
Corpus-based, Statistical Goal Recognition∗

Nate Blaylock and James Allen
Department of Computer Science

University of Rochester
Rochester, New York, USA

{blaylock,james}@cs.rochester.edu

Abstract

Goal recognition for dialogue systems needs to be
fast, make early predictions, and be portable. We
present initial work which shows that using statis-
tical, corpus-based methods to build goal recogniz-
ers may be a viable way to meet those needs. Our
goal recognizer is trained on data from aplan cor-
pusand is then used to determine the agent’s most
likely goal based on that data. The algorithm is lin-
ear in the number of goals, and performs very well
in terms of accuracy and early prediction. In addi-
tion, it is more easily portable to new domains as it
does not require a hand-crafted plan library.

1 Introduction
Much work has been done over the years inplan recognition,
which is the task of inferring an agent’s goal and plan based
on observed actions.Goal recognitionis a special case of
plan recognition, in which only the goal is recognized.

Goal and plan recognition have been used in a variety of
applications including intelligent user interfaces[Leshet al.,
1999], dialogue systems[Carberry, 1990b; Allenet al., 2000]
and machine translation[Alexandersson, 1995].

We are especially interested in applying goal recognition
to dialogue systems, in order to aid natural language under-
standing and intention recognition. We do not intend to use
a goal recognizer todirectly recognize communicative inten-
tions (the goals behind a user’s utterance); rather, we intend
to use it to identify a user’s domain goals to quickly help nar-
row the search space for more costly intention recognition
routines (e.g.,[Lochbaum, 1998; Chu-Carroll and Carberry,
2000]).

This application places several demands on our goal recog-
nizer:

1. Speed:Dialogues happen in real-time, and the system is
expected to understand a user’s utterance and generate a
response in a short amount of time.

2. Early/partial prediction: We need accurate goal pre-
dictions very early on in the exchange, as the system

∗This is a correction of the paper which appears in the IJCAI ’03
proceedings.

needs this information to better respond to a user’s ut-
terance. If full recognition is not immediately available,
the system needs at least partial information to allow it
to act on the user’s utterance.

3. Portability : We want to be able to rapidly port our dia-
logue system to new domains.

We present initial work in which we use corpus-based
methods to build a goal recognizer. Our recognizer is fast
(linear in the number of possible goals), makes early predic-
tions, and is easier to port to new domains than many systems,
as it does not require a hand-crafted domain plan library.

We first discuss the corpus-based approach we take in goal
recognition. We then report on initial experiments that we
have performed and discuss their results. Finally, we com-
ment on related work and then discuss future directions for
our work.

2 The Corpus-based Approach
The use of statistical methods, based on corpora, has revo-
lutionized the field of Natural Language Processing over the
past 10+ years. The method is as follows: one uses a corpus
of data to train a statistical model which is then used to make
predictions on future data. Seemingly simple methods have
yielded good results in many areas of NLP.1

We apply a similar approach to the task of goal recognition.
We use aplan corpus(a list of goals and the plans an agent ex-
ecuted to achieve them) to train statistical models which can
predict an agent’s goal based on an observed sequence of ac-
tions. As we show below, initial work shows several possible
advantages over previous work on goal and plan recognition:
recognition is fast (linear in the number of goals), robust (can
handle unknown actions and plans) and does not require a
hand-crafted plan library.

2.1 Recognition using N-gram Models
We define the task of goal recognition as follows: given
an observed sequence ofn actions so farA1, A2, . . . , An,
(which, for compactness, we will represent asA1,n), find the
most likely goalG:

G∗ = argmaxP (G|A1,n) (1)

1For a good review, see[Manning and Scḧutze, 1999].



Goal # Goal Description Sessions
1 Find a file named ‘core’ 12
2 Find a file that contains the word ‘motivating’ and whose name ends in ‘.tex’ 11
3 Find a machine that has low (<1.0) load; AND determine if Oren Etzioni is

logged into the machine named chum 5
4 Compress all large files (>10,000 bytes) in the Testgrounds subdirectory tree 2
5 Compress all files in the directory named ‘backups’ [Don’t use *] 3
6 Find a large file (>100,000 bytes) that hasn’t been changed for over a month 8
7 Find a file that contains less than 20 words 8
8 Find a laser printer in Sieg Hall that has an active print job 6
9 Find a Sun on that has low (<1.0) load; AND determine if Dan Weld is active

on the machine named chum 2
10 Find a file of length 4 in neal/Testgrounds subdirectory 1
11 See if Dan Weld is logged in to chum 1

Total 59

Table 1: Goals and their counts in the Unix corpus

Using Bayes’ Rule, this becomes:

G∗ = argmax
P (A1,n|G)P (G)

P (A1,n)
(2)

SinceP (A1,n) is constant in the argmax, we can drop it:
G∗ = argmaxP (A1,n|G)P (G) (3)

Using the Chain Rule, we can rewrite this as:
G∗ = argmax P (An|A1,n−1, G)P (An−1|A1,n−2, G)

. . . P (A1|G)P (G)
(4)

These conditional distributions are very large and difficult
to estimate, therefore, we make ann-gram assumption, i.e.,
we assume that an actionAi is only dependent on the goal
G and thej actions preceding it (Ai−j,i−1). For a unigram
model, we assume thatAi is independent of all other actions.
In this case, our goal recognition equation becomes:

G∗ = argmaxP (G)
n∏

i=1

P (Ai|G) (5)

If we assume thatAi is independent of everything butG
andAi−1, we get a bigram model:

G∗ = argmaxP (G)
n∏

i=2

P (Ai|Ai−1, G) (6)

We estimateP (G), P (Ai|G) andP (Ai|Ai−1, G) using a
plan corpus. Then, for recognition, we first initialize our goal
probabilities withP (G) and make an initial prediction, based
solely on these priors. Then, for each action we observe, we
multiply each goal’s score by the corresponding conditional
n-gram probability, and make a new prediction.

This algorithm has the nice feature of compositionality —
new observations produce conditional probabilities, which
are simply multiplied with the previous predictions. This re-
sults in computational savings, since updates are linear in the
number of goals. It also gives us a good model for early pre-
diction (as desired for our dialogue system), since the model
is based on actions observed so far and does not require all
actions in the plan execution.

Goal Types 11
Goal Sessions 59
Action Types 22
Total Actions 412
Average Actions/Goal 7.0

Table 2: Statistics for the Unix corpus

3 Experiments

3.1 The Plan Corpus

We performed several experiments using Lesh’s Unix plan
corpus[Lesh, 1998]. The corpus was gathered from human
Unix users (CS undergraduates) at the University of Wash-
ington. Users were given a task in Unix (a goal), and were
instructed to solve it using a subset of Unix commands (no
pipes, noawk, etc.) The students’ commands and results
were recorded, as well as whether or not they successfully
accomplished the goal. There were 59 successful goal ses-
sions which involved 11 different goals.2 Table 1 shows the
individual goals and the number of successful goal sessions
for each.

We automatically removed unsuccessful commands, such
as typos, from each execution. Remaining commands were
stripped of arguments to a base command type form. This
means our training set consisted only of action types (such
as ls , grep , etc.), and did not consider flags or arguments.
We hope to extend our model to incorporate this additional
information in the future (see below).

Table 2 shows some statistics from the resulting plan cor-
pus. There were 11 possible goals3 and 22 different action
types used in the goal sessions. On average, there were 7.0
actions per goal session.

2There was actually a twelfth goal, but it was essentially the same
as goal 1, so we merged the two.

3These are actually goal schemas, since we do not recognize pa-
rameters.



We used cross-validation in testing each of the 59 test
cases. Because of the small size of the Unix corpus, the train-
ing set was formed by removing only the test case from the
training corpus for each test case.

3.2 Evaluation Metrics
As pointed out by Lesh[1998], there is a lack of agreed-
upon metrics and benchmarks for reporting results for plan
and goal recognizers. We use the following metrics to report
our results as they measure the attributes we are seeking for
a goal recognizer (as described above). A test case is the set
of actions executed for a goal. For each test case, the recog-
nizer makes an initial prediction, and then the actions are fed
to it one by one, and it makes predictions after every action.
Each metric is for a single test case. For reporting multiple
test cases, the metric is averaged across all cases.

• Accuracy:The number of correct predictions divided by
the total number of observed actions.

• Converged:Whether or not the final prediction was cor-
rect (i.e., whether the recognizerfinishedwith the cor-
rect answer).

• Convergence point: If the recognizer converged, at
which point in the input it started giving only the correct
answer. This is reported as a quotient of the action num-
ber (i.e., after observingx actions) over the total number
of actions for that case.4

3.3 Unigram model
For our first experiment, we trained unigram models on the
data (based on Equation 5). To provide for unseen data, where
P (Ai|G) was0, P (Ai|G) was set to be a very small constant.
This smoothing technique allows goalG to still remain possi-
ble, in case other evidence makes it likely, despite the fact that
actionAi was not seen in relation to it in the training data.

With the unigram model, our recognizer achieved an accu-
racy of 55.4%, with 78.0% of the cases converging. For cases
which converged, the average point of convergence was after
3.1 actions (out of an average of 7.6 actions).

While these were encouraging results, we wanted to see if
we could do better.

3.4 Bigram model
In our next experiment, we used a bigram model (based on
Equation 6), which encodes at least some ordering into the ac-
tions by considering both the current action and the preceding
action. Our intuition was that this would give us better per-
formance than the unigram model, because of this temporal
information.

We prepend a specialstart action to the front of each
execution, which handles the special case of Equation 6 in
which n = 1, i.e., when we’ve only seen one action so far.
This also encodes information about which actions tend to

4It is necessary to report the total number of actions as well. Be-
cause this statistic is only for the test cases which converged, it is
possible that the average actions per session is different from that of
the entire corpus.

Goal# Convergence Competitors
1 6/12 (50.0%) 6:5,2:1
2 11/11 (100.0%) none
3 4/5 (80.0%) 9:1
4 2/2 (100.0%) none
5 2/3 (66.7%) 4:1
6 6/8 (75.0%) 1:2
7 8/8 (100.0%) none
8 6/6 (100.0%) none
9 1/2 (50.0%) 3:1

10 0/1 (0.0%) 6:1
11 0/1 (0.0%) 3:1

Table 3: Convergence by goal in the unigram experiment

begin executions, which may or may not be correlated to the
goal.

For the case whereP (Ai|Ai−1, G) equals 0, i.e., the
bigram was never seen in conjunction with the goal, we
use a unigram back-off model which uses the estimation
P (Ai|Ai−1, G) ≈ P (Ai|G). As with the unigram model
above, ifP (Ai|G) equals 0, we smooth this with a small con-
stant.

Contrary to our expectations, the bigram model performed
almost exactly the same as the unigram model, with an accu-
racy of 55.6% and with 78.0% of cases converging. For the
tests cases which converged, they converged on average after
3.1/7.6 actions.

The fact that the bigram model performed about the same
does not seem to be due to a lack of data. 89.8% of bigrams
in the test set were seen at least once in the training data. The
lack of improvement seems be tied more to the domain itself.
The unigram model seems to do well, despite lack of temporal
knowledge, due to the fact that some goals (such as goal 8,
for example) are highly correlated with a single command
(such aslpq ), which immediately boosts the probability of
the correct goal. Other goals (goal 1, for example), were not
uniquely correlated to any one command, and predictions for
these goals were wrong more often. Pairs of commands did
not do any better at distinguishing these cases of confusion.
For example, the use ofcd followed by ls does not seem
to uniquely pick out any goal any better than the individual
correlations forcd andls .

It is actually illustrative to look at a goal-by-goal break-
down of results. Table 3 shows convergence results for each
goal type. For the 13 cases which didn’t converge, 2 (for
goals 10 and 11) were because the goal did not appear in the
training data; and 7 are the recognizer confusing goal 1 for
goal 6 and vice-versa. This seems mostly to be due to the fact
that these two goals are almost indistinguishable by only bare
commands. Without the flags, many sessions with these goals
simply become strings ofls andcd , and ordering informa-
tion does not discriminate any better either. We expect that
bigram and other higher-ordern-gram models would perform
better on more typical plan recognition domains.



Goals which
Abstract Goal Instantiate
Find a file with attributes 1, 2, 6, 7, 10
Find a machine with attributes 3, 9, 11
Compress files with attributes 4, 5
Find a printer with attributes 8

Table 4: Abstract goal types

Abstract
Unigram Bigram Goals

Accuracy 55.4% 55.6% 83.9%
Converged 78.0% 78.0% 100.0%
Conv. Point 3.1/7.6 3.1/7.6 1.4/7.0

Table 5: Results of the experiments on the Unix corpus

3.5 Goal Abstractions

In our final experiment, we defined an abstraction hierarchy
for goal types. The abstract types and goals they encompass
are shown in Table 4.

As we discussed above, a dialogue system needs to be able
to reason quickly, accurately and early about a user’s goals
and intentions. If the user’s specific goal cannot be deter-
mined, a dialogue system can often use partial information
in formulating a response to the user. These abstract goal
classes represent that partial information. If we are unable to
determine a specific goal, the system can perhaps determine
what the user’s abstract goal is, and this may be enough to
formulate a response at that point in the dialogue.

The probability of an abstract goal is calculated by simply
summing the probabilities of each of its children. For this
experiment, we use the same unigram model as before and
perform an additional summing at each step to calculate the
most likely abstract goal.

The recognizer predicted abstract goals very well, with
83.9% accuracy and 100.0% of the cases converging. The
average convergence point was after 1.4/7.0 actions. Table 5
summarizes the results of all three experiments.

It is important to note that abstract goal recognition does
not occur in competition to, but rather in conjunction with the
specific goal recognition. Of course, it is best to recognize the
specific goal, which our unigram model seemed to do fairly
well, but we can also recognize the abstract goal earlier and
more accurately. There may be many cases where it will be
sufficient for the dialogue system to have just the abstract goal
in order to help the user.

4 Discussion

These initial results are encouraging, but there still remain
significant challenges for scaling up the system to sufficiently
complex domains. In this section, we discuss our goal recog-
nizer in light of the desiderata for dialogue systems we men-
tioned above. We then discuss several challenges that remain.

4.1 Desiderata
Speed Because it involves a simple probability lookup, our
recognizer is linear in the number of goals. Speed is a big
advantage to this approach. By comparison, logic-based rea-
soning recognizers like[Kautz, 1991] are exponential in the
size of the plan library.5 Several systems[Vilain, 1990;
Lesh, 1998] improve on this time complexity, but at the ex-
pense of expressiveness.

Early/partial prediction Our recognizer was able to make
correct predictions 3.1 actions through the input with 55.4%
overall accuracy, and give correct abstract results 1.4 actions
through the input with 83.9% overall accuracy. This early
prediction is crucial to our domain of dialogue systems.

Most work does not report how early the recognizer makes
correct predictions. Lesh[1998] simulates a task-completion
agent, which, upon recognizing the user’s goal, steps in to
complete the task. He reports6 a convergence point of 8.7 for
an average plan length of 26.8 actions for the task of search-
ing for a printer with attributes (4 predicates) and a conver-
gence point of 4.9 actions for an average plan length of 17.9
actions for a restricted cooking domain, both with 100.0%
accuracy since Lesh uses a ‘strict consistency’ approach. For
most domains, however, (like the full Unix corpus), it is un-
clear if Lesh’s system could make such early predictions. Be-
cause it is based on ‘strict consistency’, a goal hypothesis
must become logically impossible before it can be ruled out.
In fact, even in for the domains he reports statistics in, the rec-
ognizer rarely recognizes the user’sactual goal exclusively,
rather, based on the set of possible goals, it tries to recognize
asufficientgoal that covers all possible goals. As Lesh points
out, many domains do not lend themselves to the prediction
of sufficient goals.

Portability The portability of our goal recognizer depends
on the existence of a plan corpus. If a plan corpus exists or
can be created for the new domain (see section below), all
we have to do is use it to train models for the new domain.7

On the other hand, most goal recognizers (e.g.,[Vilain, 1990;
Carberry, 1990a; Kautz, 1991; Charniak and Goldman, 1993;
Paek and Horvitz, 2000]), require a complete, hand-crafted
plan library in order to perform recognition, which can re-
quire a significant amount of knowledge engineering for each
domain.

Hong’s recognizer[Hong, 2001] only requires knowledge
of plan operators, not the library, but it is unable to make early
predictions, as it usually does not make end-goal predictions

5Granted, these systems are performing plan recognition and not
just goal recognition, which makes the comparison unfair. However,
very little work has been done on goal recognition in its own right,
so plan recognizers are all we have to compare against.

6Lesh reports the average length of plan with and without the
task-completion agent, which we used to extrapolate these conver-
gence points.

7Models could also be trained for different individuals within
a single domain by using a user- (or group-) specific corpus. With
other approaches, user-specific models have greatly improved recog-
nition (e.g.,[Lesh, 1998]).



until after it has seen the entire executed plan. Lesh[1998]
requires only knowledge of plan operators and domain goal
predicates.

4.2 Challenges
Domain size With only 11 goals and 22 action types, the
Unix domain is quite small, and it is unclear whether our
recognizer would scale to larger domains. One immediate
fault of our recognizer is that it does not handle parameterized
goals. Each of the 11 goals above is treated as an atomic unit
or goal schema without instantiated parameters. One straight-
forward way to handle parameters would be to treat a goal
schema as an abstract goal, with each possible set of parame-
ter instantiations as a separate, more specific goal. However,
this would explode the number of goals and, in the case of 2
or more parameters, lead to a multiple-inheritance abstraction
hierarchy, which is not supported by our current abstract goal
score calculation model.

Hierarchical plans Another shortcoming of the current
recognizer is that, although it handles goal abstraction, it does
not handle hierarchical plans. Complex plans covering longer
time-scales are less likely to be identifiable from a few ob-
servations alone (which tend to reflect more immediate sub-
goals). Ideally, we would want to recognize subgoals for par-
tial results, even if we still cannot recognize the high-level
goal.

Data collection In some domains (like operating systems),
it may be possible to collect enough data from users to train a
recognizer. In most domains, however, it will be infeasible to
collect enough data on users solving goals in order to build ef-
fective statistical models. Furthermore, even it this data could
be collected, the inner structure of the user’s hierarchical plan
would not be explicit from the data (i.e., we can only observe
the primitive actions, not the subgoal structure that motivates
the actions).

As the next step in our research, we plan to explore the use
of AI planners to generate artificial plan corpora to be used
for training. The approach we plan to take combines plan-
ning and Monte-Carlo simulation to generate plan corpora.
The idea is to generate plans stochastically (allowing distri-
butions over different aspects of the planning process, such as
the goals, situations and action decompositions). By combin-
ing “context-free” Monte-Carlo simulation techniques with
richly context-dependent planning algorithms, we hope to ob-
tain a corpus that captures likely user behavior. In addition,
this generated corpus has the big advantage that the subgoal
hierarchy that generates the observed actions is also known.

5 Related Work
As mentioned above,[Vilain, 1990; Lesh, 1998] improve
speed over[Kautz, 1991], but do so at the expense of expres-
siveness. Also, these goal recognizers are typically not able
to make early predictions, as they are unable to distinguish
between consistent goals, even if one is more likely than the
other.

There are several lines of research which incorporate prob-
abilistic reasoning into plan and goal recognition.[Carberry,
1990a] and [Bauer, 1994] use Dempster-Shafer theory and
[Charniak and Goldman, 1993], [Pynadath and Wellman,
1995], and[Paek and Horvitz, 2000] use Belief Networks to
represent the likelihood of possible plans and goals to be at-
tributed to the user. All of these methods, however, require a
complete plan library as well as the assignment of probability
distributions over the library.

[Appelt and Pollack, 1991] and[Goldmanet al., 1999] cast
plan recognition as weighted abduction. However, this also
requires a plan library and the acquisition of weights for ab-
ductive rules. Abduction is also computationally hard, and
it is unclear whether such routines would be fast enough for
complex domains.

Probably the closest work to ours is[Albrechtet al., 1998],
which uses a dynamic belief network to do goal (quest) recog-
nition in a multi-user dungeon (MUD) domain. The belief
network takes into account actions, locations, and previous
quest in recognizing the player’s current quest. Similar to our
own work, their model uses bigram independence assump-
tions and uses a corpus to estimate conditional probability
distributions.

Although our approaches are similar, there are a few sig-
nificant differences. Albrechtet al. encode state into their
model (in the form of location and previous quest), whereas
our system only considers actions. We use abstract goals for
partial recognition, whereas their system only makes full pre-
dictions. Our system also uses an (n-1)gram backoff strategy
for smoothing.

6 Conclusions and Future Work

We have presented our initial work on using statistical,
corpus-based techniques for goal recognition. Our recognizer
is fast (linear time), does early and partial prediction, and can
be ported to new domains more easily than many recognizers.
We showed several initial experiments using the goal recog-
nizer, in which we achieved high recognition rates with fairly
high-accuracy early prediction.

There are several areas of future work that we are inter-
ested in. Several were alluded to above: scaling to larger
domains, incorporating hierarchical plans, and using AI plan-
ners to generate artificial plan corpora.

In addition, we plan to collect a larger human-generated
corpus in the Unix domain. With more training data, we
would like to explore using trigram and 4-gram models as
well as more advanced data mining techniques to train the
statistical model.

Finally, as mentioned above, we would like to see how per-
formance can be improved by training on a user-specific cor-
pus. Similarly, we would like to see how different planners
(say a reactive versus a deliberative planner) predict user be-
havior. Perhaps different planners could be used to model
different domains (say domains with time pressure), or even
different personality types.



Acknowledgments
We would like to thank Neal Lesh and Jun Hong for sharing
their data with us. We would also like to thank the anonymous
reviewers for their helpful comments.

This material is based upon work supported by Depart-
ment of Education grant no. P200A000306; ONR research
grant no. N00014-01-1-1015; and National Science Founda-
tion grant no. E1A-0080124. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the above-mentioned organizations.

References
[Albrechtet al., 1998] David W. Albrecht, Ingrid Zukerman,

and Ann E. Nicholson. Bayesian models for keyhole plan
recognition in an adventure game.User Modeling and
User-Adapted Interaction, 8:5–47, 1998.

[Alexandersson, 1995] Jan Alexandersson. Plan recognition
in VERBMOBIL. In M. Bauer, editor,IJCAI 95 Work-
shop on The Next Generation of Plan Recognition Sys-
tems: Challenges for and Insight from Related Areas of
AI (Working Notes), pages 2–7, Montreal, Canada, 1995.

[Allen et al., 2000] J. Allen, D. Byron, M. Dzikovska,
G. Ferguson, L. Galescu, and A. Stent. An architecture for
a generic dialogue shell.Journal of Natural Language En-
gineering special issue on Best Practices in Spoken Lan-
guage Dialogue Systems Engineering, 6(3):1–16, Decem-
ber 2000.

[Appelt and Pollack, 1991] Douglas E. Appelt and Martha E.
Pollack. Weighted abduction for plan ascription.User
Modeling and User-Adapted Interaction, 2:1–25, 1991.

[Bauer, 1994] M. Bauer. Integrating probabilistic reasoning
into plan recognition. In A. Cohn, editor,Proceedings of
the 11th European Conference on Artificial Intelligence,
pages 620–624, Amsterdam, Netherlands, August 1994.
John Wiley & Sons.

[Carberry, 1990a] Sandra Carberry. Incorporating default
inferences into plan recognition. InProceedings of the
Eighth National Conference on Artificial Intelligence,
pages 471–478, 1990.

[Carberry, 1990b] Sandra Carberry. Plan Recognition in
Natural Language Dialogue. ACL-MIT Press Series on
Natural Language Processing. MIT Press, 1990.

[Charniak and Goldman, 1993] Eugene Charniak and
Robert P. Goldman. A Bayesian model of plan recogni-
tion. Artificial Intelligence, 64(1):53–79, 1993.

[Chu-Carroll and Carberry, 2000] Jennifer Chu-Carroll and
Sandra Carberry. Conflict resolution in collaborative
planning dialogues. International Journal of Human-
Computer Studies, 53(6):969–1015, 2000.

[Goldmanet al., 1999] Robert P. Goldman, Christopher W.
Geib, and Christopher A. Miller. A new model of plan
recognition. InUncertainty in Artificial Intelligence: Pro-
ceedings of the Fifteenth Conference (UAI-1999), pages
245–254, San Francisco, CA, 1999. Morgan Kaufmann
Publishers.

[Hong, 2001] Jun Hong. Goal recognition through goal
graph analysis.Journal of Artificial Intelligence Research,
15:1–30, 2001.

[Kautz, 1991] Henry Kautz. A formal theory of plan recog-
nition and its implementation. In J. Allen, H. Kautz,
R. Pelavin, and J. Tenenberg, editors,Reasoning about
Plans, pages 69–125. Morgan Kaufman, San Mateo, CA,
1991.

[Leshet al., 1999] Neal Lesh, Charles Rich, and Candace L.
Sidner. Using plan recognition in human-computer col-
laboration. InProceedings of the Seventh International
Conference on User Modeling, Banff, Canada, June 1999.
Springer-Verlag. Also available as MERL Tech Report
TR-98-23.

[Lesh, 1998] Neal Lesh.Scalable and Adaptive Goal Recog-
nition. PhD thesis, University of Washington, 1998.

[Lochbaum, 1998] Karen E. Lochbaum. A collaborative
planning model of intentional structure.Computational
Linguistics, 24(4):525–572, 1998.

[Manning and Scḧutze, 1999] Christopher D. Manning and
Hinrich Scḧutze. Foundations of Statistical Natural Lan-
guage Processing. MIT Press, Cambridge, Massachusetts,
1999.

[Paek and Horvitz, 2000] Tim Paek and Eric Horvitz. Con-
versation as action under uncertainty. InProceedings of
the 16th Conference on Uncertainty in Artificial Intelli-
gence (UAI-2000), Stanford, CA, June 2000.

[Pynadath and Wellman, 1995] David. V. Pynadath and
Michael. P. Wellman. Accounting for context in plan
recognition, with application to traffic monitoring. In
Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, pages 472–481, Montreal, Canada,
1995. Morgan Kaufmann.

[Vilain, 1990] Marc Vilain. Getting serious about parsing
plans: a grammatical analysis of plan recognition. InPro-
ceedings of the Eighth National Conference on Artificial
Intelligence, pages 190–197, 1990.


