2-D Simulator

- Robots
 - Good
 - Evil
 - Prey
 - Obstacles

- Lots of freedom in design of world

- Occupants

- Sensors

- Environment

- Complexity of behavior

- Start simple

- MATLAB (Saw?)

- Public presentation
 - Write up
Simulator Phase II

- Simpler logic
- More realistic physical modeling
- Model your Tutebot.
EMF & Circuits

Battery or other source of EMF maintains electric potential difference between two points (this p.d. moves electrons).

\[\text{EMF } E = \frac{dW}{dq} = \text{Joule/coulomb} = \text{Volt} \]

\[dq \text{ charge passes through here in time } dt, \text{ so EMF does } dW \text{ work to push them up to higher potential.} \]

\[\text{positive charge carriers determine direction of current (convention)} \]
Opposing batteries: B wins ($E_B > E_A$)

Chemical Energy from B

Stored electric, magnetic field energy

- Work by W
- Heat in R
- Chemical energy stored in A (charging)

"Reversible" reaction, unlike loss of energy through heat.
joule = 1 newton-meter; unit of work.

\(F = ma \) \quad \text{(Newton's Law)}

\(wt = \text{N} \cdot \text{m} = \text{kg} \cdot \frac{\text{m}}{\text{sec}^2} \)

Coulomb = charge through wire in 1 second if current is 1 ampere

\(q = it \)

\(e = 1.60206 \times 10^{-19} \text{ coul} \)

the elementary charge.
Current Calculation

Joule heating: \(i^2 R \, dt \) is heat due to
caused by

Charge: \(i \, dt = dq \) is heat dt.

dq moves thru the circuit. So...
def. of emf

\[dW = \varepsilon \, dq = \varepsilon \, i \, dt \]

this work = Joule heating by conservation of energy, so

\[\varepsilon \, i \, dt = i^2 R \, dt \]

\[\varepsilon \, i = i^2 R \]

\[\varepsilon = iR \]

\[i = \frac{\varepsilon}{R} \]
This relation \(i = \frac{e}{R} \) is a consequence of the fact that the algebraic sum of changes in potential encountered in complete traversal of a circuit must be zero.

\[
V = iR
\]

through \(R \), \(-iR\) (Ohm's law)

\(R \) measured in ohms.

Negative sign taken at higher pot.

Traversing \(R \) from bottom to top, increase \(\varepsilon \).

So if initial potential is \(V_a \),

\[
V_a - iR + \varepsilon = V_a
\]

\[-iR + \varepsilon = 0\]

Energy argument, potential argument.
Kirchhoff's 2nd Law: "Loop Theorem"

- Sum of potential changes around a circuit = 0.

\[R = \frac{V}{I} \text{. Resistors turn current into voltage and vice versa.} \]

- Traverse in direction of current change in potential is \(-IR\). In opposite direction is \(+IR\).

- Traverse current seat in direction of current, change in potential is \(+E\). In opposite direction is \(-E\).
E.G. #1.

Batteries (and all cut seats) have internal resistance. In batteries, it grows with age.

\[i \]

\[i \]
Example #2 Resistors in Series.

Clockwise from a:

\[-iR_1 - iR_2 - iR_3 + \varepsilon = 0\]

\[i = \frac{\varepsilon}{R_1 + R_2 + R_3}\]

So equivalent resistance

\[R = R_1 + R_2 + R_3\]

(they add!)
Potential Difference

How compute the pot. diff. of 2 points in a circuit?

what is V_{ab}

$V_{ab} = V_a - V_b$

for E, i, v, R?

$V_b + iR = V_a$

$V_{ab} = V_a - V_b = iR$

a is more positive

potential diff. = iR.

we computed i before

so

$$i = \frac{E}{R+v}$$

$$so \quad V_{ab} = E \frac{R}{R+v}$$

So pot. diff. is algebraic E θ

pot. changes from a to b.

(partial loop theorem). All paths yield some ϕ. \(\Box\)
MULTI-LOOP CIRCUITS

\[\begin{align*}
\varepsilon_1 & \rightarrow \varepsilon_2 \\
R_1 & \rightarrow i_1 \rightarrow R_2 \rightarrow i_2
\end{align*} \]

b, c, d are junctions connected by 3 branches. (bad, bd, bcd).

given \(\varepsilon \)s and \(R \)s what are \(i \)s?

label \(i \) directions arbitrarily chosen.

(i3?!)

Charge does not accumulate or drain from d. So if \(i \)s cancel \(i \)s then

\[i_1 + i_3 - i_2 = 0 \] \(\Box \)
Junction theorem: Kirchhoff's 1st Law

\[\sum \text{of currents at any junction} = 0 \]
(charge conservation)

- Apply this rule at b, get some eggs. So if we want to solve for b, we need 2 more eggs.

- We have several loops with \pm currents, so we can use loop theorem:

 \text{left: } \ v_1 - i_1 R_1 + i_3 R_3 = 0 \quad (2)

 \text{right: } -i_3 R_3 - i_2 R_2 - v_2 = 0 \quad (3)

 \text{another: no new relationships}

 So solve (1), (2), (3).

E.g. \(i_1 = \frac{v_1 (R_2 + R_3) - v_2 R_3}{R_1 R_2 + R_2 R_3 + R_1 R_3} \)

\[i_2 = \frac{\text{always same}}{R_3} \]
E.g.

Resistors in parallel

\[\text{What is equivalent resistance of } R_1, R_2, R_3? \]
\(R \)

Let \(V \) be the potential diff. between \(a, b \). Then

\[i_1 = \frac{V}{R_1}, \quad i_2 = \frac{V}{R_2}, \quad i_3 = \frac{V}{R_3} \]

Junction theorem at \(a \):

1. \(i = i_1 + i_2 + i_3 = V \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right) \)
2. \(i = \frac{V}{R} \), or \(\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \)

[\(\frac{12}{12} \)]
CAPACITANCE

CHARGED CONDUCTING SPHERE has a potential:

\[V_0 = \frac{1}{4\pi \varepsilon_0} \frac{q}{R} \]

Twice the potential difference

"spheres get bigger, closer... At 0 distance no difference"
\[C = \frac{q}{V} \]

\[C : \text{farad} = \frac{\text{coul}}{\text{volt}} \]

\[\text{uf} \]

\[\text{uf} \text{ is practice} \]

Generally:

A capacitor.

Practically, one type is foil:

- Insulator
- Positive
- Negative
CAPACITORS in Practice

\[C = \frac{Q}{V} \quad Q = CV \text{ or } \frac{dQ}{dt} = C \frac{dV}{dt} = i \]

E. G. Capacitors in Parallel

\[\text{pot. difference same for all: all upper plates connected to } a, \text{ lower to } b. \]

\[q_1 = C_1 V \quad q_2 = C_2 V \quad q_3 = C_3 V \]

\[q = q_1 + q_2 + q_3 = (C_1 + C_2 + C_3) V \]

\[C = \frac{q}{V} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \quad \text{(like series resistors)} \]
E.G. Capacitors in Series

\[V_1, \quad V_2, \quad V_3 \]

\[C_1, \quad C_2, \quad C_3 \]

\[a \quad \rightarrow \quad V \quad \rightarrow \quad b \]

\(q \) must be same on all plates. Initially no charge, battery just moves it around. Charge can't leave the area.

\[V = \frac{q}{C_1} \quad V_2 = \frac{q}{C_2} \quad V_3 = \frac{q}{C_3} \]

\[V = V_1 + V_2 + V_3 \quad \text{(series)} \]

\[= q \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right) \]

\[C = \frac{q}{V} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}} \]

or\[\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \]
RC circuit

Capacitors ⇒ time-varying currents!
(physics is energy storage in electric field).

![Diagram of an RC circuit with a switch S, resistor R, and capacitor C, along with equations for energy and charge.]

Throw S to a: then what?
Work is Joule heat + changing C.

$$\epsilon \frac{dq}{dt} = i^2 R + \frac{1}{C} \frac{d\epsilon}{dt}$$

$$\epsilon \frac{dq}{dt} = i^2 R + \frac{1}{C} \frac{d\epsilon}{dt}$$

$$\epsilon = iR + \frac{q}{C}$$

(by or from Joule's theorem)
\[E = iR + \frac{q}{C} \quad ; \quad i = \frac{dq}{dt} \]

So

\[E = R \frac{dq}{dt} + \frac{q}{C} \quad \text{diff. eq.} \]

Just a slight generalisation of

\[x + ax = 0 \]

\[x = -ax \]

\[-ae^{-at} = -ae^{-at} \]

if \(x = e^{-at} \)

Solutions to 1st order linear ordinary differential equations of form \(e^{-kt} \)

\[\begin{array}{c|c}
1 & 1 \\
\hline
t & + \\
\end{array} \]
*$\text{ CHECK}\star$

\[\varepsilon = R \frac{dQ}{dt} + \frac{q}{C}\]

claim \(q = C \varepsilon (1 - e^{-t/RC}) \)

\[\frac{dQ}{dt} = i = -\frac{C \varepsilon}{RC} e^{-t/RC}\]

recall \(\varepsilon = R \frac{dQ}{dt} + \frac{q}{C}\)

\[\varepsilon = R \frac{C \varepsilon}{RC} e^{-t/RC} + \frac{C \varepsilon (1 - e^{-t/RC})}{C}\]

\[\varepsilon = C e^{-t/RC} + \varepsilon (1 - e^{-t/RC}) = \varepsilon\]

\[\square\]
So the general solution (can be guessed) is

\[q = CE(1 - e^{-t/RC}) \]

(can be checked).

What happens when we throw the switch?

\(RC \) has dimensions of time - the capacitance time constant.

Time it takes to charge to \((1 - e^{-1}) = 63\% \).
Now throw switch to b. after \(t \gg RC \)

\[
\text{Loop theorem: } \quad iR + \frac{q}{C} = 0
\]

\[
i = \frac{dq}{dt}, \text{ so diff. eq. is } R \frac{dq}{dt} + \frac{q}{C} = 0
\]

so \(q = q_0 e^{-\frac{t}{RC}} \) with \(q_0 \) the initial charge = \(CE \).

Current during discharge \(i = \frac{dq}{dt} = \)

\[
= -\frac{q_0}{RC} e^{-\frac{t}{RC}}
\]

so current is reversed from direction in picture. Since \(q_0 = CE \)

\[
i = -\frac{E}{R} e^{-\frac{t}{RC}}
\]

so initially current is \(-\frac{E}{R} \) which makes sense since capacitor is charged to full pot. diff. eq.
E.G. A Differentiator

Voltage across C is $V_{in} - V$.

$I = C \frac{dV}{dt}$ (capacitance), definition

$i = C \frac{d\phi}{dt}$

$I = C \frac{d}{dt}(V_{in} - V)$

$I = \frac{V}{R}$ also

If choose $\frac{dV}{dt} \ll \frac{dV_{in}}{dt}$

$C \frac{dV_{in}}{dt} \approx \frac{V}{R}$

$V(t) = RC \frac{dV_{in}}{dt}$

Make RC small.

If R too small you load the input.

V_{in}

V

Ans!
E.G. An integrator

\[V_{\text{in}} \xrightarrow{R} \frac{1}{C} \xrightarrow{0} V \]

Voltage across \(R = V_{\text{in}} - V \), so

\[I = \frac{V_{\text{in}} - V}{R} \quad \text{if} \quad V_{CC} < V_{\text{in}} \text{(with large RC)} \]

\[C \frac{dV}{dt} \approx \frac{V_{\text{in}}}{R} \approx I \]

\[V(t) = \frac{1}{RC} \int_{0}^{t} V_{\text{in}}(t) \, dt + \text{const.} \]

Note: \(V_{CC} V_{\text{in}} \approx I R V_{\text{in}} \). We'd have perfect integrator if we had a current source. A large voltage across a large \(R \) approximates a current source.

Actually, picks off the start of exp. charging curve.
Integrator (cont.)

\[
\frac{v_{in}}{t}
\]

\[
\frac{v}{t}
\]

Ramp Generator: change a capacitor with constant current.

\[
I = C \frac{dv}{dt} \Rightarrow v(t) = \left(\frac{I}{C} \right) t
\]
Diodes

R, C are linear circuit elements. (Doubly signify doubles the response.) Also they are 2-terminal, passive (no power).

Diode is non-linear, passive, 2-terminal.

Breakdown
Diodes

- Anode (arrow) points in dir. of forward current flow.
- Approximates 1-way conductor.
- Voltage drop $0.5 - 0.8\, V$.
- But no resistance in terms of Ohm's Law.

E.G. Rectification
$(AC \rightarrow DC)$

V \[\sin \] t

V \[\text{---} \]

I ideally

Half-wave:

$\text{Half-wave} \Rightarrow$
Full Wave Rectifier:

2 Diodes in series = twice the voltage drop. Bad for low-voltage supplies.

\[V \]
\[t \]

Mega-Cap: Filtering, or... how smooth this out?

\[R_{\text{load}} C \gg \frac{1}{f} \]
E.G. Diode Gate

Pass higher 12 voltages

- [Diagram of a diode gate]

- DC Power Supply
- 12 V Battery
- 12-15V electric clock

E.G. Diode Clamp

Limit voltage in a signal to ~5.6 V, with no effect on lesser (including negative) voltages. (Protect MOS from static)

- $\approx 10k$

- IN

- OUT

- 5V
Damped Harmonic Oscillator
- 2nd-order system
- Very basic approach to all systems.

\[F = m a \]
\[-kx - b \frac{dx}{dt} = m \frac{d^2x}{dt^2} \]
\[m \frac{d^2x}{dt^2} + b \frac{dx}{dt} + kx = 0 \]

\[x = A e^{-\frac{b}{2m} t} \cos(\omega' t + \phi) \]
\[\omega' = \sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2} \]
Inductance

\[i(t) \Rightarrow E(t) \]

Self-induction

\[L \frac{d^2 q}{dt^2} + R \frac{dq}{dt} + \frac{1}{C} q = 0 \]

\[m \frac{d^2 x}{dt^2} + b \frac{dx}{dt} + kx = 0 \]

\[\Rightarrow \text{Analog computers, controllers, ...} \]
Microcomputers 101 (SF 84.3)

IC hides many realities. It is a multi-tasking OS. But not a bad idea to learn bare-bones ideas concept (CSC 254?).

Microcontrollers come with useful capabilities for interfacing: serial lines, I/O, timers, pulse counters. Replaces multi-card system.

CPU → Memory → I/O ...

Bus

Compare to RW's MC684611

p. 51
CPU clock:

XTAL

Instruction timing: 2 - 40 cycles (1 - 20.5 μsec.)

Instruction fetch
delay
fetch, opcodes

Bus

Bus is 16 bits wide so 2^{15} 16K locations. (8-bit bytes).

Fig. 3.5 shows how bus is configured for use as address & data line on it.

Ports look like memory to CPU (locations).

Outside, ports are lines to take signals.
Memory: RAM, ROM, PROM, EEPROM

Microcontroller versions exist with all memory types...