
Constructing custom semantic representations from

a generic lexicon

Myroslava O. Dzikovska, Mary D. Swift, James F. Allen

Computer Science Department

University of Rochester

Rochester, NY, USA, 14627

{myros, swift, james}@cs.rochester.edu

Abstract Language input to practical dialogue systems must be trans-
formed into a semantic representation that is customized for use by the
back-end domain reasoners. At the same time, we want to keep front-end
system components as domain independent as possible for easy portability
across multiple domains. We propose a transparent way to achieve domain
specificity from a broad-coverage domain-independent parser. We maintain
a domain-independent ontology and define a set of mappings from it into
a domain-specific knowledge representation. We use the mappings to cus-
tomize the semantic representations output by the parser for the reasoners,
and to specialize the lexicon to the domain, which improves parsing speed
and accuracy. This method facilitates our approach to instances of semantic
type coercion common in our domains by combining lexical representations
with domain-specific constraints on interpretation.

1 Introduction

Most dialogue systems are developed for specific domains to maximize per-
formance efficiency. Back-end system components use a knowledge repre-
sentation tailored to application needs, and the language input must be
converted into that representation. This is traditionally achieved by link-
ing the lexical definitions directly to the concepts in the domain-specific
ontology. This linking is also commonly used to bring in domain-specific se-
lectional restrictions to increase parsing efficiency. Adapting the system to a
new domain requires relinking the lexicon to the new ontology. We propose
an alternative method that is an easy, transparent way to achieve domain
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specificity from a broad-coverage, deep parser. In our approach, we main-
tain two ontologies: domain-independent for the parser and domain-specific
for the knowledge representation, and we define a set of mappings between
domain-specific knowledge sources and the semantic representations gener-
ated by the parser. Our method allows us to easily obtain domain-specific
semantic representations without modifying the lexicon or grammar. We
also use the mappings to specialize the lexicon to the domain, resulting in
substantial improvement in parsing speed and accuracy. In this paper, we
describe our customization method and illustrate how it facilitates our ap-
proach to semantic type coercion by combining lexical representations with
domain-specific constraints on interpretation.

The customization method described here was developed in the process
of adapting the TRIPS dialogue system [2] to several different domains,
including a transportation routing system [3] and a medication scheduling
system [7]. We assume a dialogue system architecture [1] that includes a
speech module, a parser, an interpretation manager (responsible for con-
textual processing and dialogue management), and a back-end application
responsible for the general problem-solving behavior of the system. Our
philosophy is to keep all components as domain-independent as possible for
easy portability, and to develop tools to facilitate component customization
to different domains. In particular, our goal is to develop a parser and gram-
mar that can handle language input from different application domains, but
still retain speed and efficiency.

2 Background

A common approach to customizing parsers for different domains uses cor-
pora to train a probabilistic model. For example, the TINA parser [16] in
the multi-domain dialogue system GALAXY [8] provides a mechanism for
semi-automatically learning a probabilistic model from a training corpus.
For each new domain, training data must be collected and annotated. Simi-
larly, parsers for information extraction use probabilistic models trained on
text corpora to learn subcategorization frames and selectional restrictions
in a given domain (e.g., [17]).

When suitable training corpora are not available, the domain ontology
can be used to customize a wide-coverage parser. One such system, AU-
TOSEM [15], uses COMLEX [11] as a source of reusable syntactic informa-
tion. The subcategorization frames in the lexicon are manually linked to the
domain-specific knowledge representation. The linking is performed directly
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from syntactic arguments (e.g., subject, object) to the slots in a frame-like
domain representation output by the parser. Rosé’s approach speeds up the
process of developing tutoring systems in multiple domains. In a similar
approach, McDonald [12] maps the output of a partial parser to the seman-
tic representation for information extraction to improve parsing speed and
accuracy.

Another issue that needs to be addressed in porting dialogue systems
between domains is linking the lexical entries to the domain semantic rep-
resentation. TINA lexical entries specify the frames to which the words are
linked, and GALAXY requires that all system components use a shared on-
tology. Therefore, for new domains the system lexicon needs to be re-linked
to the new ontology. The AUTOSEM architecture makes the re-linking eas-
ier by separating the re-usable syntactic information in COMLEX from the
links to the domain ontology.

While AUTOSEM re-uses syntactic information across domains, it does
not provide a way to re-use common semantic properties of words. In our
approach, we introduce an intermediate layer of abstraction: a generic on-
tology for the parser (the LF Ontology) that is linked to the lexicon and
preserved across domains. In this way, we preserve basic semantic features
associated with lexical entries (e.g., whether a word represents an event
or an object) as well as some general selectional restrictions that do not
change across our domains (e.g., the verb cancel takes an action or event
as an object argument). The parser uses this ontology to supply meaning
representations of the input speech to the interpretation manager, which
handles contextual processing and dialogue management and interfaces with
the back-end application. The domain-specific ontology used for reasoning
(the KR ontology) is localized in the back-end application. We then cus-
tomize the communication between the parser/interpretation manager and
the back-end application via a set of mappings between the LF and KR
ontologies (section 4).

Our method of separating domain-specific and domain-independent on-
tologies has a number of advantages. First, it allows developers to write
mappings in semantic terms at a higher level of abstraction, so there is no
need to address the details of the grammar and subcategorization frames
such as those used in COMLEX. Developers can instead use descriptive
labels for semantic arguments, such as AGENT, THEME, etc. Second,
it allows developers to take advantage of the hierarchical structure of the
domain-independent ontology and write mappings that cover large classes of
words (see example in section 4). Third, the mappings are used to convert
the generic representation into the particular form utilized by the back-end
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application, either a frame-like structure or a predicate logic representation,
without changing the grammar rules, as described in [6]. Finally, the lexicon
is specialized to the domain via the mappings, which both improves parsing
speed and accuracy and provides a transparent way to map lexical forms to
domain-specific meanings.

3 Domain-independent representation

Entries in the generic lexicon are linked to the LF ontology, a domain-
independent ontology for the parser. The LF ontology is kept as general as
possible so it can be used in multiple domains. The LF ontology consists
of a set of representations (LF types) that classify entities corresponding to
(classes of) lexical items in terms of argument structure and selectional re-
strictions, with a hierarchical structure inspired by FRAMENET [9]. Every
LF type declares a set of thematic arguments with selectional restrictions.
The LF ontology is used in conjunction with a unification-based grammar
that covers a wide range of syntactic structures.

The LF types are organized in a single-inheritance hierarchy. We im-
plement multiple inheritance via semantic feature vectors associated with
each LF type. The features correspond to basic meaning components and
are based on the EuroWordNet [18] feature system with some additional
features we have found useful across domains. While the same distinctions
can be represented in a multiple inheritance hierarchy, a feature-based rep-
resentation makes it easy to implement an efficient type-matching algorithm
based on [13]. More importantly, using semantic feature vectors allows us to
easily augment semantic information associated with a lexical entry during
the customization process and the semantic coercion operations described
below. Our choice of the LF types and semantic features included in the LF
ontology is linguistically motivated, an approach similar to Lascarides and
Copestake [10], who try to encode the knowledge “appropriate as a locus for
linguistically-relevant generalizations” in their lexical semantic hierarchy.

Word senses are treated as leaves of the semantic hierarchy. The follow-
ing information is specified for every word sense in the lexicon:

• Syntactic features such as agreement, morphology, etc.;

• LF type;

• The semantic feature vector (mostly inherited from LF type definition)

• The subcategorization frame and syntax-semantics mappings.
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(define-type LF CONSUME
:semfeatures (Situation (aspect dynamic) (cause agentive))
:arguments (AGENT (Phys-obj (intentional +) (origin living)))

(THEME (Phys-obj (form substance))))

(define-type LF DRUG
:semfeatures (Phys-obj (form substance)))

Figure 1: LF type definitions for LF CONSUME and LF DRUG.

To illustrate, consider the definition for the verb take in the sense to con-
sume substances, as in take aspirin. The LF type definition for the consume
sense of take is shown in Figure 1. It specifies a generic semantic feature vec-
tor associated with the type and selectional restrictions on its arguments.
Intuitively, LF Consume defines a dynamic event in which an intentional
living being (AGENT) consumes some substance. The lexicon entry for
take (shown in Figure 2) is linked to the LF type definition by mapping the
syntactic roles to the semantic argument labels in the LF type. The selec-
tional restrictions specified in the LF type arguments are propagated into
the lexicon. When trying to create a verb phrase, the parser checks that the
semantic feature vector specified in the argument restriction matches the
semantic feature vector associated with the noun phrase. Thus, only noun
phrases marked as substances in their feature vectors (form substance) are
accepted as direct objects of verb take in the consume sense.

The parser uses the LF types to construct a general semantic represen-
tation (the base logical form) of the input language, which is a flattened and
unscoped logical form using reified events [5]. A base logical form for take
aspirin is shown in Figure 3. Note the examples show only the parts of our
semantic representation relevant to customization. We use a richer logical
form in the system, and omit details such as speech acts and information
from determiners and quantifiers due to space limitations.

4 Constructing domain-specific representations

To produce domain-specific KR representations from the base logical form,
we developed a method to customize parser output. The current system
supports two knowledge representation formalisms often used by reasoners:
a frame-like formalism where types have named slots, and a representation
that has predicates with positional arguments. For this paper, we assume a
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(take
:lf LF CONSUME*take
:semfeatures (Situation (aspect dynamic) (cause agentive)))
:subject (NP (Role AGENT)

(Restriction (Phys-obj (intentional +) (origin living))))
:object (NP (Role THEME) (Restriction (Phys-obj (form substance))))

(aspirin
:lf LF DRUG*aspirin
:semfeatures (Phys-obj (form substance) (origin artifact)))

Figure 2: Lexicon entries for consume sense of take and for aspirin.

(TYPE e LF CONSUME*take) (AGENT e +YOU+) (THEME e v1)
(TYPE v1 LF DRUG*aspirin)

Figure 3: LF representation of take aspirin.

frame representation used by the reasoners.
We use LF-to-frame transforms to convert from base logical form into

a frame representation. These transforms specify the KR frame that the
LF type maps to, the mappings between LF arguments and KR slots, and
additional functions that can be applied to arguments during the transform
process. These transforms can be simple and name the slot into which the
value is placed, as in Figure 4, or more elaborate and specify an operator ex-
pression that is applied to the value, which we use, for example, for semantic
type coercion, described in section 6.

The Interpretation Manager takes the parser’s base logical form, deter-
mines the most specific transform consistent with it, and uses the transform
to convert the base representation into the domain knowledge representa-
tion.

To illustrate, consider the base logical form for take aspirin in Figure
3. The applicable transform is takemed-transform (Figure 4a), and when
the Interpretation Manager applies it, the frame shown in Figure 4c is the
result. The details of the process, and the way transforms are used to adapt
the base logical form to different possible formalisms used by reasoners are
described in [6]. Note that this single transform covers a class of words. For
example, the same transform also covers have used in the consume sense, as
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(a) (LF-to-frame-transform takemed-transform
:pattern (LF CONSUME TAKEMED)
:arguments (AGENT :ACTOR)

(THEME :MEDICATION))

(b) (define-class TAKEMED
:isa ACTION
:slots (:ACTOR PERSON)

(:MEDICATION MEDICINAL-SUBSTANCE))

(c) [TAKEMED
:ACTOR [PERSON +YOU+]
:MEDICATION [MEDICINAL-SUBSTANCE V1]

Figure 4: LF-to-frame-transform. (a) Transform for LF CONSUME type;
(b) Definition of KR class TAKEMED that the transform maps into; (c) The
KR frame that results from applying the transform in (a) to the consume
event representation in Figure 3.

in have an aspirin every day. Transforms can also utilize a lexical form of
a word. For example, medication names are all grouped as leaves under the
LF Drug type in our ontology, but the transform for drugs uses the lexical
form of the item transformed to determine the correct KR class name for
the mapping.

5 Lexicon Specialization

We use the transforms described above in a post-processing stage to cus-
tomize the generic parser output for the reasoners. We also use them in
a pre-processing stage to specialize the lexicon, which speeds up parsing
and improves semantic disambiguation accuracy by integrating the domain-
specific semantic information into the lexicon and grammar.

We pre-process every entry in the lexicon by determining all possible
transforms that apply to its LF type. For each transform, we create a new
sense definition identical to the existing generic definition plus a new feature
kr-type in its semantic vector. The value of kr-type is the KR ontology class
that results from applying this transform to the entry. Thus, we obtain a
(possibly larger) set of entries which specify the KR class to which they
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(kr-type MEDICINAL-SUBSTANCE) => (phys-obj (form substance))

Figure 5: Feature inference rule to derive a feature vector for kr-type
MEDICINAL-SUBSTANCE

belong. We then propagate type information into the syntactic arguments,
making tighter selectional restrictions in the lexicon. This allows us to
control the parser search space better and obtain greater parsing speed and
accuracy.

When specializing the lexicon to the medical domain, given the defi-
nition of the verb take and LF Consume in Figure 1, and the definitions
in Figure 4, the system determines the applicable LF-to-frame-transform,
takemed-transform, and adds (kr-type takemed) to the feature vector of
take. Next, it applies the argument mappings from the transform. For ex-
ample, the mappings specify that the LF argument THEME maps to KR
slot :medication, and therefore should be restricted to medicinal substances.
Since THEME is realized as a direct object of take, (kr-type medicinal-
substance) is added to the semantic vector in the object restriction. Similar
transforms are applied to the rest of the arguments.

As a result, a new definition of take with stricter selectional restrictions
is added to the lexicon, and suitable objects of take must not only be sub-
stances, but also identified as medicines. Similarly, the definition of aspirin
is specialized using a domain rule that maps drug names into medicinal sub-
stances. This rule sets the kr-type feature of aspirin to be a subclass of KR
type MEDICINAL-SUBSTANCE.

In the process of specialization, the parser uses a feature inference mech-
anism we have implemented in our system. In the generic lexicon, it is used
to express dependencies between feature values. For example, if something
is marked as a human being (origin human), it is also a solid object (form
solid-object). For the KR specialization process we add rules that declare
dependencies between the values of kr-type feature and the values of domain
independent features. It is used in particular in the way we handle semantic
type coercion, described in the next section.

The LF to KR mapping includes the feature inference rule in Figure 5,
which indicates that the form feature of all words identified as medicinal
substances in our domain should be set to substance. This does not make
a difference in this example because aspirin is already marked with (form
substance), but it will have the impact when other types such as prescription
are coerced into medications, as described in section 6.
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Generic Transportation Medical

# of senses 1947 2028 1954

# of KR classes - 228 182

# of mappings - 113 95

Table 1: Some lexicon statistics in our system

5.1 Evaluation

Lexicon specialization considerably speeds up the parsing process. We con-
ducted an evaluation comparing parsing speed and accuracy on two sets of
50-best speech lattices produced by our speech recognizer: 34 sentences in
the medical domain and 200 sentences in the transportation domain. Table
1 describes the lexicon and ontologies used in these domains. The results
presented in Table 2 show that lexicon specialization considerably increases
parsing speed and improves disambiguation accuracy. The times represent
the average parsing time per lattice, and the errors are the number of cases in
which the parser selected the incorrect word sequence out of the alternatives
in the lattice.1

The improvement comes from two sources. The tighter selectional re-
strictions limit the search space and help to correctly disambiguate according
to our domain knowledge. In addition, our parser has preference values as-
sociated with different senses, and correspondingly with constituents that
use those senses. We increase the preference values for specialized entries,
so they are tried first during parsing, which helps the parser find an inter-
pretation for in-domain utterances faster.2

The amount of work involved in domain customization is relatively small.
The lexicon and grammar stay essentially the same across domains, and a
KR ontology must be defined for the use of back-end reasoners anyway. We
need to write the transforms to connect the LF and KR ontologies, but
as their number is small compared to the total number of sense entries in
the lexicon and the number of words needed in every domain (see Table 1),
this represents an improvement over hand-crafting custom lexicons for every
domain.

1Choices in which a different pronoun, article or tense form were substituted, e.g.,
can/could I tell my doctor were considered equivalent, but grammatical substitutions of a

different word sense, e.g., drive/get the people were counted as errors.
2Unspecialized entries have a lower preference, so parses for out of domain utterances

can be found if no domain-specific interpretation exists.
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Transportation Medical

# of sentences 200 34

Time with KR (sec) 4.35 (870) 2.5 (84)

Time with no KR (sec) 9.7(1944) 4.3 (146)

Errors with KR 24%(47) 24% (8)

Errors with no KR 32% (65) 47% (16)

Table 2: Average parsing time per lattice in seconds and sentence error rate
for our specialized grammar compared to our generic grammar. Numbers in
parentheses denote total time and error counts.

6 Coercion rules

Certain semantic type coercions are frequent in our domains. For example,
in our medical adviser domain, the word prescription frequently appears in
contexts that require a word for (a type of) medication, as in (1) Which
prescriptions do I need to take? Intuitively, this is understood to mean (2)
Which medications specified by my prescriptions do I need to take? We have
adopted a practical approach to such coercions by applying a domain-specific
operator to the mismatched argument to produce an entity of the coerced
type. While this is a restricted approach compared to, e.g., [14], [10], we
adopt it as a transparent method of handling our domain-specific coercions
in the most efficient way for our system.

The first problem is for the parser to recognize (1) as a valid utterance in
spite of the semantic type mismatch, since prescription is not semantically
typed as a consumable substance, which is required for an argument of
take in its consume sense. An approach frequently taken by robust parsers
(e.g., [15]) is to relax the constraints in case of a type mismatch. However,
if we need to construct a semantic representation for this utterance that
is suitable for use by the back-end reasoners, the problem is deeper than
just finding a parse tree. If the literal meaning of prescriptions is used
during the interpretation process, the query asking for prescription objects
consumed by the user (Figure 6) would be sent to the medication knowledge
base, eliciting an empty result, since prescriptions are not recognized in the
knowledge base as consumable objects.3

3Arguably, reasoning about prescriptions as consumables could be implemented in the

knowledge base. However, in our system the context information needed to resolve some

instances of coercion is localized in the intention recognition module, and using operators

handled by the intention recognition is a way to take it into account. Such implementa-

10



(a) ASK ?y
(SET-OF ?y ?x (PRESCRIPTION ?x))
(TAKEMED v123) (:ACTOR v123 +USER+) (:MEDICATION v123 ?x)

(b)
(SET-OF ?y ?x (PRESCRIBED-MEDICATION (PRESCRIPTION ?x)))

Figure 6: (a) Query for Which prescriptions do I need to take with no type
coercion; (b) representation for prescriptions coerced to medication.

A correct interpretation needs a semantic representation for (1) that
resembles the semantic representation for (2). For this, additional informa-
tion must be interpolated - in particular, the relation that holds between
prescriptions and medications. We accomplish this in our framework with
a library of coercion rules. To handle the semantic type coercion of pre-
scription to medication, we define the following coercion rule, which uses a
prescribed-medication operator (known to the knowledge base) to declare
that prescriptions can be coerced into medications, in Figure 7a.

(a) declare-coercion-operator prescribed-medication
:arguments prescription
:return medication

(b) (prescription
:semfeatures (Phys-obj (information +) (kr-type PRESCRIPTION))
:lf LF Information-object*prescription
:coercion ((operator prescribed-medication)

(semfeatures (phys-obj (kr-type medicinal-substance)
(form substance))))))

Figure 7: (a) Operator to coerce prescriptions to medications. (b) Lexical
entry for prescription with coercion feature generated from operator in (a)

During the lexicon specialization process, information from coercion rules
is propagated into the lexical entries that have domain-specific mappings.
When the lexicon is specialized for the medical domain, the lexical entry for
prescription has a nonempty coercion feature (Figure 7b).

The coercion feature specifies the coercion operator that will be applied
during the interpretation process, and a set semantic features derived from

tion differences between components with different reasoning capabilities provide another

justification for the need to specialize parser output for different application back-ends.
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the operator returns type medicinal-substance (with the help of a feature
inference rule in Figure 5), allowing the coerced NP prescriptions to be
accepted in parsing contexts that require substances. For every noun phrase
with a nonempty coercion feature, the grammar produces an additional NP
representation for that item with a feature that indicates that a coercion
has occurred, and the original semantic features replaced by the features
specified by the coercion. During the transform process, the Interpretation
Manager applies the specified coercion rule, resulting in the (simplified)
representation for prescriptions in Figure 6b. This coerced representation is
then plugged into the query in Figure 6 in place of (PRESCRIPTION ?x).
The new query is sent to the medication database and results in the correct
answer: a set of medications.

Adding the information about possible coercion rules into the lexical
entries gives us an edge in efficiency, because only the coercions relevant to
our domain are attempted, and the interpretation manager can apply the
correct rule immediately. At the same time, the declarative coercion rules
can also be used in reference resolution. For example, consider the sequence
of utterances: I have a new prescription. When do I need to take it? The
obvious referent for it is prescription, but there is a type mismatch, because
take in this context prefers an argument that is a medicinal substance. The
PHORA system [4] can use the declarative coercion rules in the resolution
process. When a type mismatch is encountered, it searches the library of
coercion rules for an operator with suitable argument types to perform the
coercion and attempts to resolve the pronoun.

7 Conclusion

Our method of parser customization allows us to maintain a domain-indepen-
dent lexicon and grammar for improved domain coverage and portability,
and at the same time provides a straightforward mechanism for construct-
ing custom semantic representations that are optimally suited for specific
domain reasoners. Our lexicon specialization process improves parsing speed
and accuracy by using custom domain knowledge to boost domain-specific
word senses, tighten selectional restrictions on arguments and reduce search
space during parsing. We also use the domain specific information to han-
dle semantic type coercions common in our domains in a computationally
efficient manner.
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