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Abstract

Dialogue systems for health communication hold out the promise of providing in-
telligent assistance to patients through natural interfaces that require no training
to use. But in order to make the development of such systems cost effective, we
must be able to use generic techniques and components which are then specialized
as needed to the specific health problem and patient population. In this paper, we
describe Chester, a prototype intelligent assistant that interacts with its user via
conversational natural spoken language to provide them with information and ad-
vice regarding their prescribed medications. Chester builds on our prior experience
constructing conversational assistants in other domains. The emphasis of this paper
is on the portability of our generic spoken dialogue technology, and presents a case
study of the application of these techniques to the development of a dialogue system
for health communication.
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1 Background and Motivation

Health care is rapidly becoming more elaborate and more expensive. Greater
emphasis is being placed on having patients manage their own care in their
own homes. Patients need to be able to do such things as manage a complex
prescription regimen or use in-home devices to monitor and evaluate their
condition. Of course, this is a burden for many patients, who generally have
trouble following complex instructions and cannot always interpret those in-
structions in the changing circumstances of everyday life.

Evidence of these problems is revealed in studies such as those that have shown
that regular phone contact by a nurse practitioner significantly improves the
quality of life in congestive heart failure patients [1]. Such in-home monitoring
by nurse practitioners, however, is not feasible in general: there are simply
not enough medical personnel to meet the need, and it would be prohibitively
expensive. The long-term goal of this project is to develop automated in-
home conversational assistants that can help patients manage their treatment
and assist in monitoring their health. The specific project we describe here
is Chester, a prototype spoken dialogue system that helps a patient manage
their prescriptions.

Devices are coming on to the marketplace that attempt to address this prob-
lem. For example, voice prescription labels provide audible label information to
help the elderly and the visually or cognitively impaired take their medication
correctly. Other devices for in-home monitoring of vital signs and conditions
range from glucose meters to cardiac health monitors to a variety of wearable
or even implantable sensors.

Such technologies provide some help but fall short in significant ways. In par-
ticular, they don’t help with the quite common exceptions that happen on a
frequent basis. For instance, a talking pill bottle can remind you to take a pill,
but can’t help you if were out of the house, missed a dose, and don’t know
whether to take a double dose now or not. A study of voice prescription label
technology found that while visually impaired participants found the audible
voice labels useful and convenient, they indicated that one improvement would
be to support understanding why one was taking a specific medication [2].

Of course, this information is usually available, either on the prescription in-
formation sheet (typically lost and printed in type too small for many to read)
or online (where the volume of data and the requisite computer skills are often
overwhelming). Our solution is to provide patients with a conversational assis-
tant that supports access to such information using natural, spoken language.
This technology is ideally-suited to home health environments for several rea-
sons. First, it is natural for people, requiring no training in its use. It is efficient,



since it exploits humans’ highly developed, built-in mechanisms for spoken in-
teraction. It is also expressive, in that one can express complex, novel ideas
using the standard mechanisms of language (and understand same). Spoken
conversation is also hands-free, which is very desirable for systems designed
to be unobtrusive assistants, for example in a home environment.

For such an approach to be viable, however, we need to be able support robust
spoken language understanding in order to provide reliable information. There
are several aspects to this issue. First, note that the system we describe helps
patients and/or their caregivers manage their medical care by providing re-
minders, answering questions, and engaging in dialogue to collect information
for monitoring a patient’s current state. The system does not make medical
decisions, but rather helps patients follow the instructions that they have been
given by their doctors, and provides status reports back to medical support
teams. Second, the system provides mechanisms so that the patient can have
confidence that the system has correctly understood their questions. One ob-
vious mechanism we use is that the system displays what it heard on the
screen for the patient to see. Another would be to always provide a fallback
to a human caregiver, for example by pressing “0” on a telephone interface or
clicking a button on a screen. Third, the system does not present information
that is not explicitly in the patient’s instructions from the doctor, or informa-
tion provided about their medications. For example, if the system says “you
can take aspirin,” it is because this is explicitly in the doctor’s instructions,
rather than being a decision that the system makes on its own. And fourth,
the system is designed to require a high degree of confidence that it has un-
derstood the user’s question in order to proceed without any clarification or
confirmation from the patient. We believe that these mechanisms can provide
the effectiveness of spoken dialogue interaction without excessive risk.

Finally, for such systems to be cost effective, we need portable dialogue tech-
nology, so that the cost and time to develop a system for a new application is
only an incremental cost in adapting generic technology. The TRIPS project
is aimed at developing such generic technology, and prototype systems have
been developed in a wide range of applications. This paper presents a case
study of the issues we faced in adapting our generic system to create a pro-
totype system that helps patients understand and manage their prescribed
medications.

1.1 The Prescription Compliance Problem

Several factors are converging to create a major new health care problem in
prescription compliance. First, there is the explosion in the number of phar-
maceutical therapies and the rate at which they are being prescribed. For



example, over 3.5 billion prescriptions were dispensed in the United States
alone in 2004 [3]. This is leading to more patients taking more pills. Second,
because of the increased specialization of medical practice and the way pa-
tients are assigned to specialists, these prescriptions tend to be assigned by
different providers at different times. This can result in complicated (and pos-
sibly even unsafe) combinations of prescriptions in a single patient’s regimen.
Finally, the problem is compounded by the fact that our population is aging.
Older patients are both more likely to have multiple conditions that require
separate medications, and are often more likely to have the types of conditions
that make keeping track of these more challenging.

These trends are combining to leave patients with unwieldy prescription regi-
mens involving multiple medications, each with its own characteristics and re-
quirements. Very quickly, patients are required to spend an inordinate amount
of time figuring out what to take and when to take it. Or, worse, they simply
give up and take the medication incorrectly (or stop altogether).

The statistics show that non-compliance is a serious problem. One study
showed that non-compliance causes 125,000 deaths annually in the U.S. [4]. A
review of the literature based on electronic monitoring of drug consumption
concluded that mean dose-taking compliance ranged from an already poor 71%
(+/- 17%) for once-per-day drugs to just 51% (+/- 20%) for drugs meant to be
taken four times per day [5]. The New York Times has labeled non-compliance
“the world’s other drug problem” [6]. Whatever the reason, it is clear that a
significant percentage of patients simply do not (or cannot) comply with their
prescribed drug regimen.

1.2 Conversational Systems

Conversational systems enable naive users to interact with complex applica-
tions in a natural way using speech, using human dialogue as a model [7]. Such
systems integrate many different technologies that have been developed indi-
vidually: speech recognition, language understanding, planning and reasoning,
language generation, text-to-speech synthesis. As these underlying technolo-
gies as well as dialogue technology itself have matured, research systems have
been developed in numerous domains, while successful systems of more limited
flexibility have started to be deployed commercially. At the same time, the fo-
cus of dialogue systems research has evolved to include issues of portability,
modularity and dynamic configurability [8].

Within this paradigm, we have for some years been developing conversational
assistants: computer systems that interact with their users using spoken nat-
ural language in order to help them solve problems. Starting from corpus



studies gathered using a “Wizard of Oz” setup [9,10], we have built a se-
quence of prototype collaborative planning systems [11-13]. More recently, we
have been extending this work to several new domains including an assistant
to a supervisor in a crisis management center [14], a purchasing assistant, an
assistant for managing teams of robots engaged in search and rescue[15], and
the Medication Advisor described in this paper. A key aspect of our research
is that a single set of generic spoken dialogue software components should be
used to handle all of the different applications. Our main motivation for this
is that we believe it will not be economically feasible to build such complex
systems from scratch for each application.

From a technical perspective, the medication compliance problem seems like
a relatively circumscribed domain in which it might be possible to develop an
intelligent computer assistant. The major problems involve maintaining the
patient’s medication schedule (notifying them as appropriate, helping with
rescheduling, etc.) and answering questions about the schedule and the drugs
involved. This paper describes the problems we faced as we built an initial
prototype of a system that assist patients in their own home using intuitive
and natural communication mechanisms.

2 The TRIPS Environment

Our initial prototype of the Medication Advisor is based on the architecture
developed for TRIPS, The Rochester Interactive Planning System [16], shown
in Figure 1. Components are shown as ovals, and knowledge sources as square
boxes. Generic parts are shown with white backgrounds, and the domain spe-
cific parts are shown in gray. Broadly speaking, the components are divided
among three main categories: Interpretation, Behavior, and Generation, and
the knowledge sources often are shared across several categories. The inter-
pretation components involve understanding what the user has said or done,
the behavior components manage the systems goals and reasoning, and the
generation components construct system contributions to the dialogue. We
consider each briefly.

Interpretation: The first stage of interpretation is speech recognition, which
draws its vocabulary from the common lexicon for the system, and produces a
list of possible interpretations for processing by the Parser. The Parser uses a
general lexicon and grammar of spoken dialogue utterances (developed incre-
mentally over several previous applications), and produces a meaning represen-
tation expressed in a domain independent semantic representation (the logical
form). The interpretation manager receives the parser output and performs
contextual interpretation. It resolves referring expressions such as pronouns
and definite noun phrases and interacts with the Task Manager which per-
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Fig. 1. Chester in the TRIPS Architecture with Domain Specific Aspects in Gray

forms plan and intention recognition. It also applies a set of ontology mapping
rules in order to convert the generic semantic representation into the domain
specific representation for Chester. It identifies the most likely intended speech
act (c.f. [17]) in the form of a collaborative problem solving action, and up-
dates the Discourse Context. A more detailed analysis of the problem-solving
model, including an example in the Medication Advisor domain, is presented
in [18].

Behavior: The Behavioral Agent is the autonomous “heart” of the agent. It
takes the collaborative problem solving act produced by the interpretation
manager and performs further intention recognition and then plans system
behavior based on its own goals and obligations, the user’s utterances and ac-
tions, and changes in the world state. Actions that require task- and domain-
dependent processing are performed by the Task Manager. Actions that in-
volve communication and collaboration with the user are sent to the Gener-
ation Manager in the form of communicative acts. Chester contains several
domain-specific components, including a medication knowledge base and a
rudimentary scheduling algorithm to reason about prescriptions. These do-
main specific aspects of the system formed the bulk of the work we had to
perform in order to construct the system.

Generation: The Generation Manager coordinates planning of the system re-



Fig. 2. Screenshot of user talking to Medication Advisor

sponses. Generation is typically divided into content planning, where the con-
tent of the system’s utterance is planned, and surface realization, where the
actual words to be spoken are constructed. Its behavior is driven by discourse
obligations (stored in the Discourse Context), and the directives it receives
from the Behavioral Agent. The glue between the layers is an abstract model
of problem solving in which both user and system contributions to the collab-
orative task can be expressed. While content planning is domain-specific in
TRIPS, the surface realization is performed by an independent surface real-
ization component [19].

2.1 System Demonstration

The Medication Advisor prototype appears to the user as shown in Figure 2.
In addition to displaying the system’s understanding of the user’s speech and
the conversation thus far (at the bottom of the screen), the system is embodied
as a graphical avatar in the shape of a pill. This could perform a few actions to
convey the system’s state, for example, idle, attentive, thinking, and speaking.
The thinking and attentive states proved most valuable in indicating when
Chester required extra processing time and expected the user to wait before
moving on. While the actions and visualization of the avatar were very simple,
they provided invaluable information and a natural focus of attention for the
users.



Patient: Can I take an aspirin? (1)
Chester: No, you are taking Celebrex and Celebrex interacts with aspirin. (2)
Patient: Oh. Could Celebrex cause headaches? (3)
Chester: No, headaches are not an expected side-effect of Celebrex. (4)
Chester: Do you have a headache? (5)
Patient: Yes. (6)
Chester: How severe is your headache on a scale of one to five. (7)
Patient: One. (8)
Chester: Your doctor says you can take Tylenol for mild headaches. (9)
Patient: Ok, I'll try that. (10)

Why am I taking Celebrex? (11)
Chester: You are taking Celebrex to help with your arthritis. (12)
Patient: Should I take one now? (13)
Chester: Yes, you are taking Celebrex every morning. (14)
Patient: Is there anything else I need to take now. (15)
Chester: Yes, you should take your Prinivil. (16)
Patient: Which one is that? (17)
Chester: It’s the yellow one. [shows picture] (18)
Patient: Could that be causing my headaches? (19)
Chester: Yes, headaches are an expected side-effect of Prinivil. (20)
Chester: Tylenol should help. (21)
Patient: Ok, thanks. (22)
Chester: You're very welcome. (23)

Fig. 3. Demonstration dialogue for Chester

Figure 3 shows a dialogue which we often use when demonstrating the system.
This dialogue, designed in collaboration with our medical collaborators, was
created to showcase the capabilities of the system and the potential for ad-
dressing the compliance problem. The user is an elderly woman, who is taking
a small number of commonly prescribed medications. She wakes up with a
headache and decides to ask Chester for help.

The user starts by asking a simple question:
Patient: Can I take an aspirin? (1)

The system interprets this as either a yes-no question about the ability to
take aspirin, or as a suggestion to take aspirin (now, i.e., at the time of the
utterance). In either case, the system must first verify whether taking aspirin
is possible. Note that it must identify that the user is asking about whether it
is advisable given their medical situation, not whether they could physically
swallow a pill. All of these decisions require the capability to recognize the
intentions underlying utterances (see Section 3.4). Once the correct intention is
identified, Chester cross-references its knowledge about the user’s prescriptions
with its knowledge base of drug interactions and side-effects. Since this search
turns up an interaction with one of the prescribed medications, the system
can immediately answer that taking aspirin is not permissible:



Chester: No, you are taking Celebrex and Celebrex interacts with aspirin. (2)

The user goes on to ask another question:

Patient: Oh. Could Celebrex cause headaches? (3)

At first glance, this is yet another yes-no question. The system could simply
look up the answer using its knowledge bases and tell the user the answer.
However, it is here that we begin to see the difference between a simple natu-
ral language front-end to a database query system and a true conversational
assistant. As part of interpreting the user’s utterance, the system again at-
tempts to recognize the intention behind the utterance—that is, why she said
what she did. In this case, the question about headaches adds evidence to the
hypothesis that the user is trying to treat a symptom (headache) with an over-
the-counter remedy (aspirin). This hypothesis regarding the user’s intention
was initially created during the processing of utterance (1), but at that time
there was not yet sufficient evidence for the system to take action based on it.
With the additional evidence from (4), the system is reasonably confident that
the user has a headache that they are trying to treat. As part of its response to
this type of user action, it consults its knowledge bases to determine whether
such a situation requires action on its part. It turns out that, in this scenario,
one of the other medications that the patient is prescribed for can result in
severe headaches, and that if these occur, it is a serious condition that should
be reported to the doctor immediately.

So, to summarize, the literal answer to the question about Celebrex causing
headaches is no. However, the system decides to take the initiative in the con-
versation and resolve the issue about the user’s headache, since it is potentially
serious. The result is the following utterances:

Chester: No, headaches are not an expected side-effect of Celebrex. (4)
Chester: Do you have a headache? (5)

After the user answers yes, Chester seeks to clarify the severity of the headache.

Chester: How severe is your headache on a scale of one to five? (7)
Patient: One. (8)
Chester: Your doctor says you can take Tylenol for mild headaches. 9)
Patient: Ok, I'll try that. (10)

The form of the question in (7) was suggested to us by our medical colleagues.
The information used in utterance (9) comes from explicit instructions from
the doctor associated with the prescription (i.e., if the headache had been
severe, Chester would have recommended the the patient call her doctor im-
mediately).



With the headache issue resolved, the system returns the initiative in the
conversation to the user, who decides to pursue her original line of question-
ing regarding Celebrex. The remainder of the dialogue illustrates the sorts of
questions that might reasonably arise in a Medication Advisor context.

Patient: Why am I taking Celebrex? (11)
Chester: You are taking Celebrex to help with your arthritis. (12)

The reason for taking a medication is an important aspect of the extended
notion of “prescription” required to support this kind of dialogue.

Another capability that we wanted to emphasize is the system’s ability to
reason about when the medications are supposed to be taken (as opposed
to the “why” emphasized thus far in the dialogue). This is an ideal problem
for Al-based scheduling technology to help people by giving reminders and
answering questions about when they should take their pills (see Section 4.5).
So, for example, the user continues:

Patient: Should I take one now? (13)
Chester: Yes, you are taking Celebrex every morning. (14)
Patient: Is there anything else I need to take now? (15)
Chester: Yes, you should take your Prinivil. (16)

Th user continues with a request to help identify the pill, and Chester responds
by showing a picture from its medication knowledge base.

Patient: Which one is that? (17)
Chester: It’s the yellow one. [shows picture] (18)

In the rest of the dialogue, the user follows up on her earlier headache question
and then completes the dialogue.

Although the system is fully implemented, it is far from a robust, complete
product suitable for fielding in real situations. Specifically, its knowledge base
contains information on only 10 medications, it has no user adaptation in its
speech recognition that would be required for high-accuracy recognition, it
does not have a full range of common user goals that would be typical in
real use of the system, and attaining sufficient linguistic coverage will require
further extensions to the lexicon, grammar and ontology. It does, however,
provide a demonstration of potential feasibility of such technology, and we
are currently working to resolve the problems above to produce a system
sufficiently capable to support controlled experiments in usability and medical
effectiveness.

In the rest of this paper, we describe the technical challenges we faced in
building this initial version of Chester.
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3 Customization of the Interpretation Processes

One of the challenges facing developers of a dialogue system in new domains
is building the various models of language needed for effective processing. The
typical way to address this problem these days is by collecting a corpus of
training data. But this is not a workable strategy for most dialogue applica-
tions. It is typically very expensive to collect and annotate large amounts of
dialogue relevant to a system that doesn’t exist yet. We have been pursuing
a different approach that involves using generic language models, including
statistical n-gram models (c.f. [20-22]) trained from a variety of other dia-
logue domains, a generic lexicon that at the time covered approximately three
thousand of the common core English words (lemmas; standard morphological
variations are generated automatically in the lexicon), and a comprehensive
grammar of spoken dialogue that was and still is under continual development
using data from multiple domains. In addition, we have generic components for
discourse processing [23], including speech act identification [24,25], reference
resolution [26,27] and ellipsis processing (c.f. [28,29]). This section describes
what we needed to do to adapt the generic components to produce an effective
interpretation system for Chester.

3.1 Language and Pronunciation Modeling

Two important components of a speech recognition system are the language
model and the pronunciation dictionary (also called lexical model). In our
previous work on spoken dialogue applications, we devised a technique for
quickly building language models for new task domains that has delivered
very good performance [30]. Pronunciations were drawn from the 120,000-word
general-purpose CMU dictionary [31], which provided satisfactory coverage for
our applications. Unfortunately, for domains like the Medication Advisor, this
may not always be possible, as general purpose dictionaries by their nature
tend to have limited coverage of specialized lexicons, whereas domain-specific
dictionaries may not even exist.

The seriousness of the problem is compounded by the fact that, even if a
canonical pronunciation can be obtained, it is not safe to assume that it will
be known and used by uninformed users of the system. In previous research it
has been shown that adding non-canonical pronunciations in the lexical model
helps improve the speech recognizer’s performance [32]. We expect that the
same will be true in the Medication Advisor domain. Moreover, we propose
that these non-canonical pronunciations — as well as pronunciations for out-
of-dictionary words — can be generated automatically.
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In dictionary AASTIY AAPEROW S IH S

Automatic (1) AA S T IY AA P ER OW S AH S
AO STIY AAPEROW S IH S
AO STIY AAPEROW S AH S

Automatic (2) A0 S T IY OW P AHR OW S IH S
AASTIYOWPAHROW S AH S

Fig. 4. Alternative pronunciations obtained automatically for the word
OSTEOPOROSIS.

For illustration, in Figure 4, under the heading “Automatic (1)”, we give
examples of pronunciations for a medical term in our lexicon, obtained au-
tomatically with a domain-independent grapheme-to-phoneme converter [33].
We expect that general grapho-phonotactic knowledge gleaned out of a gen-
eral purpose dictionary will be suboptimal for the medical domain. One way
to improve the quality of our models is to learn automatically domain-specific
constraints from medical dictionaries that give guides to pronunciation (e.g.,
[34]). For example, the alternative pronunciations listed in Figure 4 under the
heading “Alternative (2)” are obtained by running the same converter on the
string “OSS-tee-oh-pa-ROW-sis”, which is the pronunciation indicated by the
National Cancer Institute on their website.

Additional improvements may be obtained by associating probabilities to al-
ternative pronunciations and adapting them dynamically; this way we can
personalize the pronunciation dictionary to specific users and correct the pos-
sible errors introduced by the grapheme-to-phoneme converter.

3.2 Adapting the Lexicon and Ontology

The TRIPS grammar and lexicon provide broad coverage for a variety of
constructions common in practical dialogue including questions, imperatives,
and fragmentary utterances such as noun or prepositional phrase fragments
given as answers to questions. To handle dialogue in the Medication Advisor
domain, we augmented our lexicon with names for medications, symptoms,
and medical conditions, as well as with previously missing domain-independent
senses for existing words, such as a Consume sense of take to handle utterances
such as “Can I take an aspirin”, and similarly for have, as in “I like to have
an antacid before bedtime”.

The domain-independent semantic representation (a logical form) produced
by the parser is designed to be suitable for discourse processing, and it is
used by components handling reference resolution and dialogue management
as input for further processing. The logical form representation is based on
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a domain-independent language ontology. The reasoning components use a
domain-specific ontology optimized for reasoning in the medication domain,
using specialized concepts as described in Section 4. To connect the two, we
use a set of mappings between the ontologies and a transform engine that
converts the syntax of the logical form to the domain-specific syntax used by
the reasoners. These mappings tailor the generic logical form to the needs of
the reasoning components built for a particular domain.

The ontology mapping facility also allows us to improve parsing speed and
accuracy on in-domain utterances. A specialization algorithm automatically
propagates domain-specific selectional restrictions into the lexicon for entries
that have domain-specific mappings, tightening the constraints on words rele-
vant to the domain. Word senses with domain-specific mappings are preferred,
allowing the parser to find a correct interpretation faster. This is especially
helpful for words such as take, which have a large number of senses, resulting in
a high degree of ambiguity. In the Medication Advisor domain, the Consume
sense of take as in (1) is strongly preferred and will be considered first, as
opposed to the Transport sense of take. Our lexicon specialization signifi-
cantly boosts parsing speed and accuracy compared to the generic parser, as
discussed in Section 5.1.

3.3 Interpretation and Reference Resolution

We found two key challenges for discourse interpretation in the Medication
Advisor domain. One arose from an increased occurrence of reference to kinds
rather than individuals or sets. Medicinal substances are of course frequently
mentioned in this domain, and often they must be interpreted as kinds. For
example, in utterance (2) above, “Why am I taking Celebrex?” the word Cele-
brez refers to the kind, not to any particular instance of Celebrex. Interpreting
references to kinds required us to extend to the grammar, the logical form lan-
guage, and the reference resolution algorithms.

The second interpretation challenge in this domain was that the language used
to speak about medical conditions and treatments abounds with metonymy
(mentioning one item in a conventional way to refer to a related item). For
example, in “I need to know when to take my prescription,” my prescrip-
tion is a metonymic reference to the medication associated with the speaker’s
prescription (since one can’t literally take a prescription). This metonymic
phrasing must be coerced back to the correct argument type for reasoning.
The back-end reasoners do not know how to place a PRESCRIPTION object in
a TAKE-MEDICINE event, and therefore the dosing schedule that the user is
requesting cannot be created. Rather, a MEDICATION object is expected by the
back-end planner. This situation creates an asymmetry between the represen-
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tations built for the language-processing front-end and the back-end reasoning
system. We want to allow the parser to accept “take my prescription” as an ac-
ceptable sentence, even though it violates the argument restrictions in place in
the back-end. We cannot solve this problem by removing all restrictions from
the parser, because we still want it to reject truly unacceptable combinations,
such as “*I need to know when to take my shoe.”

Our solution was to create a set of inference rules that specify the relation-
ships between certain object types that are commonly used in metonymic
constructions in this domain. Using the inference rules, the interpretation of
“my prescription” in “I need to know when to take my prescription,” is trans-
formed into “the medication of my prescription.” The inference rule adds both
the relationship (medication-of) and the additional hidden argument to the
interpretation of the sentence, so that the reasoner in charge of building the
dosing schedule receives a MEDICATION argument as expected.

3.4 Plan and Intention Recognition

A vital step of dialogue understanding in the Medication Advisor domain is
intention recognition. Intention and plan recognition go beyond what was said
and look at why it was said. What did the user hope to accomplish by uttering
this? What prompted him to utter it?

Intention recognition is critical since similar language patterns can be based
on different underlying user goals and need to be handled in very different
ways. Take, for example, the following two utterances, the second of which is
from the example dialogue in Figure 3:

(1) “Can I take a Celebrex?”
(2) “Can I take an aspirin?”

While these utterances are identical in structure, the user’s underlying goals
behind these utterances can be very different. Let us assume, for this example,
that we know that the user has a prescription for Celebrex, but does not have
a prescription for aspirin. Because we know that the user has a prescription
for Celebrex, we can infer that the intention behind the first utterance is
that he is likely querying about a previously-defined medication schedule.
For the second utterance, however, there must be some other motivation for
asking about taking the medication. It may turn out, as it does in our sample
dialogue, that the user has a headache, and desires to take aspirin to get rid
of the symptoms. This intention requires a very different response from the
system than that of the first utterance.

To capture the user’s intentions, we identify two aspects of intention: the
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collaborative problem solving act between the user and the system, and the
domain goal/plan. We consider each of these briefly.

Communicative intentions capture how each agent tries to individually affect
the joint problem-solving state. Together, the system and user do things like
adopting objectives, formulating and choosing recipes (prototypical plans),
and creating and executing solutions. The details of our collaborative problem
solving model can be found in [18,35] While the collaborative problem-solving
model is domain independent, it utilizes a domain-dependent plan library
which provides the system with knowledge of domain-level objectives, recipes,
and resources [36].

To obtain the domain knowledge for the Medication Advisor domain, we an-
alyzed a set a questions from an online medication FAQ. Some representative
objectives found in the FAQ include evaluating possible drug interactions,
taking over-the-counter drugs, managing medication schedules, querying med-
ication schedules, stopping undesirable symptoms, assessing side-effects, and
defining medical terminology. A subset of these goals were encoded, together
with corresponding recipes, to be used with the plan/intention recognition
system.

We analyze here, the first few exchanges of the sample dialogue in Figure 3 in
order to show how plan and intention recognition proceed in the system. We
reprint part of the dialogue here for the reader’s convenience.

Patient: Can I take an aspirin? (1)
Chester: No, you are taking Celebrex and Celebrex interacts with aspirin. (2)
Patient: Oh. Could Celebrex cause headaches? (3)
Chester: No, headaches are not an expected side-effect of Celebrex. (4)

Do you have a headache? (5)

The user starts with utterance (1), which the system must interpret. Intention
recognition sees that the user does not have a prescription for aspirin, but that
aspirin is an over-the-counter drug. The communicative intention inferred is
that the user and system jointly evaluate the domain plan of the user taking
an over-the-counter drug, namely aspirin. With this intention now known,
the rest of the system (back-end reasoners) determines that it is not a good
idea for the user to take aspirin, since she is taking Celebrex and aspirin and
Celebrex interact. This is generated and becomes utterance (2) by the system.

The user does not seem to have intended that the system understand why he
wants to take aspirin. However, through plan recognition, the system realizes
that taking an over-the-counter drug is not an end goal, or an objective unto
itself (c.f. [37]). Rather, it is a means towards a higher-level objective. However,
there is not yet enough information for the system to make an inference.
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The user then makes utterance (3). Intention recognition recognizes this as
an intention to identify some fact in the situation, specifically, if headaches
are a side-effect of Celebrex. Back-end reasoners find that this is not the case,
resulting in the system’s utterance (4).

At the same time, utterance (3) gives plan recognition sufficient information to
make a guess about the user’s higher-level goals. In the system’s plan library,
the plan on taking an over-the-counter medication is part of a larger objective
to relieve a symptom. The system knows that aspirin can relieve headaches and
infers that the user’s higher-level objective is possibly relieving a headache.
However, the system is not sure about this inference, so it produces utterance
(5) to confirm it. Such plan recognition enables the system to be helpful (c.f.
[38]). Later in the exchange the system, based on this inference, is able to take
initiative and suggest that the user take Tylenol for her headache.

Chester is able to perform intention recognition effectively because of the lim-
ited number of goals we have encoded. We are currently developing techniques
for effective and efficient intention recognition over large plan libraries by com-
bining statistical and symbolic techniques ([39]).

4 Building the Reasoning Components

The bulk of the development effort in Chester involved developing the medical
knowledge base and the reasoning engines required for the task. Such com-
ponents clearly differ dramatically from task to task and thus inevitably will
remain domain dependent. The goal of our work, however, is that once such
components are built for a domain, creating the dialogue system on top of it
is relatively low effort. Furthermore, many of the domain-dependent reasoners
are built using generic technology originally developed for other domains.

4.1  Knowledge Acquisition

In the Medication Advisor prototype, a crucial component is the system’s
knowledge base of prescription drugs and over-the-counter medications. The
preliminary knowledge base was built using a process that combined automatic
knowledge extraction and manual correction of the extracted knowledge.

Our starting point for the knowledge base was the public MedlinePlus Health
Information web site [40] provided by the National Library of Medicine and
the National Institutes of Health. This site provides reference information for
thousands of drugs for both the U.S. and Canada. Since the site was designed
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for the average web user, most of the information is described using English
sentences and the main task during knowledge acquisition was to extract the
relevant information from this English.

We needed to extract three classes of information from each page: substance
to brand name mappings, dosing schedules, and substance effects. We used a
combination of HTML extraction rules and simple text patterns to extract the
brand names and dosing information. Unfortunately, the third type of knowl-
edge, substance effects, is not as simple. Our automated system was helpful
in determining when a drug interaction was listed, but pulling the semantics
out of the natural English was difficult and left to the human researcher.

4.2 Representing Knowledge About Drugs

One of the main functions of the Medication Advisor knowledge base is to
represent drug interactions and their effects. However, classifying drug inter-
actions proved to be a difficult problem. The following examples show the
ambiguity that arises from MedlinePlus’s descriptions of drug interactions (all
taken from its description of “Antihistamines (Systemic)” [41]):

(1) Troleandomycin—Use of these medicines with astemizole or terfenadine
may cause heart problems

(2) If you are now taking, or have taken within the past 2 weeks, any
of the MAOQO inhibitors, the side effects of the antihistamines, such as
drowsiness and dryness of mouth, may become more severe

(3) Make sure you know how you react to the antihistamine you are tak-
ing before you drive, use machines, or do anything else that could be
dangerous if you are not alert.

(4) Antihistamines are used to relieve or prevent the symptoms of hay fever
and other types of allergy

The richness of these descriptions made their representation a challenging
research problem as well as an important application domain.

Example (1) is representative of the most prevalent class of interactions listed
in MedlinePlus. It is a drug-to-drug interaction that specifies the substances
that interact and what effect results. Obviously, drugs interact with other
drugs. However, the temporal constraints on such an interaction are both am-
biguous and undefined (contrast with (2)). In the development of the knowl-
edge base we made several assumptions about the correct interpretation of
these constraints. This is one of several areas where a more formal oversight
process would be required before the system was deployed.
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Example (3) shows that we need to represent substance interactions with other
“events” instead of just other substances. In this case, the event (or act) of
operating machinery should be avoided when taking antihistamines. Finally,
example (4) shows a case that is neither drug-to-drug nor drug-to-event, it
describes the effects of a substance on a symptom.

Without going into the details, we represented these and a wide range of
similar statements using three basic event expressions: having a condition,
taking a substance, and doing an activity. A history-of operator allows us to
describe past events. Thus for example (2) we get:

(history-of (taking MAO-inhibitor) (weeks 2))

It is worth noting that such qualitative relationships between events are much
more frequent in MedLinePlus than any kind of simple metric constraints.

4.3  Drug Effects and Interactions

With all activities represented as events, and a semantics for time periods
adequately defined, the next step was to represent the effects of a substance
when taken within different contexts. The schematic form of these rules can
be paraphrased as: “Under conditions C' with timing 7', the prescription con-
straint P applies. For each side-effect, the effect F will occur with frequency
F'. Further, if it is observed, then it indicates a problem of severity S and
the patient’s response should be R.” The condition C' is the drug inter-
action, such as (AND (taking MAO-inhibitor) (doing machinery)). The
prescription constraint P has a variety of options, but the most common is
doctors-permission, meaning “when prescribed by a doctor.”

The key representational challenge here was the representation of effects. The
common example of aspirin would lead us to a conclusion that substances
lessen the degree of a side-effect (as aspirin lessens pain). However this is only
one in a set of many types of effects. The following are a few examples from
the MedlinePlus database that we needed to represent:

(1) Although not all of these side effects may occur, if they do occur they may
need medical attention. .. cough; diarrhea; difficulty swallowing; dizziness;
fast heartbeat; fever; headache. . .

(2) (acetaminophen taken while having) liver disease—The chance of serious
side effects may be increased.

(3) Acetaminophen is used to relieve pain and reduce fever.

(4) Salicylates can make this condition (Gout) worse and can also lessen the
effects of some medicines used to treat gout.
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Again, without going into the details, we introduced a number of attributes
of events, such as severity-of, chance-of, and effectiveness-of. Drug effect (or
interaction) rules are then formulated in terms of increase or decrease of these
attributes. Thus the effect in example (2) is:

(increase (chance-of (having serious-side-effects)))
and that of example (4) is:

(decrease (effects-of (taking medicines-used-to-treat-gout)))

4.4 Prescribed Use and Dosing

After formalizing the representation for drug interactions and side-effects, the
final task was to represent the section of MedlinePlus which describes proper
dosing for the drug substances. The schematic form of these rules can be
paraphrased as “Do A at rate R with restrictions X for purposes of effect E.”
The action A is typically taking a medication, the rate R is something like “1
to 2 mg every eight to twelve hours,” and the intended effect F is as described
above. Where appropriate, we also encoded an action to be performed when a
dose was missed (for example “take now or skip if close to next” or “contact
doctor”). These rules form the core knowledge of the system about when and
how the patient’s medications should be taken.

4.5  Medication Scheduling

The scheduling component of the Medication Advisor is used to generate rel-
atively optimal, safe, and dynamically adaptive schedules given necessary in-
formation about the patient’s prescriptions. Input to the scheduler consists of
two types of information:

(1) Information regarding prescribed medications (name, dosage and rate,
ete.);
(2) Information describing constraints on taking the medication,
including timing constraints (e.g., “take before bed”), activity con-
straints (e.g., “do not take with food”), and drug interactions, including
with over-the-counter drugs.

Additional scheduler input comes in the form of events such as the patient
missing a dose.
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From this information, the scheduler generates a schedule taking into account
all known constraints. If a new prescription is added, the system should adjust
its schedule to satisfy the new constraints if needed. In addition, some of the
constraints are “soft,” such as “It is preferable to take Medicine A at least
3 hours before a meal.” The system should be able to find the best schedule
which satisfies as many soft constraints as possible. Finally, when some dy-
namic changes happen, the system should be able to adjust the schedule to
adapt to the new conditions. The remainder of this section briefly describes
our initial approach to these requirements.

First, we needed a temporal representation that facilitated the generation
of a quantitative schedule from a set of mixed qualitative and quantitative
constraints. After considering several options, we settled on a quantized rep-
resentation that divided each day into half-hour units. By quantizing time this
way, the number of possibilities the scheduler must consider is dramatically
reduced, and the final schedule is easy for people to understand and follow.

An important aspect of the temporal content of prescriptions is that infor-
mation is often expressed relative to prototypical events, such as breakfast,
lunch, dinner, mealtime, bedtime, and so on. For example, “medicine A must
be taken within 3 hours of lunch time,” “medicine B can be taken 6 hours
before bedtime,” and so on. To capture this, we chose a constraint-based rep-
resentation of events. Each primitive constraint relates the time of taking the
medication to the prototypical events. We should note this is not sufficient to
capture the complete range of dosing information seen in MedlinePlus (and
represented in the knowledge base as described above). For example, some
medications are prescribed to be taken “as needed for pain.” Others involve
taking varying amounts depending on other circumstances. In any case, our
representation can handle a fairly wide range of dosings, in particular those
that are possible to schedule definitively.

Given this representation, it was clear that part of the prescription scheduling
problem could be formulated as a constraint-satisfaction problem (as reviewed
in [42], for example). Other aspects, however, look more like an optimization
problem. For instance, a good prescription regimen would tend to minimize
the number of times a day that medication needs to be taken. In this initial
implementation, Chester could verify that a certain prescription regimen was
consistent with the stated prescriptions, but was not required to generate
optimal schedules. We are currently working on developing richer algorithms
for prescription scheduling that will be used in the next version of the system.

Finally, another challenge for the scheduling system is that it must be able
to adjust the schedule in light of certain changes, such as the patient forget-
ting to take a medicine at the right time. The appropriate repair strategy is
constrained by requirements specified in MedlinePlus, such as:
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“Medicine A should be taken at once if missed, unless it is less than 2 hours
until the next dose, in which case you should skip the dose.”

The original Chester scheduler could verify some changes proposed by the user,
but did not solve this problem in any generality. This is also a challenging area
for future research (as described, for example, in [43]).

5 Component Evaluations

We have performed a number of component evaluations that indicate the
plausibility of being able to construct a robust, usable dialogue system from
generic components. In this section we briefly summarize some of these com-
ponent evaluations, and provide pointers to where these results have been
presented in more detail.

5.1 PFEvaluating Parsing and Domain Customization

To assess portability, we evaluated the coverage of our generic grammar on
a set of five human-human dialogues in the Medication Advisor domain after
adding missing lexical entries, but not extending the grammar. The parser
produced correct full sentence syntactic and semantic representations for 70%
of the 294 utterances, judged for correctness by trained annotators (inter-
annotator reliability in our crisis management domain has a kappa score of
0.79 [44]). Our exact match evaluation requires not only syntactic constituent
accuracy (the standard for statistical parser evaluations [45]) but also correct
word sense disambiguation and predicate-argument relation assignment, which
are key for effective interpretation. Note that this score represents a lower
bound on parser coverage, because the correct parse may be ranked as a second
or third alternative. This result shows the generality of the grammar and
lexicon, as we obtain 70% complete and correct sentence interpretations before
we have put any effort into extending the grammar for the new domain. Our
previous research on other domains has shown that additional development
significantly improves parser performance, reducing the error rate by at least

50%.

[46] evaluated the effectiveness of our domain specialization technique that
uses mapping rules to convert the generic semantic representations to domain-
specific concepts. Our Medication Advisor domain model contained 182 classes
corresponding to domain-specific concepts. Mapping the generic parser ontol-
ogy to the new domain required 95 straightforward rules. We then compared
parsing speed and accuracy for specialized and non-specialized versions of
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the grammar on a speech lattice parsing task in which the parser must se-
lect the best sequence of words from 50 possible interpretations output by the
speech recognizer. The use of the domain mapping rules resulted in a 1.7 times
speedup in the parser and 50% error rate reduction, dramatic improvements
for a small amount of effort. To further improve parser performance, we are
enhancing our search and pruning algorithm [47] and developing techniques
for augmenting our deep parsing with statistical methods [48,49].

Note that the goal of our system is accurate intention recognition, not accu-
rate whole-sentence linguistic analyses. Our discourse processing techniques
work well starting from a set of meaningful fragments as long as the fragment
interpretations are semantically accurate. The critical capability for the sys-
tem (as for people) is to robustly make sense of what was heard and identify
the intentions. Also important is the ability to identify when an utterance is
not understood sufficiently well and to produce a clarification or confirmation
question to resolve the problem.

5.2 Fvaluating Intention Recognition

The main barrier to using plan and intention recognition within dialogue sys-
tems is that they are intractable in the general case [37]. Systems which do
utilize intention recognition (e.g., [50]) tend to only use a small number of
possible goals, as we did in the Chester demonstration system. Recent work
in probabilistic goal recognition (e.g., [51]) has made goal recognition more
tractable, but at a sacrifice of representational power (typically, representa-
tion of parameter values, among other things). These techniques would be
inadequate for a full Medication Advisor system.

To recognize intentions more generally without sacrificing expressive power,
we have developed techniques that use a combination of statistical and sym-
bolic techniques. The general idea is to use a fast statistical recognizer to
quickly identify an n-best set of possible intentions, and then use these to fo-
cus the reasoning in a slower symbolic intention recognizer. We have created a
statistical goal recognizer which runs in time linear to the number of possible
goals, making it fast and scalable. At the same time, it is also able to predict
goal parameter values, as well as make partial predictions for the cases where
it is not yet sure enough to make a full prediction [39]. We have evaluated this
recognizer in two diverse domains. In an emergency planning domain with
10 possible goal schemas, using simulation-derived data, we were able to get
96.4% precision and 67.5% recall for 3-best prediction, with the recognizer
converging on the correct answer after only having observed a little more than
half of the actions. In an operating system domain (Linux) with 19 possible
goal schemas, and based on actual user sessions, the recognizer achieved 68.8%
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precision and 38.7% recall for the 3-best prediction. An in-depth discussion of
the different results can be found in [39].

5.8  Fvaluating Pronunciation Modeling

In Section 3.1, we mentioned how difficult it is to find pronunciations for words
in the Medication Advisor domain and suggested that automatic techniques
could prove helpful. In order to assess the magnitude of the problem, we
collected all the words in the seven MedlinePlus HT'ML files used for knowledge
acquisition. There were 1357 unique words, of which 529 (39%) were missing
from the CMU Dictionary.

As explained above, our proposed solution is to use a grapheme-to-phoneme
converter to obtain pronunciations for out-of-dictionary words. Although our
joint n-gram model for bi-directional grapheme to phoneme conversion has
demonstrated excellent performance both on random words [33] and on more
difficult, specialized cases like names [52], we expect the lack of domain-specific
training to make the Medication Advisor domain difficult to handle.

The Merriam-Webster medical dictionary, accessible from the MedlinePlus
website, supplies a definition and pronunciation for only 267 of the 529 words.
This is further proof that even specialized dictionaries fail to cover a large
proportion of the medical terms, especially proprietary names (of the 262
words not included, about 200 are brand names). The 267 words include 68
proprietary drug names and 184 non-proprietary drug names and drug types;
the majority of the other 15 words are disease names.

We created our reference set by transcribing the pronunciations using the
CMU Dictionary phoneme set and conventions, including multiple pronunci-
ations where given. We then used our general-purpose grapheme-to-phoneme
converter to generate pronunciations for all the test words, and compared the
hypothesized pronunciations to those in the reference set. The results for both
the top hypothesis (1-best) and top 10 hypotheses (10-best) are shown in
Figure 5. The bottom part of the figure shows word accuracies (full pronun-
ciation is correctly hypothesized) and the top displays phoneme error rates
(summing over substitutions, deletion and insertion rates). We include results
that disregard confusions between schwa and other vowels, which account for
the majority of the errors — a typical type of error in grapheme-to-phoneme
conversion, but one that a recognizer can recover from easily if given enough
context.

Overall, the word accuracy is rather low, especially for the best hypothesis
(22-25%). Note that the same model’s performance on general vocabulary
exceeds 70% word accuracy [33]. 10-best performance (40-63% word accuracy)
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Fig. 5. Grapheme-to-phoneme conversion results on words in the Medication Advisor
domain.

is markedly improved, which indicates that adding domain-specific data to the
training of the model would prove very helpful.

When we compared the results for proprietary drug names and non-proprietary
drug names we were surprised to find that the former were somewhat easier to
pronounce. In part, this is probably due to the manufacturers’ desire to find
easy to remember names—hence easy to pronounce—for their drugs, though
it is often the case that in their quest for uniqueness, they break the grapho-
phonotactic rules of English. Again, a more detailed analysis of the errors for
non-proprietary drugs reveals that many errors are systematic and could be
easily avoided with a small amount of domain-specific data.

These results in no way should be taken as indications of likely recognition
results on these words, given that many factors contribute to a speech rec-
ognizer’s performance. However, they do provide hope that including auto-
matically generated pronunciations in a dictionary to be used by a speech
recognizer has significant potential. Only a direct evaluation of continuously
spoken utterances from real speakers will give us precise clues as to how much.

6 Conclusions and Future Work

The Chester system suggests a promising avenue of research addressing the
important societal problem of helping people manage their medications. As we
have described, it also presents a variety of challenges to our current under-
standing of how to build such systems. As we hoped, the main effort in building
the initial Chester system involved designing and implementing the back-end
medication reasoning systems. The generic components actually worked rea-
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sonably well on this new domain out of the box without modification. And
the domain specialization techniques proved to be effective at improving the
accuracy and efficiency of the parser.

We believe that the Medication Advisor is just the tip of the iceberg in terms
of providing a conversational assistant that can help people take care of their
health in their homes. Ultimately, we hope to expand the Medication Advisor
into a more general “Personal Medical Assistant,” which will integrate the
information provided by the various technologies and provide a personalized
point of contact for the residents of the home. The goal is not to replace
doctors, nurses, or pharmacists. Rather, we want to provide systems that
can help people better manage their part of their health care, and connect
them to health care providers, family members, and the broader community
as appropriate. We are in the early going, of course, but the need is great and
growing, and the future looks very interesting.

Before tackling these more ambitious goals, however, we plan to demonstrate
that robust, usable systems can be effective in simple, but real, applications.
At present, we are exploring possible options with collaborators in the Univer-
sity of Rochester Medical School. We are looking at problems where effective
techniques are known but they are too expensive (in terms of personnel) to
implement. Besides the prescription compliance problem, we are also investi-
gating systems that help patients with congestive heart failure and a system
for advising on diet.
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