
Incremental dialogue system 
faster than and preferred to its nonincremental counterpart 

 
Gregory Aist1 (gregory.aist@asu.edu), James Allen2 (james@cs.rochester.edu), 

Ellen Campana2,3,4,5 (ecampana@bcs.rochester.edu), Carlos Gomez Gallo2 (cgomez@cs.rochester.edu), 
Scott Stoness2 (stoness@cs.rochester.edu), Mary Swift2 (swift@cs.rochester.edu),  

and Michael K. Tanenhaus3 (mtan@bcs.rochester.edu) 
 

1Department of 
Computer Science 
and Engineering 

Arizona State University 
P.O. Box 878809 
Tempe AZ 85287 

2Department of 
Computer Science 

University of 
Rochester 

P.O. Box 270226 
Rochester NY 14627 

3Department of Brain 
and Cognitive Sciences 
University of Rochester 

P.O. Box 270268 
Rochester, NY 14627 

4Arts, Media, and 
Engineering Program 

Arizona State 
University 

P.O. Box 878709 
Tempe AZ 85287 

5Department of 
Psychology 

Arizona State 
University 

P.O. Box 871104 
Tempe AZ 85287 

 
Abstract 

Current dialogue systems generally operate in a pipelined, 
modular fashion on one complete utterance at a time. 
Evidence from human language understanding shows that 
human understanding operates incrementally and makes use 
of multiple sources of information during the parsing process, 
including traditionally “later” components such as 
pragmatics. In this paper we describe a spoken dialogue sys-
tem that understands language incrementally, provides visual 
feedback on possible referents during the course of the user’s 
utterance, and allows for overlapping speech and actions.  We 
further present findings from an empirical study showing that 
the resulting dialogue system is faster overall than its 
nonincremental counterpart. Furthermore, the incremental 
system is preferred to its nonincremental counterpart – 
beyond what is accounted for by factors such as speed and 
accuracy. These results indicate that successful incremental 
understanding systems will improve both performance and 
usability. 

Keywords: natural language understanding; dialogue 
systems; incremental processing. 

Introduction 
The standard model of natural language understanding for 
dialogue systems is pipelined, modular, and operates on 
complete utterances.  By pipelined we mean that only one 
level of processing operates at a time, in a sequential 
manner.  By modular, we mean that each level of processing 
depends only on the previous level. By complete utterances 
we mean that the system operates on one sentence at a time. 

There is, however, considerable evidence that human 
language processing is neither pipelined nor modular nor 
whole-utterance (Marslen-Wilson 1993). Evidence is 
converging from a variety of sources, including particularly 
actions taken while speech arrives. For example, natural 
turn-taking behavior such as backchanneling (uh-huh) and 
interruption occur while the speaker is still speaking. Eye 
movements to possible referents also occur while listening: 
individuals process instructions incrementally, making 
saccadic eye movements to objects right after hearing 
relevant words in the instruction (Tanenhaus et al. 1995); 
verbs appearing earlier in sentences affect which objects are 

brought into context, as determined by hearer eye fixations 
(Altmann and Kamide 1999). Other actions can also be 
taken based on partial utterances.  

Many different sources of knowledge are available for use 
in understanding. On the speech recognition side, 
commonly used sources of information include acoustics, 
phonetics and phonemics, lexical probability, and word 
order. In dialogue systems, additional sources of 
information often include syntax and semantics (both 
general and domain-specific.)  

There are also however some sources of information that 
are less frequently programmed.  These include such 
linguistic information as morphology and prosody.  
Knowledge-based features are also available, such as world 
knowledge (triangles have three sides), domain knowledge 
(here there are two sizes of triangles), and task knowledge 
(the next step is to click on a small triangle.) There is also 
pragmatic information available from the visual context 
(there is a small triangle near the flag.)  

In this paper we discuss some of the progress we have 
made towards building methods for incremental 
understanding of spoken language by machines. We first 
discuss some of our and others’ related work in this area. 
We then discuss the testbed domain that we have been 
developing, and show some of the characteristics of human 
dialogue in the domain. We then discuss the incremental 
architecture that we have been developing, highlighting its 
differences from traditional architectures. Finally, we 
present an experimental evaluation of the performance of 
the system showing that incremental systems are both faster 
than and preferred to their nonincremental counterparts.  

Related Work 
We have previously shown that incremental parsing can be 
faster and more accurate than non-incremental parsing 
(Stoness et al. 2005.)  In addition, we have shown that in 
our testbed domain the relative percentage of language that 
is of a more interactive style also increases over time (Aist 
et al. 2005.) 



Higashinaka et al. (2002) performed a linear regression 
experiment to find a set of features that predict performance 
of systems that understand utterances incrementally. The 
system evaluated by the authors is incremental in that 
dialogue states are updated as the sentence is processed. 
However this is a result of incrementally processing the 
input stream and not the type of continuous understanding 
we propose. In our approach we allow the parser to make 
use of information from different layers of processing (i.e. 
pragmatic constraints from verb-argument constructions, 
real world knowledge, etc). 

Rosé et al. (2002) describe a reworking of a chart parser 
so that “as the text is progressively revised, only minimal 
changes are made to the chart”. They found that 
incrementally parsing incoming text allows for the parsing 
time to be folded into the time it takes to type, which can be 
substantial especially for longer user responses.  Our current 
work operates on spoken input as well as typed input and 
makes extensive use of the visual context and of pragmatic 
constraints during parsing.   

DeVault and Stone (2003) describe techniques for 
incremental interpretation that involve annotating edges in a 
parser’s chart with constraints of various types that must be 
met for to the edge to be valid.  That has a clean and nice 
simplicity to it, but seems to impose uniformity on the sorts 
of information and reasoning that can be applied to the 

parsing process.  In our approach, advice to the parser is 
represented as modifications to the chart, and can thus be in 
any framework best for the source.   

Previous work by Schuler (2001, 2002, 2003) has moved 
away from a pipeline architecture by accessing different 
sources of knowledge while parsing the sentence.  Using 
real world knowledge about objects improves parsing and 
can only be achieved by analyzing the sentence from the 
start. Schuler makes use of potential referents from the 
environment much the same way that we have also done by 
the use of model-theoretic interpretations. Thus the system 
evaluates the logical expressions for all possible potential 
referents at each node of the tree to know whether they are 
possible in the current domain. The author provides an 
example where a prepositional phrase attachment ambiguity 
is resolved by knowing a particular fact about the world 
which rules out one of the two possible attachments. Thus 
this sort of knowledge comes into play during parsing. Even 
though the system described in the present paper shares the 
same goals in using more than just syntactic knowledge for 
parsing, our parser feedback framework does not require the 
rewriting of the grammar used for parsing to incorporate 
environment knowledge. This approach based on probability 
feedback directly affecting the parser chart is simpler and 
thus more applicable to and easily incorporated in a wider 
range of parsers and grammars. 

Testbed Domain: Fruit Carts 
To explore the effects of incremental understanding in 
human-computer dialogue, we devised a testbed domain 
(Figures 1 and 2) where a person gives spoken instructions 
to a computer in order to replicate a goal map (Aist 2004).  
On the map, there are named regions, some of which 
contain flags as landmarks; the screen also has two kinds of 
objects: abstract shapes such as triangles and squares, and 
“fruit” of various kinds (avocados, bananas, cucumbers, 
grapefruits, and tomatoes.) In this domain, certain steps 
were taken in order to reduce complexity and increase the 

1 okay so 
2 we’re going to put a large triangle with nothing 

   into morningside 
3 we’re going to make it blue 
4 and rotate it to the left forty five degrees 
5 take one tomato and put it in the center of that triangle 
6 take two avocados and put it in the bottom of that 

triangle 
7 and move that entire set a little bit to the left and down 
8 mmkay 
9 now take a small square with a heart on the corner 
10 put it onto the flag area in central park 
11 rotate it a little more than forty five degrees to the left 
12 now make it brown 
13 and put a tomato in the center of it 
14 yeah that’s good 
15 and we’ll take a square with a diamond on the corner 
16 small 
17 put it in oceanview terrace 
18 rotate it to the right forty five degrees 
19 make it orange 
20 take two grapefruit and put them inside that square 
21 now take a triangle with the star in the center 
22 small 
23 put it in oceanview just to the left of oceanview terrace 
24 and rotate it left ninety degrees 
25 okay 
26 and put two cucumbers in that triangle 
27 and make the color of the triangle purple 
 

Figure 1. Example human-human dialogue in the fruit 
carts domain. 

Figure 2. Fruit carts example screen. 



predictability of the spoken language.  In particular, all 
objects and names of regions were chosen to be easy to 
name (or read) and easy for the speech recognizer to hear.  
Human-human dialogue collected in this domain was used 

in the construction of the dialogue system.  An example of 
the human-human dialogue is shown in Figure 1. 

We collected a set of dialogs from human-human 
conversation in this domain. Our observations included the 
following: 

1. End-of-sentence boundaries tend to be fairly clear (at 
least to a human listener). Where a sentence begins, 
however, is quite difficult to say precisely, due to 
disfluencies, abandoned utterances, and so forth. This is in 
contrast to domains where speakers might tend to begin a 
sentence clearly, such as information retrieval ("Search for 
books by Kurt Vonnegut"). 

2. There seem to be two distinct strategies that people can 
employ: saying a direction all at once ("Put it one inch 
below the flag") or continuously ("Put it near the flag 
[pause] but down a bit [pause] a bit more [pause] stop.")  

3. Besides a pure All-at-once and Continuous strategy, 
people sometimes switch between them, employing Both. 
For example, the director might tell the actor to place an 
object "right on the flag [pause] down a bit [pause] keep 
going [pause] stop." We see these as possibilities along a 
continuum, using the same language mechanisms yet 
according different emphasis to the strategies. 

Our previous findings about these types of language 
include that continuous-style language uses fewer words per 
utterance than all-at-once language, and the words 
themselves are shorter in length as well.  Furthermore, the 
use of continuous language increases over the course of the 
dialogs. Specifically, the relative percentage of continuous 
language increases over trials. The relative increase in 
continuous language over time is statistically significant (by 
logistic regression; style as outcome, subject as categorical, 
trial as numeric. B=0.104 ± 0.037, exp(B) ≈ 1.11, p < 0.01) 
This is somewhat counterintuitive: it is well-known that  
interlocutors establish and refine referring expressions 
(Clark & Wilkes-Gibbs 1986), which ought to result in all-
at-once language being easier to use; continuous language 
must be very compelling.  

We used these human-human conversations to form the 
basis for formalizing various aspects of continuous 
understanding, and for gauging the behavior of the spoken 
dialog system that we built to operate in this testbed 
domain.  The resulting system is capable of interactions as 
shown in Figure 3, where the user’s utterance is processed 
as it is received, visual feedback is provided during the 
course of the utterance, and speech and actions can overlap. 
As in the human-human interactions, moving an object from 
one location to another takes time in the working system – 
that is, the objects are shown moving in a straight line from 
the beginning point (e.g. the bin at the bottom of the screen) 
to the end point (the flag in central park.)   

Traditional vs. Incremental Architecture 
Figure 4 shows a diagram of our incremental architecture 
for dialogue systems, as contrasted to a traditional dialogue 
system architecture.  

Figure 3. An example interaction with the 
incremental dialogue system. Note that in the top 
screenshot, halfway through the sentence, the large 
triangle is already highlighted.  



Incremental language processing as we conceive it involves 
a number of fundamental and inter-related changes to the 
way in which language understanding and generation 
occurs: 
(a) input sentences are processed before user turn ends, as 
opposed to processing only when turn is finished; 
(b) components of the architecture operate asynchronously 
with several operating simultaneously, in contrast to a serial 
one where only one module at a time can be active; 
(c) knowledge resources are available to several components 
at the same time, in contrast to a "pipeline" architecture 
where knowledge is sent from module to module; 
(d) there is overlapping speech and graphical output 
("action"), in contrast to presenting speech and other output 
sequentially; 
(e) system and user turns and actions can overlap as 
appropriate for the dialogue. 
We discuss some of the these distinctions in more detail 
below.  

In a traditional dialogue system architecture, each 
component processes input from other components one 
utterance at a time. In our incremental architecture, each 
component receives input from other components as 
available, in whatever amounts arrive. 

In a traditional system, each component feeds forward 
into other components. In our incremental architecture, each 
component advises other components as needed – and 
advice can flow both “forward” in the traditional directions 
and “backward” from traditionally later stages of processing 
(such as pragmatics) to traditionally earlier stages of 
processing (such as parsing.)  

In a traditional system, the internal representations 
assume a strict division of time according to what’s 
happening – the system is speaking, or the user is speaking, 
or the system is acting, and so forth.  In our incremental 
architecture, representations can accommodate multiple 
events happening at once – such as the system acting while 
the user is still speaking.  

In addition to these overall changes, our system 
incorporates a number of specific changes. 

1. A Segmenter (Aist 2006) operates on incoming words, 
identifies pragmatically relevant fragments, and announces 
them to other system components such as the parser and the 
visual display. 

2. Pragmatic information is provided to the parser in order 
to assist with ongoing parses (Stoness et al. 2005). 

3. Modeling of actions and events is done by means of 
incremental semantics (Aist, Stoness, and Allen 2006), in 

Figure 4. Changes to spoken dialogue system architecture to allow incremental understanding.  
Boxes show components; lines show message flow.  

In both types of systems, the lexicon and the discourse state are resources shared by input and output. 
Components and connections new to the incremental system are shown in dashed lines.  

Incremental understanding also places requirements on the speech recognizer (production of partial hypotheses), the 
parser (incremental construction of charts), the interpretation manager and behavioral agent (handling partial 

interpretations and actions), and the visual world simulator (incorporation of semantic models of partial actions) which 
are also important to the overall functioning of the system.  

This paper focuses on incremental understanding and thus the changes are to the understanding aspects of the dialogue 
system, including action-taking as representing direct evidence of understanding.   
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order to properly represent partial actions and allow for 
overlapping actions and speech.   

4. Visual feedback is provided to the user about possible 
referents while the user is speaking (Figure 3).  

Experiment 1: Speed of Incremental System 
vs. Nonincremental Counterpart 

We conducted a controlled evaluation comparing 
incremental understanding to its nonincremental counterpart 
in our testbed domain. In the nonincremental system, speech 
and actions alternate; in the incremental system, the actions 
and speech overlap.   

A total of 22 dialogues were collected, each of which 
consisted of two utterances and the corresponding system 
responses. Eleven of the dialogues were in the control 
(nonincremental) condition and eleven of the dialogues were 
in the experimental (incremental) condition. The utterances 
were in-domain and understandable by both the 
nonincremental and incremental versions of the system. The 
utterances were pre-recorded, and the same utterances were 
played to each version of the system. This technique 
allowed us to minimize variance due to extraneous factors 
such as interspeaker variability, acoustic noise, and so forth, 
and concentrate specifically on the difference between 
incremental understanding and its nonincremental 
counterpart.  The resulting dialogues were recorded on 
digital video.   

The incremental system was approximately 20% faster 
than the nonincremental system in terms of time to task 
completion, at 44 seconds per dialogue vs. 53 seconds for 
the control condition (single-factor ANOVA, F=10.72, 
df=21, p-value 0.004). 

Experiment 2: Ratings of Incremental System 
vs. Nonincremental Counterpart 

To further evaluate the effectiveness of the incremental 
system, we conducted an onlooker study where 18 subjects, 
mostly from the University of Rochester community, rated 
the interactions in the dialogues. First, each subject watched 
one video clip once and only once; then, the subject filled 

out written responses to questions about that video clip. In 
order to situate the present study with respect to other 
methods of evaluation of dialogue systems, we compared 
results from our experiment with the PARADISE model of 
dialogue system evaluation (Walker et al. 1997): that speed, 
accuracy, and match to user intentions well predict user 
satisfaction. Thus subjects provided responses for each 
dialogue video clip to each of four questions on speed, 
accuracy, match-to-intent, and satisfaction: 

 
[FAST] “How fast did the computer respond?”  
 [ACC] “How accurately did the system understand?”  
 [ACT] “How well matched were the computer’s actions 

to what the person wanted?”  
[SAT] “If you had been the person giving the commands, 

how satisfied overall would you be with the interaction?”  
 
Each response was provided on a Likert scale from 1 to 7, 

with 1 being “less fast”, “less accurate”, and so forth.  
In order to check that people’s responses were objectively 

correlated with actual system performance, four “wrong” 
system videos were included in the study, two for each 
condition (nonincremental control and 
incremental/experimental condition).  That is, the user in the 
video said one thing, but the system did something else.  To 
say that in another way, we experimentally manipulated the   
“right/wrong” response of the system to see how people 
would rate the system based on correctness. 

Using a linear regression model as in the original 
PARADISE framework, we confirmed that a linear model 
with speed  (FAST), accuracy (ACC), and match-to-actions 
(ACT) as input variables predicts well the output variable 
satisfaction (SAT) (R=.795, R Square=.631, Adj. R 
Square=.625; df=3, F=91.389, p<0.001; this and all 
subsequent statistical analyses performed in SPSS). Thus we 
replicated the main findings of Walker et al. with the 
experimental technique of the onlooker study. 

Given the nature of the input and output variables – 
seven-item Likert scale responses – it turns out to be the 
case that ordinal regression models are a better match to the 
experimental setup than the linear regression models.  

 
Table 1. Ordinal regression model showing relationship between satisfaction (SAT) 

and right/wrong system responses, taking various factors into account. 
Variable Parameter 

Estimate 
Std. 

Error 
Sig. Notes 

NTH .188 .058 .001  
FAST .770 .176 .000  
ACC 1.411 .341 .000  
ACT .616 .304 .043  
RIGHT=0 

(0=wrong, 
 1=right.) 

-1.855 .903 .040 Negative number means wrong responses are negatively 
correlated with user satisfaction. 

INC=0 
(0=control 
 1=incr.) 

-2.336 1.051 .026 Negative number means nonincremental processing is negatively 
correlated with user satisfaction. 



Ordinal regression models are specifically designed for 
cases where the variables are a set of levels that are ordered 
(N+1>N) but not necessarily linear (1 to 2 may not be the 
same as 4 to 5.)  We thus adopted ordinal regression models 
for the remainder of the analyses.  In addition, since some of 
the subjects indicated in written comments that they got 
used to the behavior of the system over time, we included 
the dialogue number (NTH; 1=first seen, 22=last seen) as a 
covariate. And, since individual subjects tend to vary in 
their responses (some subjects being more critical in general 
than other subjects), we included subject (SUBJ) as an input 
variable as well.  

The model we built to analyze the effects of right/wrong 
system response (RIGHT) and nonincremental vs. 
incremental processing (INC) was as follows.  We built an 
ordinal regression model predicting satisfaction (SAT) by 
right/wrong (RIGHT) and nonincremental/incremental 
(INC) and subject (SUBJ) with FAST, ACC, and ACT as 
covariates.  The model is shown in Table 1.  

The first result we found was that there was a significant 
effect for RIGHT as a predictor of user satisfaction, in the 
expected direction: wrong responses predict lower 
satisfaction (or, equivalently, correct responses predict 
higher satisfaction.) These results serve as validation of the 
external reliability of the experimental design.  

Next, to evaluate the effects of incremental vs. 
nonincremental processing, we examined the model 
coefficient for INC. In this case, nonincremental processing 
was a significant predictor of lower satisfaction (p=.026) – 
or, equivalently, incremental processing was a significant 
predictor of higher satisfaction.  

Conclusion 
Our results show that – at least for this task – incremental 
processing predicts higher user satisfaction.  Why? The 
statistical model makes clear that this preference is the case 
after controlling for factors such as speed, accuracy, and 
match-to-intent. Explanatory factors that remain include 
particularly naturalness – that is, the ways in which 
incremental systems are more like human-human 
conversation than their nonincremental counterparts. 
Nonincremental dialogue systems require many artificial 
restrictions on what the user and the system can say and 
when they can say it, and therefore exclude many important 
characteristics of natural human dialogue.  Incremental 
understanding has the potential to remove these obstacles.  
The work presented here suggests that successful 
incremental understanding systems will improve both 
performance and usability 
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