
Chapter 1

MANAGING COMMUNICATIVE INTENTIONS

WITH COLLABORATIVE PROBLEM SOLVING∗

Nate Blaylock, James Allen and George Ferguson
Department of Computer Science

University of Rochester

Rochester, New York, USA

{blaylock,james,ferguson}@cs.rochester.edu

Abstract Dialogue systems need to be able to understand a user’s communicative
intentions, reason with those intentions, form their own communica-
tive intentions, and realize those intentions with actual language to be
uttered to the user. Oftentimes in dialogue systems, however, what
these communicative intentions actually correspond to is never clearly
defined. We propose a descriptive model of dialogue, based on collab-
orative problem solving, which defines communicative intentions as at-
tempts to modify a shared collaborative problem-solving state between
the user and system. Modeling dialogue at the level of collaborative
problem solving allows us to model a wider array of dialogue types
than previous models, including the range of collaboration paradigms
(master-slave to mixed-initiative) and interaction types (planning, ex-
ecution, and interleaved planning and execution). It also provides a
definition for utterance-level communicative intentions for use within a
dialogue system.

Keywords: Communicative Intentions, Collaborative Problem Solving, Dialogue
Systems

∗This material is based upon work supported by Dept. of Education (GAANN) grant no.
P200A000306; ONR research grant no. N00014-01-1-1015; DARPA research grant no. F30602-
98-2-0133; and a grant from the W. M. Keck Foundation. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the above-mentioned organizations.

1



2

GenerationUnderstanding

Language Language

Behavior

Actions

Intentions
Communicative

Communicative
Intentions

Figure 1.1. Conceptual Subsystems of a Conversational Agent

Introduction

Language does not occur in a vacuum. It is a means to an end. This
work is done in the context of the goal of producing a conversational
agent : a dialogue system which can interact in natural language (i.e.,
conversational) as well as plan and act to affect the world (i.e., an agent).
A conversational agent’s functionality can be divided into three areas

(as shown in figure 1.1): interpretation, behavior, and generation (Allen
et al., 2001a). In interpretation, the system must be able to understand
what is meant by a user’s utterance. This goes much deeper than just
what the utterance means on the surface. The system must be able to
understand much more. Why did the user utter what he did? What was
he trying to accomplish by uttering it? These conversational “ends” are
known as communicative intentions.
In behavior, the system reasons with the user’s communicative inten-

tions1 to decide what action to take in the world, as well as to form its
own intentions for communication with the user.

1And possibly other things such as world state, its own goals and intentions, etc.



Managing Communicative Intentions 3

In generation, the system’s communicative intentions are converted
into natural language and uttered to the user.
The tasks of interpretation and generation are typically divided into

many levels of analysis (speech recognition/synthesis, morphology, syn-
tax, semantics, pragmatics, etc.), and an enormous body of research has
been done at all of them. For the present undertaking, we concern our-
selves only with the topmost level, which we call the intention/language
interface, where communicative intentions are converted to and from a
high-level semantic form (i.e., communicative acts). The process of in-
ferring communicative intentions from communicative acts is intention
recognition and the reverse process (converting communicative intentions
into communicative acts) is content planning.
While communicative intentions are central to all these processes,

what they actually correspond to is typically never defined within dia-
logue systems. We introduce a descriptive model of dialogue based on
collaborative problem solving to define communicative intentions as at-
tempts to modify a shared collaborative problem-solving state between
the user and system. This model defines both what communicative in-
tentions are and their effects at the problem-solving level.
Collaborative problem solving (CPS) is the process of agents jointly

choosing goals, planning and acting in order to accomplish them. There
are several advantages to modeling dialogue with collaborative problem
solving. First, modeling problem solving instead of just planning or
execution extends model coverage to dialogues involving both planning
and execution. Similarly, modeling collaboration takes into account the
joint nature of dialogue, allowing us to model the range of collaboration
paradigms, from master-slave to mixed-initiative, as well as negotiation
subdialogues. In addition, modeling communicative intentions at this
level can free the behavior reasoning component in a dialogue system
from having to worry about linguistic issues, allowing it to concentrate
solely on reasoning about collaborative problem solving.
In the remaining sections, we first discuss previous work which has

been done in this area. We then describe our descriptive model of dia-
logue in detail, showing how communicative intentions are defined within
the model. We then exemplify the model with several dialogue exam-
ples. After that, we discuss how our model is used within the TRIPS
dialogue system. Finally, we end with some conclusions and a discussion
of future work.



4

1. Previous Work

Previous work falls roughly into two areas: models of collaborative
planning, which look at how agents build joint plans, and models of
dialogue. We discuss these below.

1.1 Models of Collaborative Planning

While much work has been done on formalizing joint plans and activity
(Searle, 1990; Levesque et al., 1990; Grosz and Kraus, 1996), relatively
little has looked at the collaboration that takes place between agents
that are jointly planning and/or acting. One line of research that models
collaboration is the SharedPlan formalism.
The SharedPlan formalism (Grosz and Kraus, 1996) was created in

part to explain the intentional structure of discourse (Grosz and Sidner,
1986; Lochbaum et al., 2000). It describes how agents collaborate to-
gether to form a joint plan. The SharedPlan model has four operators
which are used by agents in building SharedPlans.

Select Rec: An individual agent selects a recipe to be used to attain
a given subgoal.

Elaborate Individual : An individual agent decomposes a recipe
into (eventually) completely specified atomic actions.

Select Rec GR: Intuitively, the same as Select Rec, only at the
multi-agent level.2 A group of agents select a recipe for a subgoal.

Elaborate Group: The multi-agent equivalent of Elaborate Individual
— a group of agents decompose a recipe.

Using these four operators, a group of agents collaborates until it has
completely specified a full SharedPlan.
Lochbaum (Lochbaum, 1998) developed an intention recognition al-

gorithm, based on the SharedPlan formalism, which models the process
of plan augmentation. Upon hearing an utterance, an agent ascribes
certain intentions and beliefs to the speaker. If it is willing, the agent
also adopts those intentions and beliefs. As a result of the new beliefs
and intentions, the SharedPlan is augmented.
Another system based on SharedPlans is the COLLAGEN system

(Rich et al., 2001), an intelligent user-interface system which models

2Individual and group operators entail different constraints on individual intentions and
beliefs. However, this is not important for understanding the formalism as a model of col-
laborative planning.



Managing Communicative Intentions 5

human-computer interaction on principles of discourse. It is a specific
instance of Lochbaum’s algorithm and works on a subset of the Shared-
Plan formalism.
In COLLAGEN, communication between the user and system is sim-

plified. Based on the current discourse state, the system presents the
user with a list of possible “utterances” based on the current state of
the dialogue. COLLAGEN gives options such as “Let’s do X” to decide
on a task, “How do I...?” for decomposing a recipe further, and “Where
are we?” for summarizing where the user is in the task. Because user
options are based on the collaborative context, the system is able to
interact with the user in a more natural and intelligent way.

Shortcomings of SharedPlans. The main focus of the Shared-
Plan model has been to formalize agent intentions and beliefs in forming
and sharing joint plans, something which is still weak in our model.
However, for our purposes, building a conversational agent, there are
several shortcomings in this model.
First, SharedPlans only models collaboration for joint planning be-

tween agents. It does not model the collaboration that occurs when
agents are trying to execute a joint plan (although it does specify the
needed intentions and beliefs for agents executing joint plans). In the
domains we are working in, the user and system collaborate in both
planning and acting. This sometimes happens in a serial fashion (the
agents formulate a joint plan and then execute it), or it can be inter-
leaved (the agents begin to execute a partial plan and plan “as they
go”). We need to be able to model collaboration involving (possibly
interleaved) planning and acting.
Second, the SharedPlans formalism models the formulation of joint

plans with the four operators previously discussed: Select Rec, Elabo-
rate Individual, Select Rec GR, and Elaborate Group. Although these
operators were sufficient to allow the formalization of group intentions
and beliefs about joint plans, they do not provide enough detail for
us to model collaboration at an utterance-by-utterance level (which is
needed to represent communicative intentions). As an example, consider
the Elaborate Group operator, which has the function of decomposing a
recipe, instantiating the parameters (including which agent or subgroup
will perform which action at what time and which resources will be
used), and making sure the rest of the group has similar intentions and
beliefs about the plan. An Elaborate Group can and often does consist
of many individual utterances. In order to build a dialogue system, we
need to be able to model the communicative intentions behind a single
utterance.



6

We believe that our model may be compatible with SharedPlans and
can be seen as specifying the details of the SharedPlan operators at an
utterance level (see section 2.4 below).

1.2 Models of Dialogue

Much work has been done on modeling dialogue based on plans.
Recent work (Ramshaw, 1991; Lambert and Carberry, 1991; Carberry
et al., 1992; Chu-Carroll and Carberry, 2000) models dialogue with plans
at several levels. While the types of levels differ with each model, all
models include at least a domain level and a problem-solving level. In
these models, user utterances are interpreted as corresponding to certain
actions within recipes at the various levels.
Problem-solving level recipes are meta-plans which specify how do-

main plans are built. For example, problem-solving recipes in (Carberry
et al., 1992) include the recipe Make-Plan, which contains three steps:
1) Explore-Recipes-for, 2) Choose-Best-Specialization-Of, and 3) Build-
Plan. Build-Plan, in turn, executes Make-Plan for all the steps of the
chosen recipe.
Multi-level dialogue models have greatly increased the types of dia-

logue that can be covered in dialogue systems. There are, however, a
few areas in which we would like to expand that coverage.
With the exception of (Chu-Carroll and Carberry, 2000), previous

work in intention recognition has only modeled master-slave collabo-
ration (cf. (Grosz and Sidner, 1990)). Most previous research was re-
stricted to information-seeking dialogues where collaboration consists of
the user (the master) getting information from the system (the slave).
Although the system may possibly ask clarification questions, it cannot
take task-level initiative (Chu-Caroll and Brown, 1997) and is not party
to the user’s planning decisions. This master-slave assumption limits the
types of collaboration which can be modeled. We are interested in mod-
eling the entire spectrum of collaboration paradigms, from master-slave
to mixed-initiative.
Another area where we need more coverage is the same that was

discussed in section 1.1 above: modeling dialogue involving both plan-
ning and acting. Previous work makes the implicit assumption that
either only planning was taking place in the dialogue (e.g., (Ramshaw,
1991; Chu-Carroll and Carberry, 2000)) — with the plan to be executed
at some later time — or that only execution of some previously created
plan was occurring (e.g., (Ardissono et al., 1996)). As we discussed in
section 1.1, in the domains we are interested in, collaboration involves



Managing Communicative Intentions 7

Figure 1.2. The Collaborative Problem-Solving Model

both acting and planning, often interleaving the two. We need a model
of collaborative problem solving which covers all of these cases.

2. A Collaborative Problem-Solving Model

This section describes our preliminary work in building a collabora-
tive problem-solving (CPS) model to be used as a descriptive model of
dialogue (Blaylock, 2002; Allen et al., 2002). A graphical representation
of the model is shown in figure 1.2. On the right are several task models
which specialize the model to specific domains. These contain specific
knowledge about the domain such as what objectives are in the domain;
what objects are considered resources; and knowledge about situations.
They also include knowledge about actions and recipes in the domain.
A task model is used as a “plug-in” to the rest of the collaborative

problem-solving model, which is domain independent. Objects in the
task model are specializations of abstract objects in the (single-agent
and collaborative) problem-solving models. These models are comprised
of a set of acts, the execution of which updates the (single-agent or
collaborative) problem-solving state of the agents, allowing agents to do
things such as evaluating and adopting objectives and recipes, executing
plans, and so forth.
At the collaborative level, it is impossible for an agent to single-

handedly change the CPS state. Doing so involves the cooperation of



8

both3 agents involved (cf. (Traum, 1994)). This means, in other words,
that CPS acts are not executable by a single agents. How is a single
agent to affect the CPS state, then? It must do so through interaction
with the other collaborating agent.
Interaction acts are single-agent actions used to negotiate changes in

the CPS state. If the agents are amenable to the change and cooper-
ate, a certain set of interaction acts will result in the generation of a
CPS act, which changes the CPS state. Interaction acts are realized by
communicative acts in order to be uttered by an agent.
In the rest of this section, we describe the individual parts of the model

in more detail. We then revisit previous work in light of the model make
some comparisons.

2.1 Task Models

A task model contains domain specific knowledge that is used in the
model. This is how domain independence is achieved for the model.
The other levels besides the task model do not change from domain to
domain. The CPS model utilizes abstract problem-solving objects which
are specialized by different task models. We believe that collaborative
problem solving remains the same, regardless of the task and domain
(Allen et al., 2000; Allen et al., 2001b). If agents are collaborating
about travel, medication, or kitchen design, the collaboration seems to
remain the same at an abstract level.
A task model contains domain-specific specializations of the following

abstract problem-solving objects.

Objectives: The goals in the domain. For example, in a rescue
domain, objectives could include rescuing a person, evacuating a
city, and so forth.

Recipes: An agent’s beliefs of how to attain an objective. Although
we do not adhere to any specialized definition of recipe, one exam-
ple is Carberry’s domain plan library (Carberry, 1990) which has
action decomposition information about objectives. An agent’s
recipe library can be expanded or modified through (collaborative
or single-agent) planning.

Atomic Actions: Directly-executable actions in the domain.

3We only discuss the case of two collaborating agents. While we hope that the taxonomy
we present will be extensible to multi-agent problem solving and dialogue, we leave this as a
topic of future research.



Managing Communicative Intentions 9

Objects/Resources: Objects in the world as well as which objects
are considered resources for the domain. Resources are objects
that are used in recipes.

Situations: The state of the world (or a possible world). In all but
the simplest domains, an agent may only have partial knowledge
about a given situation.

These problem-solving (PS) objects are then used as arguments for PS
acts, at the single-agent level, and CPS acts at the collaborative level.

2.2 Single-Agent Problem Solving

In order to see how agents collaborate to solve problems, it is in-
structive to first look at an abstract model of how a single-agent solves
problems. The problem-solving (PS) level describes problem solving for
a single agent. With this model, we are not trying to compete with
formal models of agent behavior (e.g., (Cohen and Levesque, 1990; Rao
and Georgeff, 1991)), which use agent intentions, beliefs and so forth to
predict agent action and changes in the agent’s state. Our PS model
describes possible changes in the agent’s problem-solving state at the
granularity at which collaboration occurs.
An agent’s problem-solving activities occur in three phases. These

need not proceed in order and may be freely interleaved.

Determining Objectives: In this phase, an agent manages its ob-
jectives, deciding to which is it committed, which will drive its
current behavior, etc.

Determining and Instantiating Recipes for Objectives: In order
to attain an objective, an agent chooses a recipe to use to work
towards the objective. An agent may either choose and instantiate
a recipe from its recipe library (see section 2.1 above), or it may
choose to create a new recipe via planning.

Acting : In this phase, an agent follows a recipe and executes atomic
actions. This phase also includes monitoring the execution to check
for success.

There are several things to note about this abstract, single-agent
problem-solving model. First, our model does not impose any strict
ordering on the phases above. An agent may begin executing a par-
tially instantiated recipe and do more instantiation later as necessary.
An agent may also perform some plan in order to help it in deciding
what recipe to use for another objective. As we discuss in more detail



10

below, this allows the model to cover collaboration involving interleaved
planning and acting.
In our model, problem-solving (PS) acts are the operators which an

agent uses to affect its problem-solving state. These can be classified into
two groups: acts relating to commitment and acts related to reasoning.

Acts Relating to Commitment. These acts change the agent’s
commitment to the various PS objects. The acts are listed here.4

Adopt : Commits the agent to the PS object, i.e., the agent intends
to do/use/pursue the object.

Select : Moves an adopted object into the small set which is cur-
rently influencing the agent’s behavior (i.e., in acting).

Defer : Tables a selected object. The agent is still committed to the
object, but it is no longer influencing the agent’s current behavior.

Abandon: Removes an agent’s commitment to an object which has
not yet fulfilled its purpose.

Release: Removes an agent’s commitment to an object which has
fulfilled its purpose.

These are better understood in context with the PS objects to which
they are applied. We describe the effect of these PS acts when applied
to each of the PS objects. (Note that not all PS acts are applicable to
all PS objects.)

Objectives: An agent can adopt an objective, which commits the
agent to pursuing it. An agent may have any number of adopted
objectives, but there is only a small subset is active, controlling
the agent’s current activity. Selecting an objective makes it ac-
tive, meaning that the agent is currently actively pursuing it. An
agent can demote an active objective back to the adopted state
by deferring it. An agent can also, at any time, abandon an
objective, dropping its commitment to it. Finally, when an agent
believes that an adopted objective has been attained, it may re-
lease it. Note that an objective is not automatically released when
it is attained. An agent must believe that it has been attained and
then consciously release it.

4We do not claim that this is a complete list. We do, however, believe that the final list will
be short.



Managing Communicative Intentions 11

Adopt Select Defer Abandon Release

Objective X X X X X

Recipe X X X

Action X X X X X

Resource X X X

Situation X X

Figure 1.3. Application of Commitment PS Acts to PS Objects

Recipes: These do not quite fit the same model as objectives, since it
does not make sense for an agent to be committed to more than
one recipe for a single objective. An agent commits to a recipe
for an objective by adopting it. An agent can also release or
abandon an adopted recipe, similar to objectives. Select and
defer do not play a role with recipes.

Atomic Actions: These are similar to objectives. Adopting an action
means that an agent is committed to performing it. A selected

action is something that is being executed at the current time,
which can be deferred (to suspend execution), abandoned, or
released.

Resources: These are objects that are somehow used in a recipe. They
fit the same model as recipes in that only one resource is committed
to for a certain slot in a recipe. Agents can adopt a resource, com-
mitting to use it in a recipe. They can also abandon or release
a resource. Select and defer are not applicable to resources.

Situations: These are somewhat similar to recipes and resources. What
is commitment to a situation? We believe this is used to ex-
plain “what if” type, possible worlds simulations. When an agent
adopts a situation, it is committing to do reasoning according to
that situation. Abandoning a situation reverts all reasoning to
the actual situation. It is unclear what releasing a situation would
mean. Select and defer also do not play a role with situations.

Figure 1.3 gives a synopsis of applicability of commitment PS acts. An
x shows that a PS act is applicable to the object and a blank indicates
non-applicability.



12

Acts Relating to Reasoning. An agent must do reasoning to
decide which commitments to adopt, abandon, and so forth. This is
accomplished with the following reasoning PS acts.5

Identify : Brings an object into focus. Used to determine which options
are available.

Evaluate: Determines the goodness of an object in relations to its pur-
pose.

Modify : Changes an object in some way.

We discuss these in the context of each PS object.

Objectives: When an agent is considering choosing, releasing, aban-
doning, etc. an objective, it must identify one or more objectives
that are possibilities. It can then evaluate an objective to de-
termine if it’s a good idea to adopt it (or abandon it, etc.) The
agent can also modify the objective in a certain way (make it
more specific, change a parameter, etc.)

Recipes: These are treated very similarly to objectives. An agent
can identify or evaluate possible recipes for a specific objective.
Modifying a recipe is essentially planning and allows for novel
recipes to be formulated by the agent as necessity arises.

Atomic Actions: The effect of reasoning PS acts on atomic actions are
dependent on the context of whether the agent is planning (mod-
ifying a recipe) or acting. Identifying an action for planning
identifies a possible action to be used in the recipe. In execution,
it means that the agent queries the adopted recipe to identify the
next step for execution. Evaluating an action in a planning con-
text determines whether or not it is a good candidate for use in the
recipe. In an execution context, an agent may choose to evaluate
an action identified from the recipe before committing to actually
perform the action (there is no constraint that an adopted recipe
actually lead to attaining the objective). An action may be mod-

ified in either execution or planning.

Resources: These can be identified as candidates for use in a recipe.
An agent can then evaluate the goodness of a resource in relation

5Again, we do not claim this to be a comprehensive list, although we believe the final list
will be small.



Managing Communicative Intentions 13

Identify Evaluate Modify

Objective X X X

Recipe X X X

Action X X X

Resource X X

Situation X X X

Figure 1.4. Application of Reasoning PS Acts to PS Objects

to a recipe. It is not clear what it would mean to modify a
resource.

Situations: In all but the most trivial domains, an agent will not know
the entire situation. Identifying a situation gives the agent more
information about what the state of that world is. An agent eval-
uates a situation in order to decide if it is a desirable situation to
be in (this may also be helpful for an agent to decide whether or
not an objective can be released). Hypothetical situations can be
modified as well.

Figure 1.4 gives a summary of the applicability of reasoning PS acts
to PS objects. Similar to figure 1.3, an x shows the applicability of acts
to objects.

2.3 Collaborative Problem Solving

Collaborative problem solving is an extension of single-agent problem
solving. The granularity of acts that we discussed above is the granular-
ity at which collaboration occurs between agents. These acts are more
overt in collaborative problem solving since agents must communicate
and coordinate their reasoning and commitments in maintaining a CPS
state between them.
At the CPS level are CPS acts which apply to the PS objects, par-

alleling the single-agent PS model. In order to distinguish acts at the
two levels, we append a c- before CPS acts, creating c-adopt, c-select,
c-modify, and so forth. CPS acts have similar intuitive meaning to those
at the PS level and we will not redefine them here.6 One important
difference is that a single agent cannot single-handedly perform a CPS
act. This requires the cooperation and coordination of both agents.

6Several formal models of intention (Levesque et al., 1990; Grosz and Kraus, 1996) have
explored intentional differences between single-agent plans and group plans. This is outside
the scope of this chapter.



14

CPS acts are generated by the individual interaction acts of each
agent. An interaction act is a single-agent action which takes a CPS act
as an argument. The interaction acts are initiate, continue, complete
and reject. These are defined by their effects and are similar to the
grounding model proposed in (Traum, 1994).
An agent beginning a new proposal performs an initiate. In the case

of successful generation of the CPS act, the proposal is possibly passed
back and forth between the agents, being revised with continues, until
both agents finally agree on it, which is signified by an agent not adding
any new information to the proposal but simply accepting it with a
complete; this generates the proposed CPS act.
At any point in this exchange, either agent can perform a reject, which

causes the proposed CPS act to fail, and the CPS state to remain un-
changed. This ability of either agent to negotiate and/or reject propos-
als allows our model to handle not just the master-slave collaboration
paradigm, but the whole range of collaboration paradigms (including
mixed-initiative). And, as we discussed above, the model also allows for
dialogue involving planning, acting (execution), or interleaved planning
and acting.
It also provides a tangible definition of communicative intentions, by

correlating them with interaction acts. Thus, for each utterance, there
is at least one interaction act (together with CPS argument) that corre-
sponds to the communicative intentions of the speaker. This definition
now allows us to specify both the communicative intentions of utterances
as well as the effects they have on the ongoing negotiation of changes to
the CPS state.

2.4 Comparison with Previous Work

As we mention in section 1.1, we believe that our model will be com-
patible with the SharedPlan formalism (Grosz and Kraus, 1996). In
fact, one way of looking at our model is an elaboration of the Shared-
Plan operators at an utterance level. Adoption, evaluation, etc. of objec-
tives actually resides at a level higher than the SharedPlan model, since
SharedPlans assumes that a high-level goal has already been chosen.
The adoption, evaluation, etc. of recipes is a further elaboration of the
Select Rec GR operator. Most other acts, such as adopting resources,
evaluating actions, etc. provide the details of the Elaborate Group level.
Our work is similar to the problem-solving-level plans of the work

on dialogue models (Ramshaw, 1991; Lambert and Carberry, 1991; Car-
berry et al., 1992; Chu-Carroll and Carberry, 2000). While those models



Managing Communicative Intentions 15

User Let’s rescue the heart attack victim at Marketplace Mall. (1)
(initiate (c-adopt (objective (rescue person1))))

System OK. (2)
(complete (c-adopt (objective (rescue person1))))

User Let’s send ambulance 1 to take them to Strong hospital. (3)
(initiate (c-adopt (recipe (take-to-hospital))))

(initiate (c-adopt (resource (vehicle amb1))))

(initiate (c-adopt (resource (hospital Strong))))

System OK. (4)
(complete (c-adopt (recipe (take-to-hospital))))

(complete (c-adopt (resource (vehicle amb1))))

(complete (c-adopt (resource (hospital Strong))))

Figure 1.5. A Planning Dialogue

provided some sample problem-solving recipes, we are trying to enumer-
ate the complete taxonomy of collaborative problem-solving activities.

3. Examples

In this section, we give several examples in order to illustrate this
dialogue model and to show some of the range of dialogues it can be
used to describe. The representation of interaction acts in the dialogues
is somewhat abbreviated due to space limitations. The representation
given here is sufficient, however, to exemplify interaction acts intended
by each utterance.

3.1 A Planning Example

Figure 1.5 gives an example planning-only dialogue from a 911 opera-
tor domain where the user and system are working together to deal with
911 emergencies. For each utterance, the corresponding interaction acts
are listed below it.7

At this point of the dialogue, there are several pending emergencies to
be dealt with, including a heart-attack victim at Marketplace Mall. The
user decides to initiate an adopt-objective and does so with utterance
1. The system completes this act with utterance 2. (This dialogue is
also a good example of a master-slave paradigm, since the system simply
accepts all of the user’s proposals.)

7Because of space requirements, we have omitted some interaction acts in the examples in
this section, such as c-identify, which are in each case accepted and do not play a large role
in these particular dialogues.



16

System You should take your Zoloft now. (5)
(initiate (c-select (action (take user Zoloft))))

User Where is the Zoloft? (6)
(continue (c-select (action (take user Zoloft))))

(initiate (c-identify (situation (loc Zoloft ?x))))

System On the counter. (7)
(continue (c-select (action (take user Zoloft))))

(continue (c-identify (situation (loc Zoloft counter))))

User OK. [takes pill] (8)
(complete (c-identify (situation (loc Zoloft counter))))

(complete (c-select (action (take user Zoloft))))

Figure 1.6. An Acting Dialogue

Utterance 3 initiates several acts (each of which needs to be addressed
in the response in utterance 4) initiating adopting a recipe and two
resources. Again, the system completes these with utterance 4.

3.2 An Acting Example

Figure 1.6 gives an example of a dialogue involving only acting from
a Medication Advisor domain (Ferguson et al., 2002), where the system
helps a person manage his medication regimen. In this example, the user
and system already know that the user has a prescription for Zoloft.
In utterance 5, the system initiates a select-action for the user to

take a Zoloft. Recall from section 2.2 that selecting an action means
to start actually executing it. (Note that the action is already adopted;
since the user has a prescription, he is presumably already committed
to performing the action.) The user, instead of immediately accepting,
initiates an identify-situation in order to find the location of the Zoloft.
Because this neither accepts nor rejects the select-action, it continues it.
In utterance 7, the system identifies the location of the Zoloft for the

user. This is a continue and not a complete because the system has
added new information to the proposed CPS act. It is not completed
until utterance 8 where the user accepts the answer. The user also
completes the select-action in utterance 8 and then begins performing
the action.

3.3 An Interleaved Planning and Acting
Example

Figure 1.7 shows a dialogue that involves interleaved planning and
acting. At this point in the dialogue, the user and system have already



Managing Communicative Intentions 17

User Send ambulance one to Parma right away. (9)
(initiate (c-adopt (action (send amb1 Parma))))

(initiate (c-select (action (send amb1 Parma))))

System OK. [sends ambulance] (10)
(complete (c-adopt (action (send amb1 Parma))))

(complete (c-select (action (send amb1 Parma))))

System Where should we take the victim once we pick them up? (11)
(initiate (c-adopt (resource (hospital ?x))))

User Rochester General Hospital. (12)
(continue (c-adopt (resource (hospital RocGen))))

System OK. (13)
(complete (c-adopt (resource (hospital RocGen))))

Figure 1.7. Interleaved Planning and Acting Dialogue

System Let’s schedule a time for you to take your Prinivil today. (14)
(initiate (c-adopt (objective (schedule Prinivil))))

User No. (15)
(reject (c-adopt (objective (schedule Prinivil))))

Figure 1.8. Rejection Dialogue

adopted the objective of rescuing a victim in Parma by the recipe of
taking him to a hospital.
Utterance 9 initiates both the adopt and the select (i.e., adopt and

begin immediately) of the action of sending the ambulance to Parma.
The system completes these acts in utterance 10. Note that this acting
was begun before the user and system had a complete plan for rescu-
ing the victim. Utterances 10–13 deal with adopting the resource of a
hospital to which to take the victim.

3.4 A Rejection Example

Figure 1.8 is a short (and blunt) example of an agent’s ability to
reject a proposal. The system makes a proposal in utterance 14, which
the user refuses in utterance 15. At this point, the proposed CPS act
fails and the collaborative problem-solving state does not change. The
ability to reject is an important feature of non-master-slave collaboration
paradigms. This example and the next demonstrate the ability of our
model to handle the range of collaboration paradigms, including mixed-
initiative.



18

User Let’s use Ambulance one. (16)
(initiate (c-adopt (resource (amb1))))

System Ambulance one is too far away. (17)
(reject (c-adopt (resource (amb1))))

(initiate (c-evaluate (resource (amb1) bad too-far)))

System Ambulance two is closer. (18)
(initiate (c-evaluate (resource (amb2) good closer)))

System Let’s use it. (19)
(initiate (c-adopt (resource (amb2))))

User OK, we’ll do that instead. (20)
(complete (c-evaluate (resource (amb2) good closer)))

(complete (c-evaluate (resource (amb1) bad too-far)))

(complete (c-adopt (resource (amb2))))

Figure 1.9. Negotiation Dialogue

3.5 A Negotiation Example

Figure 1.9 shows an example of negotiation within our dialogue model.
This mixed-initiative exchange demonstrates not only the ability to re-
ject, but also the ability to use that to make a counterproposal.
In utterance 16, the user proposes adopting ambulance1 as a resource.

The system rejects the proposal and initiates its evaluation that ambu-
lance1 is not a good resource because it is too far away. It then gives
the evaluation that ambulance2 is a good resource since it is closer. In
utterance 19, the system then initiates an adopt-resource of ambulance2.
In utterance 20, the user accepts this proposal along with the two evalu-
ations by the system. This shows the value of mixed-initiative dialogue
since agents often have disparate, yet complementary knowledge, which,
when brought to bear can result in a better solution than either agent
could have come up with on its own.

4. Use in Dialogue Systems

In this section we describe the practical use of the CPS model we
presented, including how we are currently using it within the TRIPS
dialogue system.
We have presented a descriptive model of communicative intentions:

interaction acts. As we discussed briefly in section 2, interaction acts
are realized by communicative acts in order to be uttered (as illustrated
in figure 1.2). We can now more precisely define intention recognition
and content planning. Intention recognition is the recognition of interac-
tion acts from communicative acts, and content planning is the reverse:
converting interaction acts into communicative acts.



Managing Communicative Intentions 19

Behavioral
Agent

Interpretation
Manager

Generation
Manager

Parser

Speech

Planner Scheduler Monitors Events

Task- and Domain-specific
Knowledge Sources

Exogenous Event Sources

Response
Planner

GraphicsSpeech

Task
Manager

Reference

Discourse
Context

Interpretation

Generation

Behavior

Task
Interpretation

Requests

Problem-Solving
Acts recognized

from user

Problem-Solving
Acts

to perform

Task
Execution
Requests

Figure 1.10. The TRIPS Architecture (Allen et al., 2001a)

Also, as we discussed above, modeling communicative intentions based
on collaborative problem solving allows the behavioral reasoning compo-
nent of a dialogue system to only worry about problem solving and not
about linguistic issues. We hope this will allow for more complex sys-
tem behavior as well as simpler behavioral component design (Blaylock
et al., 2002b).
We are currently using the CPS model to represent communicative in-

tentions within the TRIPS dialogue system (Ferguson et al., 2002; Blay-
lock et al., 2002a). The architecture of TRIPS is shown in figure 1.10.
The details of the architecture are beyond the scope of this paper. The
important thing to notice, however, is that there is no dialogue man-
ager. Instead, the work of the dialogue manager has been divided into
the three main components: the Interpretation Manager, the Behavioral
Agent, and the Generation Manager. This is very similar to the concep-
tual subsystems of a conversational agent (figure 1.1) that we discussed
in the introduction.



20

When an utterance is heard by the system, the Interpretation Man-
ager coordinates interpretation (culminating with intention recognition)
and passes the corresponding communicative intentions (represented as
interaction acts) to the Behavioral Agent. The Behavioral Agent reasons
with those communicative intentions (as well as its own goals and obliga-
tions and the state of the world) to determine the actions of the system.
When the system decides to communicate with the user, the Behavioral
Agent represents what it wants to communicate (its communicative in-
tentions) as interaction acts and sends them to the Generation Manager
which coordinates generation (beginning with content planning).
Within the system, intention recognition, behavioral reasoning on

communicative intentions, and content planning based on the CPS model
are all domain specific and still quite underdeveloped. We believe, how-
ever, that representing communicative intentions at the CPS level will
enable us to build domain-independent components for all of these func-
tions (see future work).

5. Conclusions and Future Work

We have presented a descriptive model of dialogue based on collabora-
tive problem solving which defines communicative intentions and mod-
els a wider array dialogue than previous research. The model covers
the range of collaboration paradigms (including mixed-initiative) and
models dialogue involving (possibly interleaved) planning and acting.
As we mention above, this model currently lacks the level of formalism

that other models have had (e.g., Levesque et al., 1990; Grosz and Kraus,
1996). For future work, we plan to formalize the model and explore
similarities and differences with these other models.
We are currently using our model to annotate dialogues in various

domains to ensure that the model is domain independent and to detect
if there are any more collaborative problem-solving acts or problem-
solving objects which need to be added.
We are currently developing a domain-independent intention recogni-

tion system based on the model (Blaylock, 2002). We are also interested
in developing an agent that reasons with this model which would be used
to drive system behavior, as well as in the content planning problem of
converting interaction acts into communicative acts.
With a definition and representation of communicative intentions that

correspond to utterances, we are interested in understanding and rep-
resenting the difference between intention recognition (recognizing what
the system was intended to recognize) and plan recognition (inferring
more than that). These two concepts have often been conflated in previ-



REFERENCES 21

ous research. As dialogue systems become more sophisticated, we believe
it will be necessary to reason differently about what one was intended
to understand, and anything addition which was gleaned from the evi-
dence. Perhaps this could be useful in understanding and participating
in non-collaborative or hostile dialogues.

References

Allen, J., Blaylock, N., and Ferguson, G. (2002). A problem solving
model for collaborative agents. In First International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, Bologna, Italy.

Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., and Stent,
A. (2000). An architecture for a generic dialogue shell. Journal of Nat-
ural Language Engineering special issue on Best Practices in Spoken
Language Dialogue Systems Engineering, 6(3):1–16.

Allen, J., Ferguson, G., and Stent, A. (2001a). An architecture for more
realistic conversational systems. In Proceedings of Intelligent User In-
terfaces 2001 (IUI-01), pages 1–8, Santa Fe, NM.

Allen, J. F., Byron, D. K., Dzikovska, M., Ferguson, G., Galescu, L., and
Stent, A. (2001b). Towards conversational human-computer interac-
tion. AI Magazine, 22(4):27–37.

Ardissono, L., Boella, G., and Lesmo, L. (1996). Recognition of problem-
solving plans in dialogue interpretation. In Proceedings of the Fifth
International Conference on User Modeling, pages 195–197, Kailua-
Kona, Hawaii.

Blaylock, N. (2002). Managing communicative intentions in dialogue us-
ing a collaborative problem solving model. Technical Report 774, Uni-
versity of Rochester, Department of Computer Science.

Blaylock, N., Allen, J., and Ferguson, G. (2002a). Synchronization in
an asynchronous agent-based architecture for dialogue systems. In
Proceedings of the 3rd SIGdial Workshop on Discourse and Dialog,
Philadelphia.

Blaylock, N., Dowding, J., and Allen, J. (2002b). A dialogue model for
interaction with planners, schedulers and executives. In Proceedings
of the 3rd International NASA Workshop on Planning and Scheduling
for Space, Houston, Texas. To appear.

Carberry, S. (1990). Plan Recognition in Natural Language Dialogue.
ACL-MIT Press Series on Natural Language Processing. MIT Press.

Carberry, S., Kazi, Z., and Lambert, L. (1992). Modeling discourse,
problem-solving and domain goals incrementally in task-oriented dia-
logue. In Proc. 3rd Int. Workshop on User Modeling, pages 192–201.
Wadern.



22

Chu-Caroll, J. and Brown, M. K. (1997). Initiative in collaborative in-
teractions — its cues and effects. In Haller, S. and McRoy, S., editors,
Working Notes of AAAI Spring 1997 Symposium on Computational
Models of Mixed Initiative Interaction, pages 16–22, Stanford, CA.

Chu-Carroll, J. and Carberry, S. (2000). Conflict resolution in collabo-
rative planning dialogues. International Journal of Human-Computer
Studies, 53(6):969–1015.

Cohen, P. R. and Levesque, H. J. (1990). Intention is choice with com-
mitment. Artificial Intelligence, 42:213–261.

Ferguson, G., Allen, J., Blaylock, N., Byron, D., Chambers, N., Dzikovska,
M., Galescu, L., Shen, X., Swier, R., and Swift, M. (2002). The Med-
ication Advisor project: Preliminary report. Technical Report 776,
University of Rochester, Department of Computer Science.

Grosz, B. and Sidner, C. (1986). Attention, intention, and the structure
of discourse. Computational Linguistics, 12(3):175–204.

Grosz, B. J. and Kraus, S. (1996). Collaborative plans for complex group
action. Artificial Intelligence, 86(2):269–357.

Grosz, B. J. and Sidner, C. L. (1990). Plans for discourse. In Cohen,
P. R., Morgan, J., and Pollack, M., editors, Intentions in Communi-
cation, pages 417–444. MIT Press, Cambridge, MA.

Lambert, L. and Carberry, S. (1991). A tripartite plan-based model of
dialogue. In Proceedings of the 29th ACL, pages 47–54, Berkeley, CA.

Levesque, H., Cohen, P., and Nunes, J. (1990). On acting together. In
Proceedings of the Eighth National Conference on Artificial Intelli-
gence, pages 94–99, Boston. AAAI.

Lochbaum, K. E. (1998). A collaborative planning model of intentional
structure. Computational Linguistics, 24(4):525–572.

Lochbaum, K. E., Grosz, B. J., and Sidner, C. L. (2000). Discourse struc-
ture and intention recognition. In Dale, R., Moisl, H., and Sommers,
H., editors, Handbook of Natural Language Processing, pages 123–146.
Marcel Dekker, New York.

Ramshaw, L. A. (1991). A three-level model for plan exploration. In
Proceedings of the 29th ACL, pages 39–46, Berkeley, CA.

Rao, A. S. and Georgeff, M. P. (1991). Modeling rational agents within
a BDI-architecture. In Allen, J., Fikes, R., and Sandewall, E., editors,
Principles of Knowledge Representation and Reasoning, pages 473–
484, Cambridge, Massachusetts. Morgan Kaufmann.

Rich, C., Sidner, C. L., and Lesh, N. (2001). COLLAGEN: Applying col-
laborative discourse theory to human-computer interaction. AI Mag-
azine, 22(4):15–25. Also available as MERL Tech Report TR-2000-38.



REFERENCES 23

Searle, J. R. (1990). Collective intentions and actions. In Cohen, P. R.,
Morgan, J., and Pollack, M., editors, Intentions in Communication,
pages 401–415. MIT Press, Cambridge, MA.

Traum, D. R. (1994). A computational theory of grounding in natural
language conversation. Technical Report 545, University of Rochester,
Department of Computer Science. PhD Thesis.


