
One-Shot Procedure Learning from Instruction and Observation
Hyuckchul Jung James Allen Nathanael Chambers Lucian Galescu

Mary Swift* William Taysom

Florida Institute for Human and Machine Cognition, Pensacola, FL 32502
*Computer Science Department, University of Rochester, Rochester, NY 14627

{hjung, jallen, nchambers, lgalescu, wtaysom}@ihmc.us swift@cs.rochester.edu

Abstract
Learning tasks from a single demonstration presents a
significant challenge because the observed sequence is
inherently an incomplete representation of the procedure
that is specific to the current situation. Observation-based
machine-learning techniques are not effective without
multiple examples. However, when a demonstration is
accompanied by natural language explanation, the language
provides a rich source of information about the relationships
between the steps in the procedure and the decision-making
processes that led to them. In this paper, we present a one-
shot task learning system built on TRIPS, a dialogue-based
collaborative problem solving system, and show how natural
language understanding can be used for effective one-shot
task learning.

Introduction
Our daily activities typically involve the execution of a
series of tasks, and we envision personal assistant agents
that can help us by performing many of these tasks on our
behalf. To realize this vision, agents need to have the
ability to learn task models. Researchers have attempted to
learn these models by observation, creating agents that
learn through observing the expert’s demonstration (Lau &
Weld 1999; Lent & Laird 2001). However, these
techniques require observing multiple examples of the
same task, and the number of required training examples
increases with the complexity of the task.

One-shot learning presents a significant challenge
because the observed sequence is inherently incomplete –
the user only performs the steps required for the current
situation. Furthermore, their decision-making processes,
which reflect the control structures in the procedure, are
not revealed. Natural language (NL) can alleviate these
problems by identifying (i) a useful level of abstraction of
observed actions; (ii) parameter dependencies; (iii)
hierarchical structure; (iv) semantic relationships between
the task and the items involved in the actions; and (v)
natural control constructs not otherwise observable.

Compilation copyright © 2006, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Sowa put it well, “Natural languages are the ultimate
knowledge representation languages. They are used by
everyone from infants learning their first words to
scientists discussing the most advanced theories of the
universe” (Sowa 2000). Encoded information in NL, as
well as humans’ natural ability to express it, needs to be
exploited in the one-shot learning of tasks.

In this paper, we present a system that learns procedural
knowledge through observation accompanied by a natural
language “play-by-play”. Various specialized reasoning
modules in the system communicate and collaborate with
each other to interpret the user’s intentions, build a task
model based on the interpretation, and check consistency
between the learned task and a priori knowledge.

In the following sections, we introduce a motivating
domain and present a task learning system built on top of a
dialogue-based collaborative problem solving system,
followed by its performance results on real world tasks.

Motivating Domain
While online purchasing is growing in popularity with
advances in e-commerce, automating online purchasing is
challenging because it consists of a series of steps within a
dynamic web environment that is often populated with
irrelevant information.

Figure 1 shows a sample dialogue in which a user
teaches the system how to buy a book by submitting a
requisition form with information that is found on a web
site. After a single session, the system has learned a task
model that can be executed almost flawlessly in tests with
other books. The dialogue provides the high level
information that is essential to learn a task:
• Task goal: line 1 shows the top-level action (i.e.,

purchase) and its parameter (i.e., book).
• Task hierarchy: line 8 indicates the start of a new sub

task, and line 25 & 31 tell the end of a (sub) task.
• Primitive steps: utterances (e.g., line 2) describe the steps

required to complete the task, and application actions
(e.g., line3) are associated with the steps to realize them.

• Parameters: user utterances also provide the abstract
information of the step and action parameters as well as
the relation between parameters.

• Control structure: special wording (e.g., “if”, “until”)
indicates conditionals, loops, etc.

Architecture of Task Learning System
We built a task learning system called PLOW (Procedure
Learning On the Web) as an extension to TRIPS (Ferguson
& Allen 1998), a dialogue-based collaborative problem
solving system that has been tested in many domains.

TRIPS System
The TRIPS system provides the architecture and domain-
independent capabilities for supporting mixed-initiative
dialogue in a range of different applications and domains.
Its central components are based on a domain independent
representation, including a linguistically-based semantic
form (the LF), illocutionary acts, and a collaborative
problem-solving model. Domain-independence is critical
for portability between domains: the system can be tailored
to individual domains through an ontology mapping system
that maps the domain-independent representations into the
domain-specific representations.

Figure 2 shows the main components of the complete
task learning system. The core components of TRIPS

include (1) a toolkit for rapid development of language
models for the Sphinx-III speech recognition system, (2) a
robust parsing system that uses a broad coverage grammar
and lexicon of spoken language, (3) an interpretation
manager (IM) that provides contextual interpretation based
on the current discourse context, including reference
resolution, ellipsis processing and the generation of
intended speech act hypotheses, (4) an ontology manager
(OM) that translates between representations, and (5) a
surface generator that generates system utterances from the
domain-independent logical form.

The IM coordinates the interpretation of utterances and
observed cyber actions, and interacts with the PLOW agent
to identify the most likely intended interpretations in terms
of collaborative problem solving acts (e.g., propose an
action, accept, …). The IM draws from the Discourse
Context module as well to help resolve ambiguities in the
input, and coordinates the synchronization of the user’s
utterances and observed actions. The TRIPS system has
been described in detail elsewhere (Allen et al. 2002,
Ferguson & Allen 1998), so we will focus the rest of the
discussion on the domain-specific components that enable
task learning from language.

Procedure Knowledge Learning System
The PLOW agent provides the core agent capabilities for
procedure learning and execution from interactions with
the user. While it is specific to the application of procedure
learning, it is not specific to any particular type of
procedure. It models the interaction in terms of a set of
collaborative “meta” tasks that capture the actions in
different modes of user interaction. PLOW maintains a
stack of active tasks and is always executing the topmost
task until it is completed.

The primary meta-task relevant to this paper involves
learning a procedure by demonstration. It encodes the
typical structure of the interactions involved in
demonstrating a new task, starting with explicitly naming
the procedure to be learned, then performing a sequence of
actions accompanied by a spoken play-by-play to define
the procedure, and completed by an explicit ending
statement. It will push new tasks onto its agenda in order to

1. “Let me teach you to buy a book"
2. "You go to the purchase form"
3. < Enters a URL in the browser and hits enter >
4. "We fill in the author field"
5. < Types an author into the author field >
6. "And the title field"
7. < Types a title in the title field >
8. "Now let me show you how to find the other

information"
9. "Go to Amazon"
10. < Opens a new tab, enters a URL in the browser >
11. "We select the books tab"
12. < Clicks the tab labeled “books”>
13. "Then select advanced search"
14. < Clicks the link labeled “advanced search”>
15. "Put the title here"
16. < Types the title into the title search field >
17. "And put the author here"
18. < Types the author into the author search field >
19. "Then click the search button"
20. < Clicks the search button >
21. "Now we select the page for the book"
22. < Clicks the link with the title of the book >
23. “This is the price”
24. < Highlights the price >
25. "We're done here"
26. < Switches back to the book purchase form >
27. "We put the price here"
28. < Types the price into the price field >
29. "Now submit the form"
30. < Clicks the submit button >
31. "OK that’s it"

Figure 1: Request to purchase a book

Figure 2: TRIPS architecture

deal with situations that interrupt the demonstration
temporarily. One such task involves clarification of a step
that was not understood, and another allows the system to
ignore actions while the user tries to restore an earlier state
after making a mistake. PLOW can also push another
learn-by-demonstration task on the stack when it
recognizes that the user explicitly defines a subtask before
introducing it as a step in the lower task. PLOW does not
perform sophisticated intention recognition, but depends on
the user signal of task initiation and termination.

PLOW uses its stack of active tasks to support the
interpretation of new utterances and cyber actions by
evaluating hypotheses generated from the IM. The IM uses
a set of conventional speech act interpretation rules to
suggest possible intended problem solving acts. It uses a
set of hand-built heuristics to pick its top hypothesis and
requests PLOW to evaluate its task coherence at every
stage in the dialogue. If rejected by PLOW, it tries alternate
hypotheses until one is found that makes sense in the
current task context. Once PLOW receives input that
makes sense given the current models, it uses the models to
identify the reasoning actions that it will pass to PALM
(Procedure Action Learning Module), which manages the
reasoning required to construct the procedures. The task
models also specify the content of responses that provides
the basis for the system utterances.

Figure 3 shows a highly simplified trace of the messages
between the IM, PLOW and PALM where the user
demonstrates the next step in a procedure. IDENTIFY-
SUBSTEP is a request to build a step described by the user
into the task representation and IDENTIFY-EXAMPLE is
a request to build an action that realizes the step. For each
request, PALM sends PLOW a confirmation reply that
includes the ID of a task or a step for future reference,
notification of any problems, and assumptions that were
made to interpret the request. The next section describes
how PALM processes these requests.

To build an executable task model, agents need to
understand how a human user perceives objects in an
application (e.g., links/buttons/fields in a web browser) and
learn how to identify them. Much of the semantic
knowledge in the natural language descriptions can be used
to help automate the identification of those objects that are
typically described in NL. The WebLearn module learns
how to identify such objects by connecting the semantic

IDENTIFY-SUBSTEP descriptions with the observed
action descriptions from WebWatcher, the listener that
observes user behavior on our web browser.

Acquisition of Task Knowledge
A task is built from primitive steps and hierarchical
subtasks. To build a task model, the system needs to not
only learn each primitive step, but also the relationships
between steps and the hierarchical structure of a task. This
section presents the process using the dialogue in Figure 1.

Information in TRIPS is expressed in AKRL (Abstract
Knowledge Representation Language), a frame-like
representation that describes objects with a domain-specific
ontology using cross-domain syntax. AKRL retains the
aspects of natural language that must be handled by the
reasoning modules. While the details of AKRL are not
presented in this paper due to limited space, examples in
this section show how it represents the natural language.

Task Representation for Learning and Execution
The goal of task knowledge acquisition is to construct a
task model that is not only executable by agents but also
applicable to further learning. To help an agent reason
about executable tasks, each learned task is explicitly
represented in a form that specifies the task’s goals, what
triggers the task, and when it is completed:

(task :goal <task description>
 :trigger <triggering condition>
 :completion-condition (state :completed-actions
 <list of actions required to achieve this task>)

A new task description is created from an utterance that
explicitly states what a user intends to demonstrate (e.g.,
“let me teach you to buy a book”, line 1 in Figure 1). The
IM informs PLOW of the user’s intention, and PLOW
enters into a learning mode by sending a “start-learn”
request to PALM with the task information. The condition
of task completion is based on the world state when a user
finishes the demonstration. In a simple case, the world state
can be the current ordered set of completed actions.

A task may also have a trigger: e.g., when a user says,
“let me teach you what to do when an email arrives”, the
email arrival is captured as a trigger. When such an event
occurs during execution, the agent invokes the task.

When a step and its actions are identified, PALM creates
a rule that describes when the step should be executed.
Each rule contains the precondition/name/parameters of the
step, and the specific actions that realize the step:

(rule :precondition
 (state :task <task description>

 :ordering-constraint <step-ordering>
 :condition <additional condition>)

 :step <step description>
 :actions <actions to realize this step>)

The precondition of each rule includes the task
description that is used as a cue for the step in the rule.

User says “click on the search button”
IM  PLOW: (commit (propose :action (choose :id c1
:object (button :assoc-with search)))
PLOW  PALM: (identify-substep :task T1 :step
(choose :object (button :assoc-with search)))
PALM  PLOW: (accepted :condition (step-id S11)
<<User clicks on button B423>>
IM  PLOW: (observed (submit-form :id B423))
PLOW  PALM: (identify-example :step S11 :action
(submit-form :object B423))
PALM  PLOW: (accepted ...)

Figure 3: Interaction between TRIPS modules

When initiating a task, the task is pushed onto the active
task stack and popped from the stack when it is finished.
For each rule, the task description in the precondition is
compared with the top element of the active stack. If there
is a rule with a matching precondition (including the task
description), the actions of the rule are executed and the
world state changes, which may lead to subsequent rule
firings until the task is complete. If a rule involves
invoking a subtask, the “:step” part in the rule describes the
subtask and no “:action” is specified. When such a rule is
fired, the subtask is pushed onto the active task stack.

Learning Primitive Steps
When a user describes each step in NL, PLOW sends
PALM a request to identify the step and build it into a task
representation. For instance, when a user says, “click the
search button” (line 19 in Figure 1), the utterance indicates
what action the user intends to perform (a CHOOSE) and
the arguments of this action (a BUTTON associated with
the action SEARCH). Then, as shown in Figure 4, PLOW
sends PALM a request to build the step into the task model,
providing the abstract knowledge about the step in AKRL.

Given the request to identify a step, PALM checks the
validity of the step based on its knowledge of the names
and parameters of legal primitive steps. If valid, PALM
records the step name and the value of each parameter.
Each primitive step identified by a user has associated
actions that realize the step. For instance, the CHOOSE
step can be realized by an action of submitting a form.
PALM expects the user to demonstrate this action.

When the user clicks on the search link, WebWatcher
observes this action and reports it. PLOW links the
observed action to the current step and sends PALM a
request to learn from this example. If the action is valid for
this step, PALM builds it into the representation of a
primitive step. Invalid actions are detected by checking
PALM’s knowledge base of legal actions for each
primitive step: e.g., filling a form is illegal for a step to
select a link. Figure 5 shows an example in which a user
performs an application specific action “submit-form” with
the form ID as its parameter value.

If the user had performed this step without any verbal
description, the learning system would not know the right
abstraction for representing the observed actions. For
instance, filling in a text field with some text may not
provide enough information to infer the abstract
information needed (e.g., title or author of a book). While
some steps could be described in NL without real

demonstration, such an approach is not always feasible. To
identify a web object (e.g., link, button, etc.), pointing or
highlighting is a more natural and effective method. A
natural language description of the demonstration could
often be unreasonably verbose, ambiguous, or technically
infeasible to interpret because of the difference between the
perceptual features a user refers to and the internal
representation of the object.

Learning Application Object Identification
Some actions require the identification of application-
specific objects (e.g., links, buttons, fields, etc. in a web
page), especially when they are represented in a dynamic
form (e.g., dynamic HTML files). For instance, the
SUBMIT-FORM action in Figure 5 refers to a form object
with the identifier B423; in future visits to the same web
page, the same form object will likely have a different
location on the web page.

When adding an action for a step that involves such
dynamic objects, PALM inserts a special perceptual action
called FIND-OBJECT into the rule representation for the
step. The “in-order-to” parameter of FIND-OBJECT (in
Figure 6) contains the step description that provides the
semantic context of the action. By using the contextual
information (i.e., the object to choose is described as a
button called “search”) forwarded from PALM, WebLearn
can learn object identification knowledge that not only
requires very little training but also provides robustness to
handle changes in style or structure.

In execution, the FIND-OBJECT action asks WebLearn
to find an object of interest and return its object ID. Later,
PALM refers to the ID in performing the action that uses
the object. To handle this dynamic object reference in the
task representation, the observed object ID (e.g. B423 in
Figure 5) is replaced by a variable in the rule
representation: e.g., in Figure 6, the “submit-form” action
has (value-of X29) where X29 stores WeLearn’s return ID.

Learning Parameter Dependencies
In Figure 1, the primitive steps that are identified by the
user utterances, “we fill in the author field” (line 4) and
“put the author here” (line 17) have the same parameter
that refers to the author of a book to buy. The learned task
model should have information that the two steps share the
same value. When the IM analyzes the utterances, it infers
that both refer to the same object, namely the AUTHOR of
B1, where B1 is the book to be bought, which was
introduced in the first utterance, “let me teach you to buy a

(akrl-expression :content I29 :context ((reln I29 :instance-of identify-substep :content V285 :procedure-id P223)
(reln V285 :instance-of choose :agent V291 :object V289) (the V289 :instance-of button :assoc-with V290)

 (the V290 :instance-of search) (the V291 :equals *calo)))
Figure 4: Request to identify a step given user utterance “CLICK THE SEARCH BUTTON” (line 19, Figure 1)

(akrl-expression :content I30 :context ((reln I30 :instance-of identify-example :content gui292 :step-id P292 :procedure-
id P223) (reln gui292 :instance-of submit-form :object B423)))

(AKRL-EXPRESSION :CONTENT I29201 :CONTEXT ((RELN I29201 :INSTANCE-OF IDENTIFY-EXAMPLE
:CONTENT GUI29200 :STEP-ID P29202 :PROCEDURE-ID P22301) (RELN GUI29200 :INSTANCE-OF
FILL-FIELD :OBJECT HTMLINPUTELEMENT23 :VALUE "Jeannette Walls")))

Figure 5: Request to identify an example for the step in Figure 4

book”. The same reasoning can be applied to other roles of
a book such as title. That is, the proper interpretation of the
knowledge already encoded in NL helps us determine
parameter binding which would otherwise require
numerous training examples.

Managing The Task Hierarchy
User utterances can be used as cues for the hierarchical
segmentation of a task. For instance, in Figure 1, “now let
me show you how to find the other information” (line 8)
indicates that a user starts to teach a new (sub) task (i.e.,
finding other information), and the subsequent utterances
will define this subtask. Given such interpretation, PLOW
sends PALM a request to push a subtask under the current
task. Then, PALM defines a new task and stores it in the
task representation, adding it to the precondition of
subsequent steps. When completion of a task is signaled by
an utterance such as, “we’re done here” (line 25), PLOW
sends PALM a request to pop the current task and return to
a pending task, if any. In this process, PALM builds a
completion condition into the definition of the finished task
based on the current world state. While decomposition or
segmentation of a task is difficult or almost impossible to
learn using observation-based techniques, the use of NL
makes it feasible, moreover with a single demonstration.

Learning Control Structures
Natural language can greatly simplify learning complex
control structure (e.g., conditions, iteration, loops, and
recursion) that otherwise would be infeasible for some
machine learning techniques and/or require multiple
examples for complete learning (Lau & Weld 1999). We
initially focus on a simple control structure of conditions.
Assume an email task of handling a book purchase request
in which a user says, “if the subject field contains this
(clicking the email subject which has the text of “book
request”), then find the book information.” Given the
utterance, PLOW sends PALM a request to identify a
conditional step. The request is similar to the “identify-
substep” request but with additional condition information
that is inserted into the precondition of a rule for the step.
Learning more complex conditionals (e.g., with an “else”
condition) will typically require seeing multiple examples.
This is an extension we are currently developing.

Revising a Task Model
To delete a step that was just identified by a user, she/he
can ask PLOW to delete it by saying, “forget it” or “undo

that”. Then, PLOW sends PALM a request to delete the
rule for the step referenced by a previously exchanged ID.
More flexible methods to revise a task model (e.g.,
combination of verbalization and GUI actions on a window
that shows a learned task) remain as future work.

Transfer of Knowledge
Because language identifies what actions are being
performed, we can relate the current action to prior
instances of the same action. The language description can
be parameterized so that the learned knowledge can be
used for similar tasks by providing different values for the
parameters. This enables transfer of knowledge to improve
learning. In fact, PLOW actually learns how to find and fill
in fields that the user has never described.

Furthermore, since PLOW can identify whether it
already knows actions corresponding to a step, it can learn
a hierarchical task involving previously learned tasks
without actually seeing a complete demonstration. For
instance, after teaching the system how to buy a book
(Figure 1), a user may give an instruction “now you need to
buy the book” in a dialogue for a different task (e.g.,
handling book request email). Given the instruction,
PLOW checks the description of each learned task to find
out whether it knows how to perform the described book
purchase task. That is, PLOW checks if each task
description corresponds to book purchasing. If any, PLOW
pushes the task into the current task as a subtask.

Demonstration and Discussion
The PLOW system learned the procedure to buy a book
shown in Figure 1 with only one demonstration, and
similar dialogues have also been tested on Amazon.com
and other online book retailer web sites.

To measure the impact of natural language, we evaluated
the performance of a “macro-recorder” that simply
recorded the web actions, ignoring user utterances. When
the user selected a link (or textfield, form, etc.) in the
training, it records the index of that link on the page (e.g.
the 23rd link). Due to the limited capability of macro-style
learning, we tested only the part of the task in Figure 1 that
involves searching for a book (lines 9 ~ 22 in Figure 1),
excluding the steps that fill in a requisition form. For
testing, the macro acts a little differently than a basic
macro in that it is parameterized with author and title.

We evaluated whether each system completed all the
learned steps and found the correct book detail page for
162 randomly selected books at Amazon.com and 155

(rule :precondition (state :completed-action (…..) :task (…..))
 :step (act :name choose :parameter ((arg :name object :value ((the V289 :instance-of button :assoc-with V287)
 (the V287 :instance-of search))))
 :actions ((act :name find-object :parameter ((arg :name type :value form)
 (arg :name in-order-to :value < the description of this step in AKRL >)))
 :returns (value :type textfield :set-to X29))
 (act :name submit-form :parameter ((arg :name object :value (value-of X29))))))

Figure 6: PALM task representation for the step built on the information in Figure 4 & 5

books at BarnesAndNoble.com (subset of Amazon’s 162
books). The execution of the task model acquired by
PLOW showed 97.5% and 96% success while the macro
showed 61.3% and 36.4% respectively. The PLOW error
was due to incorrect links identified by WebLearn even
though the learned task model was correct.

PLOW is also compared with a commercial tool for web
information extraction, AgentBuilder by Fetch
Technologies, which uses syntax-based web object
identification and provides a GUI demonstration interface
to the user. The task models built by AgentBuilder showed
similar performance – 96% and 99% success on the two
sites, respectively. However, compared with PLOW,
AgentBuilder requires a user to navigate multiple GUIs and
wizards, provide names for schema items and connectors,
and make choices from multiple radio buttons and popup
menus, leading to more than five times the number of
interactions to learn the same task.

In order to judge the effectiveness of PLOW with naive
users, we recorded five subjects as they taught a mock-up
system how to buy a book on the Amazon website. The
system recorded each verbal instruction and replied with
verbal acknowledgments. The users were surprisingly
similar in their approaches to searching. 73 of the 95
utterances can be interpreted by the current PLOW system
after very small lexicon and grammar updates. The other
22 utterances can be classified into three categories:

1. Dynamic Text: The user talks about text on the web
page, creating complex noun phrases that are
difficult to recognize and parse.

2. Instruction Repair: The user makes a mistake during
instruction and verbally repairs the situation, such
as, "I might have spelled the author wrong."

3. Complex Instruction: The user gives a complex
description to explain his actions, such as, "we
insert an n into jeannette <sil> alright."

Finally, PLOW is a general-purpose system that can be
applied to other web tasks and can be easily extended to
non-web tasks with instrumented applications that provide
an API for PLOW to observe the user’s actions (e.g., copy
and paste in a text editor) and perform the actions. PLOW
has been successfully demonstrated in other domains such
as weather forecasting and e-mail handling.

Related Work
There are several existing approaches to task learning. In
observation-based task learning, agents learn task models
through observation of the actions performed by an expert.
(Lent & Laird 2001) developed a system that learns actions
and their conditions from observation traces annotated by
an expert. (Lau & Weld 1999) applied the inductive logic
programming approach to find actions and their pre-
conditions from traces. A drawback of these approaches is
that they require multiple examples, infeasible for one-shot
learning. Other task learning techniques require expert

annotation of selected examples as opposed to learning via
observation (Garland et al. 2001).

To help a human expert provide agents with task
knowledge, researchers have also developed knowledge
acquisition tools such as the Tailor system (Blythe 2005)
that helps a user modify the procedure that is presented in
NL and reasons about the effect of the change. However,
neither of these systems can learn from observation.

Conclusion
We have presented a procedure learning approach based on
demonstration accompanied by a spoken “play-by-play”
and showed its effectiveness in learning simple real-world
tasks. The knowledge encoded in language enables agents
to learn complex tasks in a more accurate, robust, and
natural way. The task representation in this paper not only
retains the information from a user’s verbal description but
also stores it in an executable and computable form.
Furthermore, the acquired knowledge can be reused. The
key ideas from this approach could shed more light on the
usefulness of natural language in one-shot task learning.

Future work includes learning complex constructs (e.g.,
loop, recursion), reasoning about learned knowledge (e.g.,
completeness and error checking, optimization), and
generalization in further learning.

Acknowledgements
This work was supported in part by DARPA grant NBCH-
D-03-0010 under a subcontract from SRI International,
ONR grant N000140510314, and NSF grant 5-28096.

References
Allen, J.; Blaylock, N.; and Ferguson, G. 2002. A problem
solving model for collaborative agents. Proceedings of the
International Joint Conference on Autonomous Agents and Multi-
Agent Systems.
Blythe, J. 2005. Task Learning by Instruction in Tailor.
Proceedings of the International Conference on Intelligent User
Interfaces.
Ferguson, G., and Allen, J. 1998. TRIPS: An Integrated
Intelligent Problem-Solving Assistant. Proceedings of the
National Conference on Artificial Intelligence.
Garland, A.; Ryall, K.; and Rich, C. 2001. Learning Hierarchical
Task Models by Defining and Refining Examples. Proceedings of
the International Conference on Knowledge Capture.
Lau, T. and Weld, D. 1999. Programming by Demonstration: An
Inductive Learning Formulation. Proceedings of the International
Conference on Intelligent User Interfaces.
Lent, M. and Laird, J. 2001. Learning Procedural Knowledge
through Observation, Proceedings of the International
Conference on Knowledge Capture.
Sowa, J. F. 2000. Knowledge Representation: Logical,
Philosophical, and Computational Foundation. Brooks/Cole.

