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Abstract. Corpora for training plan recognizers are scarce and diffi-
cult to gather from humans. However, corpora could be a boon to plan
recognition research, providing a platform to train and test individual
recognizers, as well as allow different recognizers to be compared. We
present a novel method for generating artificial corpora for plan recogni-
tion. The method uses a modified Al planner and Monte-Carlo sampling
to generate action sequences labeled with their goal and plan. This gen-
eral method can be ported to allow the automatic generation of corpora
for different domains.

1 Introduction

Over the past 10+ years, many fields in Al have started to employ corpus-based
machine learning techniques. Plan recognition, however, seems to have lagged
behind. For example, we are only aware of a few plan recognizers [1-4] (the last
two are our own) that are trained on corpora. We believe a major reason for this
is the lack of appropriate corpora for plan recognition (which we will term plan
corpora).

It is not that the field could not make use of plan corpora. Besides the
machine-learning based systems mentioned above, many plan recognizers ([5-8],
inter alia) make use of probabilities, but only briefly mention (if at all) how
such probabilities could be discovered.® Additionally, corpora could be used to
evaluate the performance of a plan recognizer, or even compare performance
across recognizers (something which, as far as we are aware, has never been
done).

In this paper we present a general method for automatically generating la-
beled plan corpora. In Section 2, we present possible ways of getting plan corpora
from human sources and discuss their disadvantages. Then in Section 3 we in-
troduce our method for artificially generating corpora and show an example in
Section 4. We then discuss some general issues in Section 5. Finally, in Section 6,
we discuss related work and in Section 7, we conclude and mention future work.

3 A notable exception is [9].



2 Human Sources of Plan Corpora

In this section, we mention several plausible ways of gathering plan corpora by
observing humans. These can be divided into the kind of data that they make
available: unlabeled, goal labeled, and plan labeled data. We discuss each in turn
and then discuss the general difficulties of gathering human data.

2.1 Unlabeled Data

There are several techniques used in related fields for gathering unlabeled data,
which could be useful for plan recognition.

Several projects in ubiquitous computing [10,11] have gathered raw data of
a user’s state over time (location and speed from GPS data) which they use to
predict user activity. Plan recognizers, however, typically take action streams as
input.

Davison and Hirsh [12] collected a corpus of over 168,000 Unix commands
by observing 77 users over a period of 2-6 months. The corpus consists of
timestamped sequences of commands (stripped of arguments) as automatically
recorded by the history mechanism of tcsh. It is unclear how useful such unla-
beled data would be by itself for plan recognition (although Bauer [13] has done
work on using such data to automatically construct recipe libraries).

2.2 Goal-labeled Data

Much more useful to plan recognition are goal-labeled plan corpora, although
such corpora are even harder to come by.

Albrecht et al. [2] extract a plan corpus from the logs of a Multi-User Dungeon
(MUD) game. A log includes a sequence of both player location (within the game)
as well as each command executed. In addition, the MUD records each successful
quest completion, which can be used to automatically tag plan sessions with a
top-level goal (as well as partial state with the user’s location). Albrecht et al.
report that the corpus data is quite noisy: first because of player errors and
typos, and also because players in MUDs often interleave social interaction and
other activities. We should also note that the goals in the corpus are atomic, as
opposed to being parameterized goal schemas.

More tightly-controlled goal-labeled corpora have been gathered through
data collection efforts in the Unix [14] and Linux [4] domains. In these exper-
iments, test subjects are given a specific goal, such as “find a file that ends in
tex”, and their shell commands are recorded as they try to accomplish the goal.
The subjects then report when they have successfully accomplished the goal (as
there is no way to easily compute this automatically).

In these controlled experiments, goal labeling is much more reliable because
it is assigned a priori. Of course, this work can still be noisy, as when the subject
misunderstands the goal, or incorrectly believes he has accomplished it. Also,
this kind of data collection is expensive as compared to those mentioned above.
The above-mentioned data collections monitor the normal activity of subjects,



whereas these types of collections require subjects to work on tasks specifically
for the collection.

2.3 Plan-labeled Data

Of course, the most useful type of plan corpus would include not only the top-
level goal, but also the plan and situation.

Bauer [1] records user action sequences (and corresponding system state) in
an email program and uses a plan recognizer post hoc to label them with the
appropriate goal and plan. This post hoc recognition can potentially be much
more accurate than online prediction, because it is able to look at the whole
execution sequence. A potential problem we see with this approach is that if the
original plan recognizer consistently makes mistakes in predicting plans, these
mistakes will be propagated in the corpus. This includes cases where the plan
library does not cover extra or erroneous user actions.

2.4 General Challenges for Human Plan Corpora

In addition to the individual disadvantages mentioned above, we see several
shortcomings to this kind of human data collection for plan recognition.

First, this kind of data collection is most feasible in domains (like operating
systems) where user actions can be directly observed and automatically recorded.
This, unfortunately, excludes most non-software interaction domains. In fact, the
only way we can envision to gather data for other domains would be to have
it annotated by hand, which could be expensive and time-consuming (not to
mention error-prone).

Finally, a major shortcoming of the above work is that it is at most labeled
with a top-level goal. In most domains where plan recognition is used (e.g.,
natural language understanding), the system can benefit not only from the pre-
diction of a top-level goal, but also partial results where a subgoal is predicted.
This is especially true of domains with plans composed of large action sequences,
where the top-level goal may not become apparent until very far into the plan’s
execution. We imagine that manual annotation of plan labeling would be quite
tedious and error prone.

3 Artificial Corpus Generation

In contrast to human data collection, we propose the use of an Al planner and
Monte-Carlo simulation to stochastically generate artificial plan corpora. This
method can be used for any domain and provides a corpus accurately labeled
with goal and hierarchical plan structure. It also provides a cheap way to produce
the kind of large corpora needed for machine learning. The method is as follows:

4 Except for [1], although, as we mention above, the corpus can be skewed by the
original recognizer’s mistakes.



1. We modify an AI planner to search for valid plans non-deterministically.
2. We model the desired domain for the planner.
3. The algorithm does the following to generate each item in the corpus:

(a) Stochastically generates a goal

(b) Stochastically generates a start state

(¢) Uses the planner to find a valid plan for generated goal and start state

We first describe our modifications to an Al planner. Then we discuss issues
of domain modeling. We then discuss stochastic generation of the goal and then
of the start state. Finally, we discuss the characteristics of corpora generated by
this process.

3.1 Planner Modification

For plan recognition, we want to create corpora which allow for all possible plans
in the domain. Typical Al planners do not support this, as they usually deter-
ministically return the same plan for a given goal and start state. Many planners
also try to optimize some plan property (like length or cost) and therefore would
never output longer, less optimal plans. We want to include all possible plans in
our corpus to give us broad coverage.

We, therefore, modified the SHOP2 planner [15] to randomly generate one
of the set of all possible plans for a given goal and start state.® We did this by
identifying key decisions points in the planner and randomizing the order that
they were searched.

SHOP2 [15] is a sound and complete hierarchical transition network (HTN)
planner. SHOP2 is novel in that it generates plan steps in the order they will
be executed, which allows it to handle complex reasoning capabilities like ax-
iomatic inference and calls to external programs. It also allows partially ordered
subtasks. The planning model in SHOP2 consists of methods (decomposable
goals), operators (atomic actions), and azioms (facts about the state).

In searching the state space, there are three types of applicable decisions
points, which represent branches in the search space:®

— Which (sub)goal to work on next
— Which method to use for a goal
— Which value to bind to a parameter

In order to provide for completeness, SHOP2 keeps lists of all possibilities for
a decision point so that it may backtrack if necessary. We modified the planner
so that these lists are randomized after they are populated but before they are

® In principle, the corpus generation technique described here is possible using any
planner. The only caveat is that the planner must be randomized, which may or
may not be a straightforward thing to do. One of the reasons we chose SHOP2 was
its small code base and a modular design that was amenable to randomization.

5 There is also a fourth which deals with :immediate tasks, but that is beyond the
scope of this paper.



used. This one-time randomization guarantees that we search in a random order
but also allows us to preserve the soundness and completeness of the algorithm.
We believe the randomized version is equivalent to computing all valid plans and
randomly choosing one.

3.2 Domain Modeling

Each new domain must be modeled for the planner, just as it would if the intent
were to use the planner for its usual purpose. As opposed to modeling for plan
generation, however, care should be taken to model the domain such that it can
encompass all anticipated user plans.

Usually the planning model must be written by hand, although work has
been done on (semi-)automating the process (e.g., [13]). Note that, in addition
to the model of the plan library, which is also used in many plan recognizers, it
is also necessary to model state information for the planner.

3.3 Goal Generation

We separate goal generation into two steps: generating the goal schema and
generating parameter values for the schema.

Goal Schema Generation In addition to the domain model for the planner,
the domain modeler needs to provide a list of possible top-level goals in the
domain, together with their a priori probability. A priori probabilities of goals
are usually not known, but they could be estimated by the domain modeler’s
intuitions (or perhaps by a small human corpus). The algorithm uses this list to
stochastically picks one of the goal schemas.

Goal Parameter Value Generation In domains where goals are modeled
with parameters, the values of the parameters must also be generated.

Goal parameter values can be generated by using one of two techniques. For
goal schemas where the parameter values are more or less independent, the do-
main modeler can give a list of possible parameter values for each slot, along
with their a priori probabilities. For schemas where parameter values are not
independent, each possible set of parameter is given, along with their probabili-
ties.

Once the goal schema has been chosen, the algorithm uses this lists to stochas-
tically generate values for each parameter in the schema. At this point, a fully-
instantiated goal has been generated.

3.4 Start State Generation

In addition to a top-level goal, planners also need to know the state of the
world — the start state. In order to model agent behavior correctly, we need to



stochastically generate start states, as this can have a big effect on the plan an
agent chooses.

Generating the start state is not as straightforward as goal generation for
several reasons. First, in all but the simplest domains, it will not be feasible
to enumerate all possible start states (let alone to assign them a priori prob-
abilities). Second, in order to make the planning fast, we need to generate a
start state from which the generated goal is achievable. Practically, most plan-
ners (including SHOP2) are very slow when given an impossible goal, as they
must search through all of the search space before they notice that the goal is
impossible.

For these reasons, only a start state which makes the generated goal achiev-
able should be generated. Unfortunately, we know of no general way of doing
this.” We do believe, however, that some general techniques can be used for
start state generation. We discuss these here. The approach we have chosen is
to separate the state model into two parts: fixed and variable. In the fized part,
we represent all facts about the state that should be constant across sessions.
This includes such things as fixed properties of objects and fixed facts about the
state (for example, the existence of certain objects, the location of cities, and so
on).

The variable part of the state contains those facts which should be stochasti-
cally generated. Even with the fixed /variable separation, this part will probably
not be a set of independent stochastically generated facts. Instead, the domain
modeler must come up with code to do this, taking into account, among other
things, domain objects, their attributes, and other states of the world. It is likely
that values of sets of facts will need to be decided simultaneously, especially in
cases where they are mutually exclusive, or one implies another, etc. This will
also likely need to be closely linked to the actual goal which has been generated
to ensure achievability.

3.5 The Resulting Corpus

A corpus generated by the process described above will contain a complex dis-
tribution of plan sessions. This distribution results from the interaction between
(a) the a priori probabilities of top-level goals, (b) the probabilities of top-level
goal parameter values, (c) the algorithm for generating start states, and (d) in-
formation encoded in the plan library itself. Thus, although it cannot be used to
compute the a priori probabilities of top-level goals and parameter values (which
are given as input to the generator), it can be used to e.g., model the probabil-
ities of subgoals and atomic actions in the domain. This is information which
cannot be learned directly from the plan library, since the recipes and variable
fillers used are also dependent on e.g., the start state.

" One possibility might be backchaining from the goal state, although we have not
explored this.



4 An Example: The Emergency Response Domain

We have created a domain model in an emergency response domain and used it
to generate an artificial corpus. The domain includes such goals as setting up a
temporary shelter and providing medical attention to victims. The coded domain
consists of 10 top-level goal schemas, 46 methods and 30 operators. The plan
library coded in a fairly common way and does not merit any further discussion
here. For the rest of this section we discuss the generation of goals and start
states in order to illustrate what may be needed in moving to a new domain (in
addition to the creation of a plan library).

4.1 Goal and Start State Generation

As mentioned above, the domain includes 10 goal schemas which are specially
marked as top-level goals (the difference is not specified in SHOP?2 itself). In
addition, we added a priori probabilities to each of the goal schemas.

The goal schema was chosen based on those probabilities as discussed above.
The schema is then passed to a function which generates the parameter values
and the start state simultaneously. In particular, we start with the fixed start
state, then stochastically generate locations for movable objects, and then gen-
erate other domain facts based on goal schema specific code. We mention these
in order here.

Fixed State The fixed state consists mostly of fixed locations (such as towns
and hospitals), objects and their properties. It also includes inference rules sup-
ported in SHOP2 which represent things like object types and properties (e.g.,
adult(x) = can-drive(x)).

Object Locations As part of the variable state, we define a set of movable
objects. They are movable in the sense that we wanted to randomly choose
where they were located (such as ambulances and workers). We define a list of
sets of objects, for which it is not important where they are located, but only
that all objects in the set are in the same location (such as a vehicle and its
driver). We also define a list of possible locations, which is used to generate a
random location for each object set. (Note, we ensure in the fixed state that
locations are fully connected so we don’t have to worry about goal impossibility
at this step.)

Goal Schema Specific The rest of the state is created, together with parameter
values, in goal schema specific functions. In the emergency domain these were
typically very simple, usually just determining which object to use for parameter
values.

An example of a more complicated example is that of the goal schema of
clearing a road wreck, which takes a wrecked car as a parameter. As we do



not model the set of all possible cars in the world, we automatically generate a
unique car object as well as its necessary properties (e.g., that it’s wrecked, its
location, etc.) Note that in cases where extra properties are generated, these are
also stochastically generated from a priori probabilities (e.g., whether or not the
roads are snowy).

5 Discussion

In this section, we raise several issues about the utility of artificial generation
of plan corpora versus the collection of human plan corpora. As we have just
begun to generate and use such corpora, we do not believe we are in a position
to definitively answer these. Rather, we raise the questions and give some initial
thoughts, which we hope can lead to a discussion in the plan recognition com-
munity. The questions treat three general areas: the effort needed to generate
artificial corpora; the accuracy of such corpora; and the general power of the
technique.

Effort Obviously, the technique we describe above requires a certain amount of
work. Minimally, one needs to create a plan library as well as an algorithm for
generating start states. Plan library creation is known to be difficult and is a
problem for the planning community in general (cf. [13]). This may not be a
unique problem to artificial corpora, however, as a plan library would likely be
necessary anyway in hand-labeling human corpora. Start state generation is also
not trivial, although in our experience, it was much less work than the building
the plan library.

The main question which needs to be answered here is how the effort to
create the machinery for generating an artificial plan corpus compares to the
effort needed to gather and annotate a human corpus. Before we can answer
this, we not only need more experience in generating artificial corpora, but also
experience in producing human corpora - especially plan-labeled corpora.

Accuracy Another point is how accurately an artificial corpus can model human
behavior. Ideally, to test this, one would want to gather a human corpus and
independently generate an artificial corpus in the same domain and then make
some sort of comparison. Of course, care must be taken here, as we suspect that
the accuracy of an artificial corpus will be highly-dependent on the plan library
as well as the algorithm for generating start states. Another, more practical,
evaluation would be the comparison of the performance of a plan recognizer on
human data when it has been trained on artificial data versus human data.

Power Another question is in which situations an artificial corpus could be
successfully used to approximate human behavior. The technique presented here
makes the simplifying assumption (which is also present in most plan recognizers)
that the agent first creates an entire plan and then executes it, and that each
action is successfully executed. This obviously will not work well in domains



where this is not the case. In future work, we would like to adapt this technique
to use an artificial agent instead of a planner, to plan and simulate execution of
the plan in creating a corpus. This would allow us to simulate such phenomena as
action failure, replanning, and so forth. In general, we believe that the techniques
reported here can build on existing work in agents in modeling human behavior
and can be useful in most domains of interest in plan recognition.

6 Related Work

Conceptually, our work is based on work in NLP which uses grammars to stochas-
tically generate artificial corpora for training language models for speech recog-
nition [16]. Of course, there are many differences in methodology. Surface string
generation from a stochastic grammar typically assumes no context (state),
whereas state is very important in plan recognition. Also, in surface string gen-
eration, there is no “goal” which restricts acceptable output.

Probably the closest work to our own in the plan recognition field was done
by Lesh [14], who uses the Toast reactive planer [17] to generate action sequences
given a goal. However, none of the generation process was stochastic. It appears
that goals were hand-generated, the state was constant, and the planner was not
modified to make decisions non-deterministically, meaning that it would always
produce the same action sequence given the same set of goals.

7 Conclusions and Future Work

We have presented a novel technique for generating corpora for plan recognizers.
We combine the rich representation of an Al planner with Monte-Carlo sampling
to generate corpora of action sequences tagged with goal and plan. Also, as it is
artificially generated, it is easy to produce a very large corpus.

In future work, we want to move beyond just plans, and model an actual
agent. We believe this would allow us to more closely model agents that we would
want to perform plan recognition on, and would include phenomena such as plan
failure and replanning. This corpus generation method would allow us to have
access to this additional information (when an action failed, when replanning
occurs, ete.), which would not be readily available from hand-annotated human
data.
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