execution of the plan, also including exoge-
neous events and there effects if appropriate.
It is built from abstract simulations operating
on the straw plan.

The four levels capture different aspects of plan-
related knowledge that are necessary to support
effective interaction. The objective hierarchy
captures the goals driving the interaction. The
human often adds or removes constraints that af-
fect what solutions are possible, and the system
uses HTN-based algorithms to decompose objec-
tives into tasks based on these constraints. The
tasks are instantiated into an abstract plan using a
domain-independent algorithm (the plan estab-
lisher) that uses algorithms derived from tempo-
ral logic planning (Allen & Koomen, 1983; Allen
et al., 1991). The abstract plan provides much of
the structure for intelligent plan revision. The ab-
stract plan is used to produce a straw plan using
routing and scheduling components. The straw
plan is used to generate many of the maps and
charts presented to the human. Feedback about
the straw plan from the human typically produces
additional constraints at the abstract plan or ob-
jective levels, and then a new straw plan can be
generated. Finally, the expected scenario pro-
vides a temporal representation of the state of the
world before, during and after the plan, and is
used to support the user’s evaluation and explo-
ration of the expected impact of the plan.

Managing the Problem Solving Interaction
One of the main requirements on the PSM is to
support the interpretation of user interactions,
relative to the current problem solving state. In
particular, it must

1. Help determine what problem solving opera-
tion the user intended; and

2. Identify which aspects of the plan are being
modified and how.

It is important to realize that although we discuss
these two tasks separately, performing one of
them properly generally requires performing the
other. We often cannot be sure what problem
solving act is intended unless we can identify
what parts of the plan may be affected by the op-
eration. In reverse, we often can’t identify what
parts of the plan are being affected until the in-

4

tended problem solving operation is identified.
Thus, possible interpretations arise by consider-
ing each of these problems simultaneously and
considering the constraints that an interpretation
at one level imposes on interpretations at other
levels.

Identifying Problem Solving Operations
There are a wide range of problem solving op-
erations that can be intended in an interaction. It
will help to explore these in a more concrete set-
ting. Consider the Pacifica domain in which a
person must work with the system to plan the
evacuation of residents from an island in the face
of an oncoming hurricane. Figure 2 shows a
screen shot with a session in progress. Shown is
(1) a map displaying the routes planned so far;
(2) a time-line chart displaying the current plan;
(3) a “city status” chart that shows where the re-
maining people are; (4) a “vehicle status” chart
that shows the availability of each vehicle; and
(5) the output of the speech recognition from the
human’s last command.
Some interactions make the problem solving op-
eration fairly explicit in the user’s input, as in
“Delete the plan with the helicopter,” “Compare
those two options,” or “Simulate the plan and
give me the expected arrival time of the crew.” In
these, the action described is the problem solving
operation to be performed. In other cases, the
problem solving operation is not explicit and the
user focuses on the content of the plan. For in-

stance, the question “Can we use a helicopter to
get the people from Abyss” is ambiguous, being
either a question about capabilities or a sugges-
tion of a course of action. Independent of this de-
cision, there are three possible problem solving
operations that might be being queried or sug-
gested. The user might be:

1. Suggesting a new goal that was not present
before, and may require further elaboration
to arrive at a solution.

2 . Extending an existing solution. Say we
need to get the people to Delta from Ca-
lypso, and we have just moved them by
truck to Abyss. The proposed action will
then extend and complete the development
of the solution to this goal.

3 . Modifying an existing solution. Say we
have already a plan to move the people
from Abyss to Delta by truck. This is then
asking about the possibility of moving by
helicopter instead, or suggesting that we do
so.

There are a number of techniques that are used to
identify the intended problem solving operation.
Some of these depend on the communicative act.
For instance, one key factor for requests and sug-
gestions is the feasibility of actually performing
the proposed problem solving operation. An ex-
ample of this is that it would be incoherent to in-
troduce a new goal that is either already present
or is subsumed by the existing goals in the plan.
The problem solving operation is identified by
considering the following factors:

1. Lexical and syntactic/semantic cues: certain
words signal the intended operation (e.g.,
“instead” signals a modification of some
sort, “I want to do X” makes the introduc-
tion of a goal the most likely interpretation
although others remain possible). These are
handled at the communicative level and
passed on to the problem solving level.

2. Plausibility tests dependent on the problem
solving operation (e.g., introduced goals
cannot exist already, to modify a plan by
deleting an action, the plan must contain
that action, etc.).

Figure 2: Evacuating an island

5

3. Preferences derived from a model of human
problem solving model: Eventually we
want a rich model of how people solve
problems and track their actions through
this model to predict plausible next steps in
the problem solving process. Currently, we
use a simple preference strategy first sug-
gested in (Litman & Allen, 1987). In the
absence of lexical cues that will change the
ordering, we prefer interpretations that ex-
tend the current solution first, then inter-
pretations that modify it, and only consider
the introduction of new goals as a last re-
sort.

The main problem solving actions we have en-
countered in our planning domains are illustrated
by the somewhat whimsical hypothetical dia-
logue shown in Figure 3, where you can imagine
the system responding with a modified plan at
each stage.

Identifying the intended plan and situation
Since the user may be considering alternate ways
to accomplish their objectives, possibly with dif-
ferent underlying assumptions or specifications,
there may be multiple plans and possible situa-

tions under consideration. The problem solver
must identify which of these is being affected. In
addition, different human-computer interfaces
will provide different means for the user to refer
to their plans.
So far, we have found reasonable success using a
strong focusing assumption in which we expect
the user to continue working on the same plan in
the same situation unless they explicitly do
something that indicates otherwise. We keep
track of what (sub)objective was last discussed
and, when there is no evidence indicating other-
wise, we attempt to interpret the next interaction
with respect to the same objective. Of course,
when the user explicitly changes focus of atten-
tion by saying something like “Let’s go back to
the helicopter plan” we change the focus as indi-
cated. In addition, they may invoke more com-
plex operations such as comparisons, such as by
saying “Which option is faster?” The current
prototype’s capabilities in this area are fairly
minimal and only limited option comparisons are
supported.

We need to get the people from Exodus to Delta for evacua-
tion ASAP

Introduce an objective

Let's use a helicopter Refine a goal

No, let's use a helicopter from Bath instead Modify/Correct solution

Scratch that Undo operation

How long will it take Evaluate plan

Oh, let's take them to Calypso for evacuation instead Modify goal

First, fly them to high pass junction Specify solution

Then use a truck to get them to Calypso Extend solution

What if we used some buses instead Compare options/solutions

Forget it Reject option/solution

Let's use the bus plan then Select option/solution

Oh, the weather's changed, forget the whole thing Cancel plan

Figure 3: Sample dialogue illustrating common problem solving operations (system would
respond with a plan after each statement)

6

Identifying range and type of modification
Having identified the relevant plan and situation,
the next step is to identify the specific objective
or part of the solution that concerns the user. We
use focusing heuristics again and expect the user
to continue to work on the subgoal previously
discussed unless there is some evidence to the
contrary. Each candidate operation is associated
with a set of well-formedness filters that must be
satisfied for the interpretation to make sense in
the current context.
 An example of this filtering process is the way
the problem solver treats modification requests.
For such requests, three things are derived from
the analysis of the input and context: (1) a set of
necessary conditions on the old goal or solution,
(2) parts of the plan to delete, and (3) parts of the
plan to add. The necessary conditions on the old
plan are essential for preventing unintuitive and
incoherent plan modifications.
For instance, consider the command “Send truck
one to Abyss instead of Bath.” For this com-
mand, we would derive the following informa-
tion:

Necessary conditions: the relevant solution
involves an action involving truck one and the
destination Bath;
Deletes: destination Bath
Adds: destination Abyss

When searching for a plausible subplan to mod-
ify, the system will search according to its focus
heuristics looking for a subplan that satisfies the
necessary conditions.
To perform the actual modification, it must de-
termine whether the intention is to modify the
goal or the solution. This is determined by
checking whether the delete condition is part of
the objective at the top level of the current plan.
If it is, then the objective is modified and the
planner is invoked to find a new solution. If the
destination is not part of the objective, then it
must be part of the particular solution at hand.
The problem solver finds all actions in the solu-
tion that involve the truck going to the destina-
tion, and instructs the planner to delete those ac-
tions, insert new actions with the new destina-
tion, and replan to make the overall plan coherent
again.

Examples of Problem Solving Operations
We can illustrate the operation of the problem
solver and its interaction with the plan reasoners
by considering the problem solving operations in
Figure 3 and their effect on different levels of the
plan representation (problem solving state). We
claim that all four levels of this plan representa-
tion are necessary to support collaborative plan-
ning. This will be seen by considering how the
problem solving operations affect different levels
of the plan representation.
Introduce/Refine objective: The introduction or
refinement of an objective results in an addition
to the top-level hierarchical objectives. If it is
sufficiently specified, the system refines it into
tasks, and so on down to a scheduled COA. Thus,
the effects of introducing a goal trickle down to
other levels.
Modify/correct goal or solution: As noted pre-
viously, these operations are almost always am-
biguous between whether they are modifying the
goal (at the top level) or modifying an aspect of
the current solution (at the task level). It is im-
portant, however, that the problem solver get the
level right. For example, a request to “use a heli-
copter instead” seems like a direct modification
of a role in one or more actions in the plan. How-
ever, if a plan for transporting cargo using a heli-
copter is qualitatively different from, say, using a
truck (perhaps due to capacity constraints), then
any attempt to manipulate the solution directly
will result in incoherent plan. Instead, the goal
specification must be modified, then that part of
the solution replanned.
Evaluate plan: This operation involves the plan
representation at different levels. The evaluation
itself is done using either the expected scenario
or the scheduled COA, depending on the type of
evaluation (the former being less committed).
But the evaluation criteria comes from the objec-
tives of the plan, such as the required time of
completion (whose constraints are derived from
expressions such as “as soon as possible” or “by
ten o’clock”.)
Specify/Extend solution: These operate at the
abstract plan level by introducing specific actions
to the plan. Supporting these operations requires
a planner that can do more than simply create
plans given goals. In our experience with the
prototype system, these are the most common

7

operations, so our planner is optimized to per-
form simple extensions quickly. The plan repre-
sentation to support this is described in the next
section.
Create/compare/reject option/solution: These
operations operate on entire plans stored in the
problem solving state, rather than on any par-
ticular level of a single plan.
Undo operation: Uses the problem solver’s his-
tory of the problem solving state to revert to a
previous point in the problem solving process.
Note that most inputs that have an undo inter-
pretation can also be interpreted as some kind of
modification.
Cancel plan: This operation deletes both a solu-
tion (course of action) and its high-level goal(s).
For example, saying “Don’t send the truck to
Abyss” (a Modify) would leave the goal of
evacuating the people from Abyss, whereas
“Forget about the people at Abyss” (a cancel)
means that we no longer need to worry about that
goal.

Planning for Collaborative Problem Solving
The PSM provides the glue that connects the
human-computer interface to the automated rea-
soners. However, this still leaves the problem of
developing planners and other reasoners capable
of supporting the problem solving operations
recognized by the problem solving level.
Our approach to building such a planner was
motivated by several considerations:
Speed: Since we expected to be operating in an
interactive environment, the planner must be able
to respond quickly, or at least be optimized for
common cases arising during collaboration.
Expressiveness: We required a rich representa-
tion of action, plans, time, and the world in order
to support both expressive interaction possible
from the NLP interface, and to support reasoning
about realistic domains.
Completeness: We were not overly concerned
with the usual form of completeness for planners.
We could live with the planner not always find-
ing plans where they exist—provided that the
user and the system can interact in order to iterate
towards a plan. What was essential was that the
planner could represent, validate, and extend a
correct plan when presented with it.

Flexibility: The planner must support a range of
operations (i.e., not just finding a plan given
goal) in order to support the user during collabo-
rative problem solving.
Of these, flexibility was probably the most im-
portant, and was also the least explored in the
planning literature. It turned out that we could
specify a very flexible and yet still well-founded
planning system by modifying and extending
some traditional planning algorithms.

A Hybrid Planning Architecture
Because of expressivity concerns, we started with
the Interval Temporal Logic (ITL) planner de-
scribed (Allen & Koomen, 1983; Allen et al.,
1991). At an abstract level, this algorithm is in
fact very similar to standard partial-order planner
such as UCPOP (Penberthy & Weld, 1992). The
major differences are: (1) persistence assump-
tions are used, rather than causal links, to record
cause and effect relationships, (2) ordering con-
straints arise implicitly from temporal constraints
on intervals rather than by being added explicitly,
and (3) threats to links are discovered by for-
ward-chaining using axioms that render incorrect
plans temporally inconsistent. But the basic algo-
rithm is the same in both approaches: (1) find an
unsupported goal; (2) establish it by persistence
or by adding an action; (3) resolve problems.
And in fact, both algorithms are equally unsuit-
able for use on realistically complex problems
due to their poor performance.
To improve performance but preserve the ability
to reason about complex worlds using the full
power of the temporal representation, we devel-
oped the planning model shown in Figure 3. The
model is a hybrid because it involves several
components that contribute different capabilities

Figure 4: The Hybrid Planning Architecture

HTN Task
Decomposer

ITL Plan
Establisher

ITL
Knowledge

Base

COA
Generator

(Scheduler)

Requests

Solutions

Tasks

Abstract
Plans

AssertionsResults
Abstract
Plans

COAs
(“Straw Plans”)

8

to the overall planner and that are based on dif-
ferent types of knowledge and reasoning.
The Task Decomposer is an HTN-like planner
that decomposes objectives into tasks (sets of
events with temporal constraints between them).
For example, a request to evacuate all the in-
habitants from one city to another is decomposed
into a task involving getting vehicles there,
loading the people into them, sending them to the
destination, and unloading the people. There are
can be several ways to decompose an objective.
Like the problem solver above it, the task
decomposer can consider alternative
decompositions looking for the best solution.
The Plan Establisher is really the original tempo-
ral logic planning algorithm but without the abil-
ity to add events (steps) to the plan. That is, it
computes persistence assumptions, maintains
binding and ordering constraints, and updates the
temporal database, but it relies on the decisions
of the Task Decomposer as to which events are to
be part of the plan. Of course, this may still in-
volve significant amounts of search. The Plan
Establisher can reason about plans involving
conditional effects, simultaneous and overlapping
actions, and external events.
 The ITL Database maintains a description of the
world described using temporal intervals with
constraints between them. At the end of planning,
this database provides a temporally-explicit de-
scription of the world before, during, and after
the execution of the plan. This capability is es-
sential to many problem solving operations that
query the state of the world at some point during
the plan.
Finally, the COA Generator produces fully ex-
plicit plans with actions scheduled at specific
times consistent with the constraints of the ab-
stract plan. It produces the “straw plans” pre-
sented to the user in order to ground the interac-
tion in something concrete. The current scheduler
uses an O(n3) approximation to the general ITL
scheduling problem, which is NP-complete.

Plan Modification
One of the most interesting challenges we faced
was modifying plans. There are two types of
modification: extension and substitution.
Extending a plan is similar to traditional planning
for goals, except that it is incremental. While

most traditional planners can handle conjunctive
goals, handling extensions by adding a new con-
junctive goal to the plan is likely to be a costly
way of handling extension and, more impor-
tantly, typically doesn’t preserve the existing so-
lution. We desire extensions that change the ex-
isting plan as little as necessary. This minimal
change principle is crucial in collaborative plan-
ning. The hybrid planner is ideally suited to im-
plementing the extension operation. Given an
existing plan and a temporal context, the Task
Decomposer first decomposes the new objective
into a set of events. It must then also determine
the appropriate context in which to call the Plan
Establisher. What this means is that it can choose
to keep certain aspects of the prior plan fixed by
adding them to the temporal database rather than
re-establishing them.
In most cases in our experience, the new actions
can be added to the existing plan without signifi-
cant change. We call this monotonic extension.
There are of course cases where the assumptions
necessary for the new events require that some
previous assumptions be retracted and re-
established. We call this non-monotonic exten-
sion, and it can be non-monotonic with respect to
the task being extended or to the entire plan. In
more detail, these three possibilities are shown in
Figure 4. The circles represent events already in
the plan, squares represent the actions being
added. The solid outlines indicates what is kept
fixed in the plan (i.e., it is added to the temporal
context prior to trying to establish the remaining
events).
Case (a) is monotonic extension. All previous
events in the plan are added to the temporal con-
text together with their supporting assumptions.
The new events (the squares) are then passed to
the Establisher to be integrated into the plan. This
will only succeed if the Establisher can insert
these actions into the plan without changing any
existing ordering or persistence assumptions in
the old plan. Note that the Establisher can insert
actions between existing actions as long as the

Figure 5: The Three Modification Strategies

(a) (b) (c)

9

initial ordering constraints and persistence as-
sumptions are preserved.
The remaining cases are non-monotonic. In case
(b), all the events in the plan except those in the
focus task (the one being extended) are added to
the temporal context. Then all events in the focus
task, including the new events, are passed to the
Establisher. In this case, ordering and persis-
tence assumptions between events in the focus
task are recomputed, but everything else remains
fixed.
Case (c) is taken only if all else fails. The new
events are added to the task being extended, and
then all the events in the tasks are passed to the
Establisher in the initial context. In effect, this
allows complete replanning and may produce a
plan substantially different from the original
plan.
In our experience with the prototype system,
monontonic extension accounts for the vast ma-
jority of planning (extension) performed by the
system.
The extension operation can be generalized into a
modification operation. As noted in the descrip-
tion of the problem solver, a modification can be
broken into (a) new objectives or constraints to
add, (b) events or constraints to delete, and (c)
events or constraints to modify. The hybrid plan-
ner implements modification requests by first
having the Task Decomposer identify parts of the
plan to remove and then constructing a temporal
database reflecting the resulting situation. This is
done with a combination of event definitions and
heuristic rules. It then uses the extension opera-
tion of the Plan Establisher to add the new addi-
tions to the plan. Again, the goal is to attempt
simple invocations of the Plan Establisher first,
in the hopes of not needing to do the larger
search. While the current prototype can only per-
form a limited class of modifications, these
nonetheless account for the majority of the modi-
fication attempts during collaborative planning so
far with the system.

Related Work
Explicit models of problem solving have been
used in a number of dialogue systems (e.g.,
(Lambert, 1991; Litman & Allen, 1987; Ram-
shaw, 1991)). None of these were developed into
comprehensive models that could cover most of

the interactions in collaborative problem solving
dialogue. They also did not support interaction
with state-of-the-art planning systems.
Prior work on plan modification and reuse
(Kambhampati, 1994; Kambhampati & Hendler,
1992) also uses a hierarchical representation of
plans, and annotates them with causal depend-
ency links. The emphasis is on the formal speci-
fication of transformations of plans during modi-
fication, such as in retrieving plans from a case
base. We have concentrated on the issue of de-
termining the intention underlying modification
in the collaborative planning situation. We might
be able to apply some of the plan modification
algorithms if representational differences can be
overcome.
Work on advisable planning (Myers, 2000)
shares many common goals with our approach as
it explores how planners can build plans given a
set of constraints on possible solutions. The main
difference between that work and ours is the role
the human plays in the process. In advisable
planning, the human comes up with a set of con-
straints on solutions and the planner finds a plan.
In our approach, the human and system collabo-
ratively build plans in an interactive and incre-
mental way.

Future Work
The current implementation is robust in the sense
that untrained users can interact with the proto-
type system to solve evacuation problems and
have a good chance of constructing a useful plan
that meets the goals. However, they generally do
not solve these problems any faster that they
would by interacting with another person who
was given the same information that the system
has. While significant work needs to be done on
scaling up the techniques, we believe we have
demonstrated that this model has great potential.
There are significant issues on the speech and
language processing end that we are addressing
but will not discuss here. One of the major weak-
nesses of the current system involves the identifi-
cation of implicit high-level goals. That is, if the
user suggests performing an action without ever
having mentioned the goal motivating that action,
it is important that we nonetheless identify the
goal so that subsequent operations, such as modi-
fications, can be properly interpreted. This is one
of the major causes of failure in the current sys-

10

tem that prevents users from modifying some
plans as they wish.
Here are some additional problems that we are
working on:

• Improving the ability to identify which plan
is affected by proposed problem solving
operations.

• Extending the notion of plan options to
better support “what-if” reasoning.

• Replacing the current preference ordering
of problem solving operations with a more
detailed model of problem solving behavior
to guide the problem solving level.

• Continuing to improve the specialized rea-
soners, particularly the planner, without
sacrificing their flexibility and their good
performance on the most common opera-
tions.

The ultimate goal of this project is to show that
an untrained user collaborating with the system
can solve problems faster and better than two
people working together. Achieving this goal will
require progress on both the architecture and the
implementation. But we believe it is feasible
within the next five years.

Conclusions
We have presented an architecture for collabora-
tive human-computer problem solving and de-
scribed algorithms for key components in this
architecture. We have used this model in a sys-
tem that can collaboratively constructing plans in
an intuitive way in a realistic domain. The prob-
lem solving level of this architecture is the glue
that connects the human-computer interface to
the underlying planners and reasoners. The multi-
level representation of plans used by the problem
solver supports both interpretation of user inten-
tion and effective construction and modification
of plans.

References
Allen, J., Ferguson, G., & Blaylock, N. (2002). A

Problem Solving Model for Collaborative
Agents. Paper presented at the AAMAS, Bolo-
gna, Italy.

Allen, J., & Koomen, J. A. (1983). Planning us-
ing a Temporal World Model. Paper presented

at the 8th Int’l. Joint Conference on Artificial
Intelligence, Karlsruhe, Germany.

Allen, J., Tenenberg, J., Pelavin, R., & Kautz, H.
(1991). Formal Models of Reasoning About
Plans.: Morgan Kaufmann.

Allen, J. F., Donna K. Byron, Myroslava
Dzikovska, George Ferguson, Lucian Galescu,
Amanda Stent. (2001). Towards Conversa-
tional Human-Computer Interaction. AI Maga-
zine, 22(4), 27-35.

Ferguson, G., & Allen, J. (1998). TRIPS: An In-
tegrated Intelligent Problem-Solving Assistant.
Paper presented at the NCAI (AAAI-98),
Madison, WI.

Kambhampati, S. (1994). Exploiting causal
structure to control retrieval and refitting dur-
ing plan reuse. Computational Intelligence,
10(2), 212-245.

Kambhampati, S., & Hendler, J. (1992). A vali-
dation-structure-based theory of plan modifi-
cation. Artificial Intelligence, 55, 193-258.

Lambert, L. & Carberry, S. (1991). A Tripartite
Plan-Based Model of Dialogue. Paper pre-
sented at the Proc. of Association for Compu-
tational Linguistics.

Litman, D., & Allen, J. (1987). A Plan Recogni-
tion Model for Subdialogues in Conversation.
Cognitive Science, 11(2), 163-200.

Myers, K. Planning with Conflicting Advice. In
Proc. Of 5’th Intl Conf. On AI Planning and
Scheduling (AIPS-2000),

Penberthy, J. S., & Weld, D. S. (1992). UCPOP:
A Sound, Complete, Partial Order Planner for
ADL. Paper presented at the Third Int’l Conf.
on Principles of Knowledge Representation
and Reasoning (KR ‘92), Boston, MA.

Ramshaw, L. A. (1991). A three-level model for
plan execution. Paper presented at the 29’th
Annual Mtg of the Association for Computa-
tional Linguistics (ACl-91), Berkeley, CA.

