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Abstract

We describe a graphical logical form as a semantic representation for

text understanding. This representation was designed to bridge the gap

between highly expressive “deep” representations of logical forms and

more shallow semantic encodings such as word senses and semantic rela-

tions. We also present an evaluation metric for the representation and report

on the current performance on the TRIPS parser on the common task paragraphs.
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1 Introduction

As building rich semantic representations of text become more feasible, it is

important to develop standard representations of logical form that can be used

to share data and compare approaches. In this paper, we describe some general

characteristics that such a logical form language should have, then present a

graphical representation derived from the LF used in the TRIPS system (Allen

et al., 2007).

The Logical Form is a representation that serves as the interface between

structural analysis of text (i.e., parsing) and the subsequent use of the

information to produce knowledge, whether it be for learning by reading,

question answering, or dialogue-based interactive systems.

It’s important to distinguish two separable problems, namely the ontology

used and the structure of the logical form language (LFL). The ontology

determines the set of word senses and semantic relations that can be used.

The LFL determines how these elements can be structured to capture the

meaning of sentences. We are addressing the latter in the paper. Consider

some principles for designing useful LFs.

Preserve Rich Semantic Content in Phrasing

The LFL should allow one to express the dependencies and subtleties that are

expressed in the sentence. On the simple end, this means the LFL should

allow us to represent the differences between the NP The pigeon house, which

is a type of house, and the house pigeon, which is a type of pigeon. On the

more complicated end, the LFL should be able to capture complex quantifier

structures such as those in the NPs Nearly all peaches, or Every dog but one,

and phenomena such as modal operators, predicate modifiers, and explicit sets.

One might argue that capturing such complex phenomena in the LFL is

premature at this time, as existing techniques are unlikely to be able to

produce them reliably. On the other hand, if we don’t allow such subtleties in

the gold-standard LFL, we will tend to stifle long-term work on the difficult

problems since it is not reflected in the score in evaluations.

Encoding ambiguity compactly when possible

This issue has a long history in the literature, with the most classic case

being quantifier scoping. Underspecified representations of quantifier scoping

are a prime focus in the development of modern logical form languages such

as MRS (Copestake et al., 2006), and work goes all the way back to early

natural language systems (e.g. Woods, 1978). Other techniques for compactly

encoding ambiguity include prepositional phrase attachment, and most critically,

the use of vague predicates and relations. For example, for many cases of

noun-noun modification, the exact semantic relation between the nouns cannot
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be determined, and actually need not be determined precisely to be understood.

Enable Viable Partial Interpretations

In many cases, because of limitations in current processing, or because of the

fragmentary nature of the language input itself, a system will only be able to

construct partial interpretations. The LFL should be constructed in a way such

that partial representations are easily compared with full representations. In

particular, the interpretation of a fragment should be a subset of the full logical

form of the entire sentence. It is a fortunate circumstance that representations

that tend to compactly encode ambiguity tend also to have this subset property.( S P E E C H A C T S A _ T E L L )( F F O L L O W c h a s e ) ): C O N T E N T ( T H E A N I M A L c a t ): T H E M E( Q U A N T I F I E R A N I M A L d o g ): A G E N T ( O P F R E Q U E N C Y u s u a l l y ) ): M O DP R E S : T E N S E E V E R Y : Q U A N ( F L I V I N G % P R O P E R T Y % V A L h u n g r y ): M O D: O F: O F ( P R O P E R S O N m y ): A S S O C % W I T H
Figure 1: An LF Graph for “Every hungry dog usually chases my cat”

2 Overview of LF Graphs

An example LF-graph is shown in Figure 1. This graph introduces much of the

formalism. Each node represents either a speechact, a proposition, a generalized

quantifier, an operator or a kind. Nodes are labelled in three parts, the specifier,

indicating the semantic function of node, the type, indicating conceptual class

drawn from the ontology, and the word from the input. The latter allows us to

relate the nodes in the LF graph back to the input. The edges are labelled

with semantic roles that indicate argument structure and other critical properties

such as modification relationships.

Consider each of the core node types. The first term type captures the

meanings of fragments that define eventualities (i.e., events and properties). For

instance, the node (F FOLLOW chase) in Figure 1 refers to an eventuality

of the type FOLLOW (which would be defined in the ontology). Additional

information about the eventuality is captured by the outgoing edges, which

identify two arguments, the :Agent and the :Theme, and one other that provides

the tense information for later contextual interpretation (PRES is the present

tense).
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The second node type captures generalized quantifier constructions. The node

(THE ANIMAL cat) indicates a definite description referring to a object of type

ANIMAL in the ontology. Generalized quantifiers that have universal import

are indicated as shown in the node (QUANTIFIER ANIMAL dog), where an

edge labelled :QUAN gives the specific quantifier involved. Note also the

presence of a modification to the type (the :MOD) arc, which points to another

eventuality, namely (F LIVING-PROPERTY-VAL hungry), which in turn has an

argument (:OF) pointing back to the modified node. The :MOD link is critical

for capturing dependencies that allow us to reconstruct the full logical form

from the graph. For instance, it allows us to retain the distinction between

head noun and the modifiers (e.g., the pigeon house vs the house pigeon).

Table 1 shows the core set of generalized quantifiers used in TRIPS (and

subsequently interpreted in discourse processing, especially reference resolution.

A large set of quantifiers that indicate the size (e.g., many, some, five, at most

three, a few, ...) are treated as an indefinite construction with a (often vague)

size modifier.

Table 1: Core Generalized Quantifiers

Type Description

THE a definite form

(we expect to be able to resolve it from context)

A an indefinite form

(we expect it to introduce new objects)

PRO a pronoun form

(we expect it to be resolved from local context)

IMPRO an implicit anaphoric form

BARE forms with no specifier and ambiguous between

generic, kind, and indefinite

QUANTIFIER “universally” quantified constructions (e.g., EVERY)

QUANTITY-TERM a quantity expressed in units (e.g., three pounds)

WH-TERM “wh” terms as in questions (e.g., which trucks)

KIND the definition of a kind (aka lambda abstraction)

The next term type specifies modal operators, and seen in Figure 1 as the

node (OP FREQUENCY usually). The operator nodes must be distinguished

from the terms for predications (F) to support algorithms for quantifier and

operator scoping.

The final class of node in Figure 1 is the speech act performed by an

utterance: (SPEECHACT TELL). This has no third argument as it does not

arise from any single word in the utterance. The semantic role :content indicates
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the propositional content of the speech act, and additional roles indicating the

speaker and hearer are suppressed. Speech acts have modifiers in order to

handle phenomena such as discourse adverbials.( S P E E C H A C T S A _ W H 
 Q U E S T I O N )
( W H 
 T E R M P E R S O N w h o ): F O C U S ( F A C T I V E 
 P E R C E P T I O N s e e ): C O N T E N T ( T H E S E T ): T H E M E: E X P E R I E N C E R P A S T: T E N S E ( Q U A N T I T Y 
 T E R M N U M B E R ): S I Z E ( K I N D E N G I N E e n g i n e ) ): O F

3: V A L U E( F S I Z E 
 V A L s m a l l ) ): M O D : O F
Figure 2: The LF graph for “Who saw the three small engines”

Figure 2 shows another LF graph which captures some additional key

constructions. It shows another speech act, for Wh-questions, and shows the

handling of plurals. LF graphs distinguish explicitly between singular and

plurals by modeling sets, in which an :of argument that points to the type of

objects in the set.

The KIND operator is used to define these types (aka lambda abstraction).

Thus the three small engines is a SET of size three with elements of KIND

ENGINE and which are small.

LF-graphs are interesting as they offer the possibility of comparing the

semantic content of different approaches, from shallow approaches that identify

word senses and semantic roles, to complex representations produced by

state-of-the-art deep parsers. On the shallow side, a word sense disambiguation

system would produce a set of nodes with the word senses labeled from an

ontology, but not indicating a specifier, and not capturing any semantic roles.

A system that identifies semantic roles can capture its results using the edges

of the graph.

On the other hand, we can show that the LF-graph formalism is equivalent to

the TRIPS logical form language (LFL), which is a “flat“ scope-underspecified

representation of a reference modal logic with generalized quantifiers and

lambda abstraction.

We have developed an efficient quantifier scoping algorithm on this LFL that

constructs possible fully-scoped forms in the reference logic, and we can prove

that we derive the same sets of possible interpretations as the representations

constructed by MRS (Manshadi et al., 2008). Figure 3 shows the TRIPS logical

form that produced Figure 1, and Figure 4 shows one of the interpretations

produced by the scoping algorithm.
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(SPEECHACT a1 TELL :content f1)

(F f1 (:* FOLLOW Chase) :agent x :theme y)

(EVERY x (:* ANIMAL Dog) :mod f2)

(F f2 (:* LIVING-PROPERTY-VAL Hungry) :of x)

(A y (:* ANIMAL Cat))

(OP p1 (:* FREQUENCY usually) :of f1)

Figure 3: TRIPS Logical Form of “Every hungry dog usually chases my cat”

Every(x, Dog(x) ^ Hungry(f2) ^ theme(f2,x),

Frequent(

A(y, Cat(y),

Chase(f1) ^ agent(f1,x) ^ theme(f1,y))))

Figure 4: One possible scoped interpretation shown in reference representation

Coreference

The final information encoded in the LF graphs is coreference information.

Referential expressions are connected to their antecedents using a :coref arc.

Note this can only encode referential relations to antecedents that actually

appear previously in the text. Simple forms of bridging reference can also

be encoded using the insertion of IMPRO nodes that stand in for implicit

arguments, and may then co-refer with terms in the graph.

3 The LF Ontology and Word Senses

The LF ontology is the source of the semantic types and semantic roles that

are used in the LF graphs. In this paper, we use the LF ontology of the

TRIPS system. The TRIPS ontology also defines a rich set of semantic features

that are crucial for constraining ambiguity at multiple levels of language

processing. For example, the grammar uses selectional restrictions to guide

word sense disambiguation and prepositional phrase attachment during parsing,

and reference resolution uses the semantic features to identify valid referents

and discard invalid ones.

The TRIPS LF ontology is designed to be linguistically motivated and

domain independent. The semantic types and selectional restrictions are driven

by linguistic considerations rather than requirements from reasoning components

in the system (Dzikovska et al., 2003). Word senses are defined based on

subcategorization patterns and domain independent selectional restrictions. As
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much as possible the semantic types in the LF ontology are compatible with

types found in FrameNet (Johnson and Fillmore, 2000). FrameNet generally

provides a good level of abstraction for applications since the frames are

derived from corpus examples and can be reliably distinguished by human

annotators. However we use a smaller, more general set of semantic roles for

linking the syntactic and semantic arguments rather than FrameNet’s extensive

set of specialized frame elements. The LF ontology defines approximately 650

semantic types and 30 semantic roles. See Dzikovska et al. (2004) for more

discussion of the relationship between FrameNet and the LF ontology. We

also expanded our verb coverage by integrating VerbNet entries (Swift, 2005;

Benoit Crabbe and Swift, 2006).

The LF ontology also differs from FrameNet in its use of a rich semantic

feature set. Our semantic features are an extended version of EuroWordNet

(Vossen, 1997). There are five top-level distinctions: physical object, abstract

object, situation, time and proposition. Subtypes are defined to capture

distinctions in lexical aspect, spatial abstractions (point, region...), origins

(natural, artifact...) and so on.

We are not attempting to capture all possible word senses in our ontology.

Rather, we are looking for the level of abstraction that affects linguistic

processing, and leave finer distinctions for subsequent discourse processing and

inference. In order not to lose information in the LF, our word senses are a

tuple of form (:* <LF-type> <word-type>), where the LF-type comes from

the Ontology, and the <word-type> is a canonicalized version of the word.

For example, the property of a switch/device being on or off is associated with

an LF type ARTIFACT-PROPERTY-VAL. Another sense of on is its spatial

reading, of type SPATIAL-LOC, which also includes words such as behind and

in front of. These two senses of on are:

(:* ARTIFACT-PROPERTY-VAL ON)

(:* SPATIAL-LOC ON).

Though we don’t have the space to describe it here, TRIPS provides an

ontology mapping capability that allows developers to easily map the TRIPS

LF forms to a domain-specific ontology (Dzikovska et al., 2008).

4 System Overview

Much recent text processing work has focused on developing “shallow”,

statistically driven, techniques. We have taken a different approach. We use

statistical methods as a preprocessing step to provide guidance to a deep

parsing system that uses a detailed, hand-built, grammar of English with a rich

set of semantic restrictions. This way, we hope to obtain deeper, more accurate

interpretations. Because the parser was developed to identify likely fragments
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when an entire interpretation cannot be constructed, we believe it can match

statistical methods in its precision and recall measures.

The TRIPS grammar is lexicalized context-free grammar, augmented with

feature structures and feature unification. The grammar is motivated from X-bar

theory, and draws on principles from GPSG (e.g., head and foot features)

and HPSG. The search in the parser is controlled by a set of hand-build

rule preferences encoded as weights on the rules, together with a heavy use

of selectional restrictions (encoded in the lexicon and ontology) to eliminate

semantically anomalous sense combinations.

The TRIPS parser uses a packed-forest chart representation and builds

constituents bottom-up using a best-first search strategy similar to A*, based on

rule and lexical weights and the influences of the techniques addressed below.

The search terminates when a pre-specified number of spanning constituents

have been found or a pre-specified maximum chart size is reached. The chart

is then searched using a dynamic programming algorithm to find the least

cost sequence of constituents according to a cost table that can be varied

by genre. For instance, when processing text as in the experiments reported

here, we mostly expect UTT constituents encoding the speech acts TELL, then

less likely the speech acts WH-QUESTION and YN-QUESTION and we don’t

expect dialog-based speech acts such as CONFIRM or GREET. In addition, we

also assign costs to non-sentential constituents (e.g., NPs, ADVPs, etc). The

resulting least cost sequence produces a set of logical forms that are the results

reported here.

Here we describe the different ways that shallow methods contribute to deep

processing.

Using Preprocessors

First, statistical processing is used as a preprocessor. The TRIPS parser accepts

a word lattice as input, which we have used when working with speech

recognition where we want to consider multiple word hypotheses simultaneously.

We have used this capability to allow for preprocessors as well. For instance,

we use multiple named entity recognizers (NER) to identify names of people,

companies, geographical locations, and so on. The output of the NERs are

treated as additional constituent hypotheses in the input to the parser. As

an example, consider the sentence The New York Times is a newspaper.

Assuming an NER identifies The New York Times as a name with semantic

type PUBLICATION, the input to the parser will be:

(word "the" 1 2)

(word "new" 2 3)

(word "york" 3 4)

(word "times" 4 5)
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(constit "the new york times" 1 5

:syn (NAME :class PUBLICATION))

(word "is" 5 6)

(word "a" 6 7)

(word "newspaper" 7 8)

As the parser runs, it chooses between interpreting the words individually or

using the name, depending on what produces the best overall interpretation. In

addition, we use a specialized recognizer that identifies possible street addresses

(e.g., 15 N 25th St NE). Note we don’t need specialized NERs for dates and

times as they are handled in the main grammar.

Part of Speech Tagging

We also use a part-of-speech tagger to preprocess the input and provide a

likely POS tag (or set of tags) for consideration by the parser. Rather than

eliminating the interpretations that do not match, the parser simply assigns

more weight to interpretations consistent with the tags. This allows the parser

to override bad POS assignments in some cases.

Using on-line resources

We have built a system called WordFinder that draws on WordNet (Miller,

1995) and COMLEX (Grishman et al., 1994) to construct (underspecified)

lexical representations using mapping rules from high-level WordNet classes into

our LF ontology. We deliberately stay at a fairly abstract level as we would

rather have a few semantically abstract lexical entries rather than the many

highly-specific senses found in WordNet, which we have not found useful for

parsing.

Using Preferences during Parsing

Preferences (either syntactic or semantic) can be given to the parser based on

statistical or other analyses. We have used the Collins parser as a preprocessor

to extract hypotheses for the three constituents (NP, VP, and ADVP) which in

pretests had a precision greater than 60% (Swift et al., 2004). For instance, the

sentence The New York Times is a newspaper, the Collins preprocessor would

produce the following preferences:

(NP 1 5) (NP 6 8) (VP 5 8) (S 1 8)

With simple sentences, this information has little effect. But on longer

complex sentences, we found that the preferences allow us to produce more

accurate interpretations in faster time. Note again that the parser is not required

to follow this advice – all this information does is add a preference for such

interpretations.
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Another mechanism we use is logical form preference patterns. Local form

patterns of predicate types and arguments can be specified with preference

scores. Consider the sentence “He put the box in the corner near the house”.

Although the location adverbial “near the house” could possibly describe the

putting event, it is much more likely that it modifies the corner. Thus the

pattern (PUT :agent :theme :destination) is preferred over the pattern (PUT

:agent :theme :destination :location). We have only tested this capability so

far with hand-specified patterns, though we plan to start experiments using

learned patterns derived from propositions extracted from corpora (e.g. van

Durme et al., 2008). The overall system, using all these techniques, is shown

graphically in Figure 5.n a m e d e n t i t yr e c o g n i z e r s
a d d r e s sr e c o g n i z e r s t a t i s t i c a lp a r s e r

I n p u tC h a r tn a m eh y p o t h e s e sa d d r e s sh y p o t h e s e s B r a c k e t i n gP r e f e r e n c e s s e m a n t i cp r e f e r e n c e sL F f o r mp r e f e r e n c e s
W o r d n e t W o r d f i n d e rn e w l e x i c a l e n t r i e sC o r e L e x i c o n & L F O n t o l o g yG r a m m a rP a r s e r C o n t e n tE x t r a c t o r F i n a lL o g i c a lF o r mI n p u t O u t p u tC h a r tw o r dh y p o t h e s e s C o m l e x

P O St a g g i n g P O Sh y p s
Figure 5: Using Shallow Methods to Inform Deep Parsing (the subsystems in

dotted ovals were not used in the reported evaluations

5 An Evaluation Metric for LF Graphs

In this section we define an evaluation metric for LF-graphs that allows us to

quantify our system performance against gold standard representations.

The evaluation metric between a gold LF graph G and a test LF graph T is

defined as the maximum score produced by any node/edge alignment from the

gold to the test LF. More formally, an alignment A is a 1-1 mapping from the

nodes of the gold graph to nodes of the test graph (or to a pseudo empty node

if there is no corresponding node in the test graph). Once we have defined a

scoring metric between aligned nodes and edges, we define the match between

a gold and test graph as the maximum score produced by an alignment. While

complex scoring functions can be used, our results reported here use a simple

measure:

NscoreA(n) = 2 if both the indicator and word in the label of
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n matches the label of A(n), 1 if one of them matches, and 0

otherwise.

EscoreA(e) = 1 if e connect nodes n1 and n2, and there is an edge

between A(n1) and A(n2) with same label, 0 otherwise.

Gscore(G,T) = maxA(Sumn,ein(NscoreA(n)+EscoreA(e))

Once we know Gscore(G,T), we can compute semantic precision and recall

measures by comparing this to the G and T graphs aligned with themselves,

which gives us the maximum possible gold and test scores.

Precision(G,T) = Gscore(G,T)/Gscore(T,T)

Recall(G,T) = Gscore(G,T)/Gscore(G,G)

A more general function of node matching would be more informative. For

instance, with words not in our core lexicon, we usually derive an abstract

sense that is not the most specific sense in our ontology, however is an

abstraction of the correct sense. A scoring function that would give such cases

partial credit would have raised our scores (cf. Resnik and Yarowsky, 1997).

Evaluation Procedure and Results

To evaluate our system on the shared texts, we built gold representations for

each. We did this by first generating an LF-graph by running the system, and

then correcting this by hand using a graphical editor. Appendix A gives the

gold standard for a sample paragraph.

Table 2 reports the results on our baseline system, which was the first run

we made on the shared texts once they became available. In addition, we

report results on the latest version of the system after making some lexicon

and grammar additions based on problems found in parsing the paragraphs.

Specifically, we added 16 new lexical items (1 verb, 12 nouns, 2 adjectives

and 1 adverb); 17 new or modified senses for existing lexical items; 3 new

ontology concepts and one grammar rule, to handle the formulation of meters

per second as “m/s”.

6 Conclusion

We have described a graphical logical form language for expressing a significant

amount of the semantic content in natural text. The representation allows

for the specification of partial information extracted from sentences, yet is

expressive enough to capture many of the subtleties and complications present

in linguistically motivated approaches, including supporting complex processes

such as quantifier scoping, reference resolution, and reasoning.
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Table 2: Evaluation Results

Base System Final System

Text Prec Recall Prec Recall

1 “physics” 70.1% 70.1% 73.4% 80.0%

2 “cancer” 62.1% 71.9% 71.9% 79.3%

3 “dining” 86.7% 90.4% 90.8% 94.6%

4 “dogs” 63.0% 68.6% 63.8% 69.1%

5 “guns” 55.0% 64.0% 63.8% 73.4%

6 “gardens” 47.4% 53.6% 59.7% 62.0%

7 “wind” n/a n/a 65.8% 76.3%

Average 64.1% 69.7% 69.9% 76.4%

We also briefly described a hybrid system architecture centered around a

domain-general, broad coverage parsing framework capable of producing deep

analyses of texts. Statistical and corpora-based approaches serve to inform the

parsing in order to achieve a balance between depth of analysis and broad

coverage.

We find the results very encouraging, given this is our first evaluation of the

system on text rather than dialog. While it is hard to quantify exactly without

further detailed analysis, the remaining errors probably break down roughly

evenly between gaps in grammatical coverage, word sense disambiguation

errors and inadequacies in our search. Looking at grammatical coverage, the

single biggest problem appears to be conjoined sentences with subject ellipsis.

Regarding our search problems, because we are building semantic structures

rather than syntactic, the search space is much bigger than a traditional CFG.

We believe that integrating a statistical parser preprocessor and the LF-preference

mechanism will start to address this problem.
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Appendix A: Sample Analyses (Hand Built Gold Standards)( S P E E C H A C T S A _ T E L L )( F ( : * H A V E � P R O P E R T Y B E ) ): C O N T E N T ( F ( : * E V E N T � T I M E � R E L U N D E R W A Y ) ): P R O P E R T Y
( B A R E ( : * P R O C E S S D E V E L O P M E N T ) ): T H E M E( F ( : * E V E N T � T I M E � R E L B Y ) ): M O DW : : P A S T : T E N S E

( A S E T ) : O F( F ( : * M O D E R N I T Y � V A L M O D E R N ) ): M O D : O F: M E M B E R( K I N D ( : * T E C H N O L O G Y T E C H N O L O G Y ) ): M E M B E R ( K I N D R O O T ): O F( K I N D ( : * S U B S T A N C E E N E R G Y ) ): A S S O C � W I T H( K I N D ( : * A I R � C U R R E N T W I N D ) ): A S S O C � W I T H( K I N D ( : * U S E A P P L I C A T I O N ) )
: O F( F ( : * G R A D E � M O D I F I E R W E L L ) ): M O D: O F: O F( T H E T I M E � R A N G E ): V A L1 9 3 0: D E C A D E

( F ( : * E V E N T � T I M E � R E L W H E N ) ): O F : V A L ( F ( : * G I V I N G S U P P L Y ) )
( B A R E ( : * S U B S T A N C E E L E C T R I C I T Y ) )

( A S E T ): R E C I P I E N T ( A S E T ): C A U S EW : : P A S T: T E N S E ( K I N D ( : * L O C A T I O N A R E A ) ): O F ( F ( : * U R B A N � V A L R U R A L ) ): M O D : O F
( Q U A N T I T Y � T E R M N U M B E R ): S I Z E ( K I N D ( : * E N G I N E W I N D M I L L ) ): O F6 0 0 0 0 0: V A L U E ( F ( : * Q M O D I F I E R E S T I M A T E D ) ): M O D : O F( K I N D ( : * F U N C T I O N � O B J E C T S E R V I C E ) )( B A R E ( : * F I L L I N G P U M P ) )( K I N D ( : * W A T E R W A T E R ) ): A S S O C � W I T H

: M O D : T H E M E( A S E T ) : O F: m e m b e r : m e m b e r
Figure 6: Modern development of wind-energy technology and applications was

well underway by the 1930s, when an estimated 600,000 windmills supplied

rural areas with electricity and water-pumping services.( S P E E C H A C T S A _ T E L L ) ( F ( : * D I S P E R S E S P R E A D ) ): C O N T E N T( B A R E ( : * A C T I O N D I S T R I B U T I O N ) ): T H E M E ( F ( : * T O > L O C T O ) ): M O D ( F ( : * E V E N T > T I M E > R E L O N C E ) ): M O DW : : P A S T : T E N S E : O F( K I N D ( : * S U B S T A N C E E L E C T R I C I T Y ) ): A S S O C > W I T H( K I N D ( : * N O N > M E A S U R E > O R D E R E D > D O M A I N S C A L E ) ): A S S O C > W I T H( F ( : * S I Z E > V A L B R O A D ) ): M O D : O F : O F( T H E S E T ): V A L( A S E T ) : M E M B E R ( A S E T ): M E M B E R ( K I N D R O O T ): O F( K I N D ( : * L O C A T I O N F A R M ) ): O F( K I N D ( : * D I S T R I C T T O W N ) ): O F( K I N D ( : * L O C A T I O N C O U N T R Y ) ): A S S O C > W I T H ( F ( : * S T A R T S T A R T ) )( F ( : * T R A N S F O R M A T I O N S U B S I D E ) ): E F F E C T ( B A R E ( : * U S E U S E ) ): T H E M EW : : P A S T: T E N S E ( B A R E ( : * S U B S T A N C E E N E R G Y ) ): T H E M E( K I N D ( : * A I R > C U R R E N T W I N D ) ): A S S O C > W I T H ( F ( : * S P A T I A L > L O C I N ) ): M O D : O F: V A L( T H E ( : * C O U N T R Y U S A ) ) ( T H E U N I T E D S T A T E S ): N A M E > O F
( F ( : * A D J U S T P I C K > U P ) )( F ( : * C O N J U N C T B U T ) ) ( P R O ( : * R E F E R E N T I A L > S E M I T ) ): T H E M E( F ( : * F R E Q U E N C Y A G A I N ) ): M O D ( F ( : * E V E N T > T I M E > R E L A F T E R ) ): M O DW : : P A S T: T E N S E: C O R E F: O F : O F : S I T > V A L( T H E ( : * L A C K S H O R T A G E ) )( K I N D ( : * F A T S > O I L S O I L ) ): O F ( T H E ( : * C O U N T R Y U S A ) ): A S S O C > W I T H ( F ( : * T I M E > S P A N > R E L I N ) ): M O D( T H E U P U N C > P E R I O D S P U N C > P E R I O D ): N A M E > O F: O F ( T H E T I M E > R A N G E ): V A L1 9 7 0 : D E C A D E( F ( : * S C H E D U L E D > T I M E > M O D I F I E R E A R L Y ) ): M O D : O F

: S I T > V A L: O F : V A L: M O D

Figure 7: Once broad-scale electricity distribution spread to farms and country

towns, use of wind energy in the United States started to subside, but it picked

up again after the U.S. oil shortage in the early 1970s.


