
Some Facets of Complexity Theory and Cryptography:
A Five-Lecture Tutorial

JÖRG ROTHE

Heinrich-Heine-Universität Düsseldorf

In this tutorial, selected topics of cryptology and of computational complexity theory are
presented. We give a brief overview of the history and the foundations of classical
cryptography, and then move on to modern public-key cryptography. Particular
attention is paid to cryptographic protocols and the problem of constructing key
components of protocols such as one-way functions. A function is one-way if it is easy to
compute, but hard to invert. We discuss the notion of one-way functions both in a
cryptographic and in a complexity-theoretic setting. We also consider interactive proof
systems and present some interesting zero-knowledge protocols. In a zero-knowledge
protocol, one party can convince the other party of knowing some secret information
without disclosing any bit of this information. Motivated by these protocols, we survey
some complexity-theoretic results on interactive proof systems and related complexity
classes.

Categories and Subject Descriptors: E.3 [Data Encryption]: public-key cryptosystems;
F.1.3 [Computation by Abstract Devices]: Complexity Measures and Classes; F.2.2
[Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and
Problems

General Terms: Algorithms, Security, Theory

Additional Key Words and Phrases: Complexity theory, interactive proof systems,
one-way functions, public-key cryptography, zero-knowledge protocols

OUTLINE OF THE TUTORIAL

This tutorial consists of five lectures on
cryptography, based on the lecture notes
for a course on this subject given by
the author in August, 2001, at the 11th
Jyväskylä Summer School in Jyväskylä,
Finland. As the title suggests, a particular
focus of this tutorial is to emphasize the

This work was supported in part by grant NSF-INT-9815095/DAAD-315-PPP-gü-ab.
Author’s address: J. Rothe, Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, 40225
Düsseldorf, Germany; email: rothe@cs.uni-duesseldorf.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation. Copy-
rights for components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or
permissions@acm.org.
c©2002 ACM 0360-0300/02/1200-0504 $5.00

close relationship between cryptography
and complexity theory. The material pre-
sented here is not meant to be a compre-
hensive study or a complete survey of (the
intersection of) these fields. Rather, five
vivid topics from those fields are chosen
for exposition, and from each topic chosen,
some gems—some particularly important,
central, beautiful results—are presented.

ACM Computing Surveys, Vol. 34, No. 4, December 2002, pp. 504–549.

Some Facets of Complexity Theory and Cryptography 505

Needless to say, the choice of topics
and of results selected for exposition is
based on the author’s personal tastes and
biases.

The first lecture sketches the history
and the classical foundations of cryptog-
raphy, introduces a number of classical,
symmetric cryptosystems, and briefly dis-
cusses by example the main objectives
of the two opposing parts of cryptology:
cryptography, which aims at designing se-
cure ways of encryption, versus cryptanal-
ysis, which aims at breaking existing cryp-
tosystems. Then, we introduce the notion
of perfect secrecy for cryptosystems, which
dates back to Claude Shannon’s pioneer-
ing work [Shannon 1949] on coding and
information theory.

The second lecture presents the public-
key cryptosystem RSA, which was in-
vented by Rivest et al. [1978]. RSA is
the first public-key cryptosystem devel-
oped in the public sector. To describe RSA,
some background from number theory is
provided in as short a way as possible
but to the extent necessary to understand
the underlying mathematics. In contrast
to the information-theoretical approach
of perfect secrecy, the security of RSA
is based on the assumption that certain
problems from number theory are compu-
tationally intractable. Potential attacks on
the RSA cryptosystem as well as appro-
priate countermeasures against them are
discussed.

The third lecture introduces a number
of cryptographic protocols, including the
secret-key agreement protocols of Diffie
and Hellman [1976] and of Rivest and
Sherman (see Rabi and Sherman [1993,
1997]), ElGamal’s public-key cryptosys-
tem [ElGamal 1985], Shamir’s no-key pro-
tocol, and the digital signature schemes of
Rivest et al. [1978], ElGamal [1985], and
Rabi and Sherman [1993, 1997], respec-
tively. Again, the underlying mathematics
and, relatedly, security issues of these pro-
tocols are briefly discussed.

A remark is in order here. The proto-
cols presented here are among the most
central and important cryptographic pro-
tocols, with perhaps two exceptions: the
Rivest–Sherman and the Rabi–Sherman

protocols. While the secret-key agreement
protocol of Diffie and Hellman [1976] is
widely used in practice, that of Rivest and
Sherman (see Rabi and Sherman [1993,
1997]) is not (yet) used in applications and,
thus, might appear somewhat exotic at
first glance. An analogous comment ap-
plies to the Rabi–Sherman digital signa-
ture protocol. However, from our point of
view, there is some hope that this fact,
though currently true, might change in
the near future. In Section 3.5, we discuss
the state of the art on the Diffie–Hellman
protocol and the Rivest–Sherman proto-
col, and we argue that recent progress
of results in complexity theory may lead
to a significant increase in the crypto-
graphic security and the applicability of
the Rivest–Sherman protocol. One line
of complexity-theoretic research that is
relevant here is presented in Section 5;
another line of research is Ajtai’s break-
through result [Ajtai 1996] on the com-
plexity of the shortest lattice vector prob-
lem (SVP, for short), which is informally
stated in Section 3.5.

The fourth lecture introduces interac-
tive proof systems and zero-knowledge
protocols. This area has rapidly devel-
oped and flourished in complexity theory
and has yielded a number of powerful
results. For example, Shamir’s famous
result [Shamir 1992] characterizes the
power of interactive proof systems in
terms of classical complexity classes: In-
teractive proof systems precisely capture
the class of problems solvable in poly-
nomial space. Also, the study of inter-
active proof systems is related to prob-
abilistically checkable proofs, which has
yielded novel nonapproximability results
for hard optimization problems; see the
survey [Goldreich 1997]. Other results
about interactive proof systems and the re-
lated zero-knowledge protocols have direct
applications in cryptography. In particu-
lar, zero-knowledge protocols enable one
party to convince another party of knowl-
edge of some secret information with-
out conveying any bit of this information.
Thus, they are ideal technical tools for
authentication purposes. We present two
of the classic zero-knowledge protocols:

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

506 Jörg Rothe

the Goldreich–Micali–Wigderson protocol
for graph isomorphism [Goldreich et al.
1986, 1991] and the Fiat–Shamir proto-
col [Fiat and Shamir 1986] that is based
on a number-theoretical problem. For an
in-depth treatment of zero-knowledge pro-
tocols and many more technical details,
the reader is referred to Chapter 4 of
Goldreich’s book [Goldreich 2001].

The fifth lecture gives an overview
on the progress of results that was re-
cently obtained by Hemaspaandra and
Rothe [1999] and Hemaspaandra et al.
[2001]. Their work, which is motivated
by the Rivest–Sherman and the Rabi–
Sherman protocols, studies properties of
functions that are used in building these
two cryptographic protocols. It is results
about these functions that may be use-
ful in quantifying the security of these
protocols. In particular, the key building
block of the Rivest–Sherman protocol is
a strongly noninvertible, associative one-
way function. Section 5 presents the re-
sult [Hemaspaandra and Rothe 1999] on
how to construct such a function from
the assumption that P 6= NP. In addi-
tion, recent results on strong noninvert-
ibility are surveyed, including the per-
haps somewhat surprising result that,
if P 6= NP, then there exist strongly
noninvertible functions that in fact are
invertible [Hemaspaandra et al. 2001].
These results are obtained in the worst-
case complexity model, which is rele-
vant and interesting in a complexity-
theoretic setting, but useless in applied
cryptography. For cryptographic applica-
tions, one would need to construct such
functions based on the average-case com-
plexity model, under plausible assump-
tions. Hence, the most challenging open
research question related to strongly non-
invertible, associative one-way functions
is to find some evidence that they ex-
ist even in the average-case model. As
noted above, our hope of obtaining such
a result is based on recent progress
on the shortest lattice vector problem
accomplished by Ajtai [1996]. Roughly
speaking, Ajtai proved that this prob-
lem is as hard in the average-case as
it is in the worst-case model. Based on

this result, Ajtai and Dwork [1997] de-
signed a public-key cryptosystem whose
security is based merely on worst-case
assumptions. Ajtai’s breakthrough re-
sults, his techniques, and their crypto-
graphic applications are not covered in
this tutorial. We refer to the nice sur-
veys by Cai [1999] and, more recently,
by Kumar and Sivakumar [2001] and
Nguyen and Stern [2001] on the com-
plexity of SVP and the use of lattices in
crytography.

The tutorial is suitable for graduate stu-
dents with some background in computer
science and mathematics and may also
be accessible to interested undergraduate
students. Since it is organized in five es-
sentially independent, self-contained lec-
tures, it is also possible to present only a
proper subset of these lectures. The only
dependencies occurring between lectures
are that some of the number-theoretical
background given in Section 2 is also
used in Section 3, and that the Rivest–
Sherman secret-key agreement protocol
and the Rabi–Sherman digital signature
protocol presented in Section 3 motivate
the investigations in Section 5. This last
section contains perhaps the technically
most challenging material, which, in part,
is presented on an expert level with the in-
tention of guiding the reader towards an
active field of current research.

There are a number of textbooks
and monographs on cryptography that
cover various parts of the field in
varying depth, such as the books by
Goldreich [1999, 2001], Salomaa [1996],
Stinson [1995], and Welsh [1998].
Schneier’s book [Schneier 1996] pro-
vides a very comprehensive collection of
literally all notions and concepts known in
cryptography, which naturally means that
the single notions and concepts cannot
be treated in mathematical detail there,
but the interested reader is referred to
an extraordinarily large bibliography for
such an in-depth treatment. Singh [1999]
wrote a very charming, easy-to-read,
interesting book about the history of
cryptography from its ancient roots to its
modern and even futuristic branches such
as quantum cryptography. An older but

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 507

still valuable source is Kahn’s book [Kahn
1967]. We conclude this list, without
claiming it to be complete, with the
books by Bauer [2000], Beutelspacher
et al. [2001], Beutelspacher [1994], and
Buchmann [2001].

1. CRYPTOSYSTEMS AND PERFECT
SECRECY

1.1. Classical Cryptosystems

The notion of a cryptosystem is formally
defined as follows:

Definition 1.1 (Cryptosystem)

—A cryptosystem is a quintuple
(P, C,K, E ,D) such that:
(1) P, C, and K are finite sets, where

P is the plain text space or clear
text space;
C is the cipher text space;
K is the key space.

Elements of P are referred to as
plain text (or clear text), and ele-
ments of C are referred to as cipher
text. A message is a string of plain
text symbols.

(2) E = {Ek | k ∈ K} is a family of func-
tions Ek : P → C that are used for
encryption, and D = {Dk |k ∈ K} is a
family of functions Dk : C → P that
are used for decryption.

(3) For each key e ∈ K, there exists a
key d ∈ K such that for each p ∈ P:

Dd (Ee(p)) = p. (1.1)

—A cryptosystem is called symmetric (or
“private-key”) if d = e, or if d can at
least be “easily” computed from e.

—A cryptosystem is called asymmetric (or
“public-key”) if d 6= e, and it is “compu-
tationally infeasible in practice” to com-
pute d from e. Here, d is the private key,
and e is the public key.

At times, different key spaces are used
for encryption and for decryption, which
results in a slight modification of the above
definition.

We now present and discuss some exam-
ples of classical cryptosystems. Consider

the English alphabet 6 = {A, B, . . . , Z}. To
carry out the arithmetic modulo 26 with
letters as if they were numbers, we iden-
tify6withZ26 = {0, 1, . . . , 25}; thus, 0 rep-
resents A and 1 represents B, and so on.
This encoding of the plain text alphabet by
integers and the decoding of Z26 back to 6
is not part of the actual encryption and
decryption, respectively. It will be used for
the next three examples. Note that mes-
sages are elements of 6∗, where 6∗ de-
notes the set of strings over 6.

Example 1.2 (Caesar Cipher, a Monoal-
phabetic Symmetric Cryptosystem). Let
K = Z26, and let P = C = 6. The Caesar
cipher encrypts messages by shifting
(modulo 26) each character of the plain
text by the same number k of letters in the
alphabet, where k is the key. Shifting each
character of the cipher text back using the
same key k reveals the original message:

—For each e ∈ Z26, define the encryption
function Ee : 6→ 6 by

Ee(p) = (p+ e) mod 26,

where addition with e modulo 26 is
carried out characterwise, that is, each
character mi ∈ 6 of a message m ∈ 6∗ is
shifted by e positions to mi + e mod 26.
For example, using the key e= 11=L,
the message “SUMMER” will be en-
crypted as “DFXXPC.”

—For each d ∈ Z26, define the decryption
function Dd : 6→ 6 by

Dd (c) = (c − d) mod 26,

where subtraction by e modulo 26 again
is carried out characterwise. Hence, d =
e. For example, decrypting the cipher
text “DNSZZW” with the key d = 11
reveals the plain text “SCHOOL.”

Since the key space is very small, break-
ing the Caesar cipher is very easy. It is vul-
nerable even to “cipher-text-only attacks,”
that is, an attacker given enough cipher
text c can easily check the 26 possible
keys to see which one yields a meaningful
plain text. Note that the given cipher text
should contain enough letters to enable a
unique decryption.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

508 Jörg Rothe

Table I. An Example of Encryption by the Vigenère Cipher

k E N G L I S H E N G L I S H E N G L I S H E N G L I
m F I N N I S H I S A L L G R E E K T O G E R M A N S
c J V T Y Q K O M F G W T Y Y I R Q E W Y L V Z G Y A

The Caesar cipher is a monoalphabetic
cryptosystem, since it replaces each given
plain text letter, wherever in the message
it occurs, by the same letter of the ci-
pher text alphabet. In contrast, the French
cryptographer and diplomat Blaise de
Vigenère (1523–1596) proposed a polyal-
phabetic cryptosystem, which is much
harder to break. Vigenère’s system builds
on earlier work by the Italian mathemati-
cian Leon Battista Alberti (born in 1404),
the German abbot Johannes Trithemius
(born in 1492), and the Italian scientist
Giovanni Porta (born in 1535), see Singh
[1999]. It works like the Caesar cipher, ex-
cept that the cipher text letter encrypting
any given plain text letter X varies with
the position of X in the plain text.

More precisely, one uses for encryp-
tion and decryption a Vigenère square,
which consists of 26 rows with 26 columns
each. Every row contains the 26 letters of
the alphabet, shifted by one from row to
row, that is, the rows and columns may
be viewed as a Caesar encryption of the
English alphabet with keys 0, 1, . . . , 25.
Given a message m ∈ 6∗, one first chooses
a key k ∈ 6∗, which is written above the
message m, symbol by symbol, possibly re-
peating k if k is shorter than m until every
character of m has a symbol above it. De-
noting the ith letter of any string w by wi,
each letter mi of m is then encrypted as
in the Caesar cipher, using the row of the
Vigenère square that starts with ki, where
ki is the key letter right above mi. Be-
low, we describe the Vigenère system for-
mally and give an example of a concrete
encryption.

Example 1.3 (Vigenère Cipher, a Polyal-
phabetic Symmetric Cryptosystem). For
fixed n∈N, let K=P = C=Zn

26. Messages
m ∈ 6∗, where 6 again is the English al-
phabet, are split into blocks of length n and
are encrypted block-wise. The Vigenère
cipher is defined as follows:

—For each e ∈ Zn
26, define the encryption

function Ee : Zn
26 → Zn

26 by

Ee(p) = (p+ e) mod 26,
where addition with e modulo 26 is
carried out characterwise, that is, each
character pi ∈6 of a plain text p∈P is
shifted by ei positions to pi + ei mod 26.

—For each d ∈ Zn
26, define the decryption

function Dd : Zn
26 → Zn

26 by
Dd (c) = (c − d) mod 26,

where subtraction modulo 26 again is
carried out characterwise. As in the
Caesar cipher, d = e.

For example, choose the word k=
ENGLISH to be the key. Suppose we
want to encrypt the message m =
FINNISHISALLGREEKTOGERMANS,1
omitting the spaces between words.
Table I shows how each plain text letter is
encrypted, yielding the cipher text c. For
instance, the first letter of the message,
“F,” corresponds to the first letter of
the key, “E.” Hence, the intersection of
the “F”-column with the “E”-row of the
Vigenère square gives the first letter, “J,”
of the cipher text.

Our last example of a classical, histor-
ically important cryptosystem is the Hill
cipher, which was invented by Lester Hill
in 1929. It is based on linear algebra and,
like the Vigenère cipher, is an affine linear
block cipher.

Example 1.4 (Hill Cipher, a Symmetric
Cryptosystem and a Linear Block Cipher).

1 From this example, we not only learn how the
Vigenère cipher works, but also that using a lan-
guage such as Finnish, which is not widely used,
often makes illegal decryption harder, and thus re-
sults in a higher level of security. This is not a purely
theoretical observation. During World War II, the US
Navy transmitted important messages using the lan-
guage of the Navajos, a Native American tribe. The
“Navajo Code” was never broken by the Japanese
code-breakers, see Singh [1999].

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 509

For fixed n∈N, the key spaceK is the set of
all invertible n×n matrices inZn×n

26 . Again,
P = C = Zn

26 and messages m ∈ 6∗ are
split into blocks of length n and are en-
crypted block-wise. All arithmetic opera-
tions are carried out modulo 26.

The Hill cipher is defined as follows:

—For each K ∈ K, define the encryption
function EK : Zn

26 → Zn
26 by

EK (p) = K · p mod 26,

where · denotes matrix multiplication
modulo 26.

—Letting K−1 denote the inverse matrix
of K , the decryption function DK−1 :
Zn

26 → Zn
26 is defined by

DK−1 (c) = K−1 · c mod 26.

Since K−1 can easily be computed
from K , the Hill cipher is a symmetric
cryptosystem. It is also the most general
linear block cipher.

Concrete examples of messages en-
crypted by the Hill cipher can be found
in, for example, Salomaa [1996].

Affine linear block ciphers are easy to
break by “known-plain-text attacks,” that
is, for an attacker who knows some sample
plain texts with the corresponding encryp-
tions, it is not too hard to find the key used
to encrypt these plain texts. They are even
more vulnerable to “chosen-plain-text at-
tacks,” where the attacker can choose some
pairs of corresponding plain texts and en-
cryptions, which may be useful if there
are reasonable conjectures about the key
used.

The method of frequency counts is often
useful for decrypting messages. It exploits
the redundancy of the natural language
used for plain text messages. For example,
in many languages the letter “E” occurs,
statistically significant, most frequently,
with a percentage of 12.31% in English,
of 15.87% in French, and even of 18.46%
in German, see [Salomaa 1996]. Some
languages have other letters that occur
with the highest frequency; for example,
“A” is the most frequent letter in aver-
age Finnish texts, with a percentage of
12.06% [Salomaa 1996].

In 1863, the German cryptanalyst
Friedrich Wilhelm Kasiski found a
method to break the Vigenère cipher.
Singh [1999] attributes this achievement
also to an unpublished work, done prob-
ably around 1854, by the British genius
and eccentric Charles Babbage. The books
by Salomaa [1996] and Singh [1999]
describe Kasiski’s and Babbage’s method.
It marks a breakthrough in the history
of cryptanalysis, because previously the
Vigenère cipher was considered unbreak-
able. In particular, like similar periodic
cryptosystems with an unknown period,
the Vigenère cipher appeared to resist
cryptanalysis by counting and analysing
the frequency of letters in the cipher
text. Kasiski showed how to determine
the period from repetitions of the same
substring in the cipher text.

In light of Kasiski’s and Babbage’s
achievement, it is natural to ask whether
there exist any cryptosystems that guar-
antee perfect secrecy. We turn to this ques-
tion in the next section, which describes
some of the pioneering work of Claude
Shannon [Shannon 1949], who laid the
foundations of modern coding and infor-
mation theory.

1.2. Conditional Probability and
Bayes’ Theorem

To discuss perfect secrecy of cryptosys-
tems in mathematical terms, we first need
some preliminaries from elementary prob-
ability theory.

Definition 1.5. Let A and B be events
with Pr(B) > 0.

—The probability that A occurs under the
condition that B occurs is defined by

Pr(A | B) = Pr(A∩ B)
Pr(B)

.

—A and B are independent if Pr(A∩ B) =
Pr(A) Pr(B) (equivalently, if Pr(A | B) =
Pr(A)).

LEMMA 1.6 (BAYES’ THEOREM). Let A and
B be events with Pr(A) > 0 and Pr(B) > 0.
Then,

Pr(B) Pr(A | B) = Pr(A) Pr(B | A).

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

510 Jörg Rothe

PROOF. By definition,

Pr(B) Pr(A | B) = Pr(A∩ B) = Pr(B ∩ A)
= Pr(A) Pr(B | A).

1.3. Perfect Secrecy: Shannon’s Theorem

Consider the following scenario:

Using a cryptosystem (P, C,K, E ,D),
Alice and Bob are communicating over an
insecure channel in the presence of eaves-
dropper Erich. Recall that P, C, and K are
finite sets. Erich reads a cipher text, c ∈ C,
and tries to get some information about
the corresponding plain text, p ∈ P. The
plain texts are distributed on P according
to a probability distribution PrP that may
depend on the language used. For each
new plain text, Alice chooses a new key
from K that is independent of the plain
text to be encrypted. The keys are dis-
tributed according to a probability distri-
bution PrK on K. The distributions PrP
and PrK induce a probability distribution
Pr = PrP×K on P ×K. Thus, for each plain
text p and each key k,

Pr(p, k) = PrP (p) PrK(k)

is the probability that the plain text p is
encrypted with the key k, where p and k
are independent.

Pr(p) = PrP (p) is the probability that
the plain text p will be encrypted. Sim-
ilarly, Pr(k) = PrK(k) is the probability
that the key k will be used. Let c be an-
other random variable whose distribution
is determined by the system used. Then,
Pr(p | c) is the probability that p is en-
crypted under the condition that c is re-
ceived. Erich knows the cipher text c, and

he knows the probability distribution PrP ,
since he knows the language used by Alice
and Bob.

Definition 1.7. A cryptosystem (P, C,K,
E ,D) provides perfect secrecy if and only if

(∀p ∈ P) (∀c ∈ C) [Pr(p | c) = Pr(p)].

That is, a cryptosystem achieves perfect
secrecy if the event that some plain text
p is encrypted and the event that some
cipher text c is received are independent:
Erich learns nothing about p from know-
ing c. The following example of a cryp-
tosystem that does not provide perfect se-
crecy is due to Buchmann [2001].

Example 1.8 (Perfect Secrecy). LetP, C,
and K be given such that:

—P = {0, 1}, where Pr(0) = 1
4 and

Pr(1)= 3
4 ;

—K = {A, B}, where Pr(A) = 1
4 and

Pr(B) = 3
4 ;

—C = {a, b}.
It follows that, for example, the proba-

bility that a “1” occurs and is encrypted
with the key B is:

Pr(1, B) = Pr(1) · Pr(B) = 3
4
· 3

4
= 9

16
.

Let the encryption functions be given by:

EA(0)=a; EA(1)= b; EB(0)= b;
EB(1)=a.

Hence, the probability that the cipher text
a occurs is:

Pr(a)=Pr(0, A)+Pr(1, B)= 1
16
+ 9

16
= 5

8
.

Similarly, the probability that the cipher
text b occurs is:

Pr(b)=Pr(1, A)+Pr(0, B)= 3
16
+ 3

16
= 3

8
.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 511

Then, for each pair (p, c) ∈ P × C, the con-
ditional probability Pr(p | c) is:

Pr(0 |a) = Pr(0, A)
Pr(a)

= 1/16
5/8

= 1
10

;

Pr(0 | b) = Pr(0, B)
Pr(b)

= 3/16
3/8

= 1
2

;

Pr(1 |a) = Pr(1, B)
Pr(a)

= 9/16
5/8

= 9
10

;

Pr(1 | b) = Pr(1, A)
Pr(b)

= 3/16
3/8

= 1
2
.

In particular, it follows that

Pr(0) = 1
4
6= 1

10
= Pr(0 |a),

and thus the given cryptosystem does not
provide perfect secrecy: If Erich sees the
cipher text a, he can be pretty sure that
the encrypted plain text was a “1.”

THEOREM 1.9 (SHANNON [1949]). Let
S = (P, C,K, E ,D) be a cryptosystem with
‖C‖=‖K‖ and Pr(p) > 0 for each p ∈ P.
Then, S provides perfect secrecy if and only
if

(1) PrK is the uniform distribution, and
(2) for each p ∈ P and for each c ∈ C,

there exists a unique key k ∈ K with
Ek(p) = c.

PROOF. Assume that S provides perfect
secrecy. We show that the conditions (1)
and (2) hold.

Condition (2). Fix a plain text p ∈ P.
Suppose that there is a cipher text c ∈ C
such that for all k ∈ K, it holds that
Ek(p) 6= c. Thus,

Pr(p) 6= 0 = Pr(p | c),

which implies that S does not provide per-
fect secrecy, a contradiction. Hence,

(∀c ∈ C) (∃k ∈ K) [Ek(p) = c].

Now, ‖ C ‖ = ‖K ‖ implies that each ci-
pher text c∈ C has a unique key k with
Ek(p)= c.

Condition (1). Fix a cipher text c ∈ C.
For p ∈ P, let k(p) be the unique key k
with Ek(p) = c. By Bayes’ theorem, for
each p ∈ P, we have:

Pr(p | c)= Pr(c | p) Pr(p)
Pr(c)

= Pr(k(p)) Pr(p)
Pr(c)

.

(1.2)

Since S provides perfect secrecy, we have
Pr(p | c)=Pr(p). By Eq. (1.2), this implies
Pr(k(p))=Pr(c), and this equality holds
independently of p.

Hence, the probabilities Pr(k) are equal
for all k ∈ K, which implies Pr(k) = 1/‖K‖.
Thus, PrK is the uniform distribution.

Conversely, suppose that conditions (1)
and (2) hold. We show that S provides per-
fect secrecy. Let k = k(p, c) be the unique
key k with Ek(p) = c. By Bayes’ theorem,
it follows that

Pr(p | c) = Pr(p) Pr(c | p)
Pr(c)

= Pr(p) Pr(k(p, c))∑
q∈P Pr(q) Pr(k(q, c))

. (1.3)

Since all keys are uniformly distributed, it
follows that

Pr(k(p, c)) = 1
‖K‖ .

Moreover, we have that

∑
q∈P

Pr(q) Pr(k(q, c))=
∑

q∈P Pr(q)

‖K‖ = 1
‖K‖ .

Substituting this equality in Eq. (1.3)
gives:

Pr(p | c) = Pr(p).

Hence, S provides perfect secrecy.

1.4. Vernam’s One-Time Pad

The Vernam one-time pad is a symmetric
cryptosystem that does provide perfect se-
crecy. It was invented by Gilbert Vernam

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

512 Jörg Rothe

in 1917,2 and is defined as follows. Let
P = C = K = {0, 1}n for some n ∈ N. For
k ∈ {0, 1}n, define

—the encryption function Ek : {0, 1}n →
{0, 1}n by

Ek(p) = p⊕ k mod 2, and

—the decryption function Dk : {0, 1}n →
{0, 1}n by

Dk(c) = c ⊕ k mod 2,

where ⊕ denotes bit-wise addition
modulo 2. The keys are uniformly dis-
tributed on {0, 1}n. Note that for each plain
text p a new key k is chosen from {0, 1}n.

By Shannon’s Theorem, the one-time
pad provides perfect secrecy, since for each
plain text p ∈ P and for each cipher text
c ∈ C, there exists a unique key k ∈ Kwith
c = p⊕ k, namely the string k = c ⊕ p.

However, the one-time pad has major
disadvantages that make it impractical to
use in most concrete scenarios: To obtain
perfect secrecy, every key can be used only
once, and it must be at least as long as the
plain text to be transmitted. Surely, since
for every communication a new secret key
at least as long as the plain text must be
transmitted, this results in a vicious cir-
cle. Despite these drawbacks, for the per-
fect secrecy it provides, the one-time pad
has been used in real-world applications
such as, allegedly, the hotline between
Moscow and Washington, see [Simmons
1979, p. 316].

2. RSA CRYPTOSYSTEM

The RSA cryptosystem, named after its
inventors Ron Rivest, Adi Shamir, and
Leonard Adleman, is the first public-key
cryptosystem [Rivest et al. 1978]. It is still
widely used in cryptographic applications
today. Again, the scenario is that Alice
and Bob want to exchange messages over
an insecure channel on which Erich is an
eavesdropper:

2 Slightly differing from the system described here,
Vernam’s actual invention was a system with a finite
period and hence did not provide perfect secrecy; see
Kahn [1967] on this point.

In order to describe how the RSA
cryptosystem works, we first need some
preliminaries from elementary number
theory.

2.1. Euler and Fermat’s Theorems

The greatest common divisor of two inte-
gers a and b is denoted by gcd(a, b). For
n ∈ N, define the set

Z∗n = {i | 1 ≤ i ≤ n− 1 and gcd(i, n) = 1}.

The Euler function φ is defined by
φ(n) =‖Z∗n‖. Note that Z∗n is a group (with
respect to multiplication) of order φ(n).
The following useful properties of φ follow
from the definition:

—φ(m · n) = φ(m) · φ(n) for all m, n ∈ N
with gcd(m, n) = 1, and

—φ(p) = p− 1 for all primes p.

We will specifically use that φ(n) = (p−1)
(q − 1), where p and q are primes and
n= pq.

Euler’s Theorem below is a special case
(for the groupZ∗n) of Langrange’s Theorem,
which states that for each element g of a
finite multiplicative group G having order
|G| and the neutral element 1, it holds that
g |G| = 1.

THEOREM 2.1 (EULER). For each a ∈ Z∗n,
aφ(n) ≡ 1 mod n.

The special case of Euler’s Theorem with
n being a prime not dividing a is known as
Fermat’s Little Theorem.

THEOREM 2.2 (FERMAT’S LITTLE THEOREM).
If p is a prime and a ∈ Z∗p, then ap−1 ≡ 1
mod p.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 513

2.2. RSA

(1) Key Generation

(1) Bob chooses randomly two large
primes p and q with p 6= q, and com-
putes their product n = pq.

(2) Bob chooses a number e ∈ N with
1 < e < φ(n) = (p− 1)(q − 1) and
gcd(e, φ(n)) = 1. (2.4)

(3) Bob computes the unique number d
satisfying

1 < d < φ(n) and
e · d ≡ 1 mod φ(n). (2.5)

That is, d is the inverse of e
modulo φ(n).

(4) The pair (n, e) is Bob’s public key, and
d is Bob’s private key.

In order to generate two large primes
(e.g., primes with 80 digits each) effi-
ciently, one can choose large numbers at
random and test them for primality. Since
by the Prime Number Theorem, the num-
ber of primes not exceeding N is approxi-
mately N/ln N , the odds of hitting a prime
are good after a reasonably small num-
ber of trials. To verify the primality of the
number picked, one usually makes use of
a randomized polynomial-time primality
test such as the Monte Carlo3 algorithm of
Rabin [1980] that is related to a determin-
istic algorithm due to Miller [1976]; their
primality test is known as the Miller–
Rabin test. An alternative, though less
popular Monte Carlo algorithm was pro-
posed by Solovay and Strassen [1977]. The
reason why the Solovay–Strassen test is
less popular than the Miller–Rabin test
is that it is less efficient and less ac-
curate. These two primality tests, along
with a careful complexity analysis and the
required number-theoretical background,

3 A Monte Carlo algorithm is a randomized algo-
rithm whose “yes” answers are reliable, while its
“no” answers may be erroneous with a certain er-
ror probability, or vice-versa. The corresponding com-
plexity classes are called R and coR, respectively, see
Gill [1977]. In contrast, a Las Vegas algorithm may
for certain sequences of coin flips halt without giv-
ing an answer at all, but whenever it gives an an-
swer, this answer is correct. The corresponding class,
ZPP = R ∩ coR, was also defined by Gill [1977].

can be found in, for example, the books by
Stinson [1995] and Salomaa [1996]. Ad-
ditional primality tests are contained in
Goldreich [2001] and Buchmann [2001].

Note Added in Proof : Quite recently, Agrawal
et al. [2002] designed a deterministic
polynomial-time algorithm for primality. Their
breakthrough result is a milestone in complexity
theory and solves a long-standing open problem.
It is unlikely, though, that this algorithm will
have immediate consequences for cryptographic
applications, since Agrawal et al. [2002] note
that their algorithm has a running time of
roughly n12, and thus is much less efficient than
the probabilistic primality tests currently in use.

We now argue that the keys can be
computed efficiently. In particular, the in-
verse d of e modulo φ(n) can be computed
efficiently via the extended algorithm of
Euclid; see Figure 1.

LEMMA 2.3. On input b0 = φ(n)
and b1 = e, the extended algorithm of
Euclid computes in polynomial time inte-
gers x and y such that

x · φ(n)+ y · e ≡ 1 mod φ(n).

Thus, y is the inverse of e modulo φ(n),
and Bob chooses d ≡ y mod φ(n) as his
private key.

Example 2.4. Bob chooses the primes
p= 11 and q= 23, and computes their
product n= 253 and φ(253)= 10 ·22= 220.
The smallest possible e satisfying Eq. (2.4)
is e= 3. The extended algorithm of Euclid
yields the following sequence of bi, xi,
and yi:

i bi xi yi qi
0 220 1 0 –
1 3 0 1 73
2 1 1 −73 –

Since 1 · 220 + (−73) · 3 = 220 − 219 ≡ 1
mod 220, the unique value d = −73 +
220 = 147 computed by Bob satisfies
Eq. (2.5) and is the inverse of e = 3 mod-
ulo 220.

(2) Encryption. We assume that mes-
sages over some alphabet6 are block-wise

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

514 Jörg Rothe

Euclid’s Algorithm (extended)

Input: Two integers, b0 and b1.
begin x0 := 1; y0 := 0; x1 := 0; y1 := 1; i := 1;

while bi does not divide bi−1 do
begin

qi :=
⌊

bi−1
bi

⌋
;

bi+1 := bi−1 − qi · bi ;
xi+1 := xi−1 − qi · xi ;
yi+1 := yi−1 − qi · yi ;
i := i + 1

end
begin output

b := bi ; (∗ b = gcd(b0, b1) = 1 ∗)
x := xi ;
y := yi (∗ y is the inverse of b1 mod b0 ∗)

end output
end

Fig. 1 . The extended algorithm of Euclid.

encoded as positive integers with a fixed
block length. Suppose that m < n is the
message Alice wants to send to Bob. Alice
knows Bob’s public key (n, e) and computes
the encryption c = E(n,e)(m) of m, where
the encryption function is defined by

E(n,e)(m) = me mod n.

Performed naively, this computation
may require a large number of multiplica-
tions, depending on the choice of e. To en-
sure efficient encryption, we will employ
a “fast exponentiation” algorithm called
“square-and-multiply,” see Figure 2.

Equation (2.6) in Step 3 of Figure 2 is
correct, since

me = m
∑k

i=0 ei2i =
k∏

i=0

(
m2i)ei =

k∏
i = 0
ei=1

m2i
.

Hence, instead of e multiplications,
Alice need compute no more than 2 log e
multiplications. Thus, the square-and-
multiply method speeds up the encryption
exponentially.

Example 2.5. Suppose Alice wants to
compute c = 617 mod 100. The binary ex-

pansion of the exponent is 17 = 1 + 16 =
20 + 24.

(1) Alice successively computes:

620 = 61 = 6;
621 = 62 = 36;
622 = 362 ≡ − 4 mod 100;
623 ≡ (−4)2 mod 100 ≡ 16 mod 100;
624 ≡ 162 mod 100 ≡ 56 mod 100.

(2) Alice computes her cipher text

c= 617 mod 100 ≡ 6 · 624
mod 100

≡ 6 · 56 mod 100
≡ 36 mod 100.

Note that only four squarings and one
multiplication are needed for her to
compute the cipher text.

(3) Decryption. Let c, 0 ≤ c < n, be the ci-
pher text sent to Bob; c is subject to eaves-
dropping by Erich. Bob decrypts c using
his private key d and the following decryp-
tion function:

Dd (c) = cd mod n.

Again, the fast exponentiation algorithm
described in Figure 2 ensures that the le-
gal recipient Bob can decrypt the cipher
text efficiently. Thus, the RSA protocol is

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 515

Square-and-Multiply Algorithm

Input: m, n, e ∈ N, where m < n.

Step 1. Let the binary expansion of the exponent e be given by

e =
k∑

i=0

ei2i , where ei ∈ {0, 1}.

Step 2. Successively compute m2i
, where 0 ≤ i ≤ k, using the equality

m2i+1 =
(

m2i
) 2
.

It is not necessary to store the intermediate values of m2i
.

Step 3. In the arithmetic modulo n, compute

me =
k∏

i = 0
ei=1

m2i
. (2.6)

Output: me.

Fig. 2 . The square-and-multiply algorithm.

feasible. To prove that it is correct, we
show that Eq. (1.1) is satisfied.

Figure 3 summarizes the single steps of
the RSA protocol and displays the infor-
mation communicated by Alice and Bob
that is subject to eavesdropping by Erich.

THEOREM 2.6 Let (n, e) and d be Bob’s
public and private key in the RSA protocol.
Then, for each message m with 0 ≤ m < n,

m = (me)d mod n.

That is, RSA is a public-key cryptosystem.

PROOF. Since e · d ≡ 1 mod φ(n) by
Eq. (2.5), there exists an integer t such
that

e · d = 1+ t(p− 1)(q − 1),

where n = pq. It follows that

(me)d = me·d = m1+t(p−1)(q−1)

= m
(
mt(p−1)(q−1)

)
= m(mp−1)t(q−1).

Hence, we have

(me)d ≡ m mod p, (2.7)

since if p divides m then both sides of
Eq. (2.7) are 0 mod p, and if p does not
divide m (i.e., gcd(p, m) = 1), then, by
Fermat’s Little Theorem, we have

mp−1 ≡ 1 mod p.

By a symmetric argument, it holds that

(me)d ≡ m mod q.

Since p and q are primes with p 6=
q, it follows from the Chinese Remain-
der Theorem (see, e.g., Knuth [1981] or
Stinson [1995]) that

(me)d ≡ m mod n.

Since m < n, the claim follows.

2.3. RSA Digital Signature Protocol

The RSA public-key cryptosystem de-
scribed in Section 2.2 can be modified

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

516 Jörg Rothe

Fig. 3 . The RSA protocol.

Fig. 4 . The RSA digital signature protocol.

so as to yield a digital signature proto-
col. Figure 4 shows how the RSA digital
signature protocol works. A chosen-plain-
text attack on the RSA digital signature
scheme, and countermeasures to avoid it,
are described in Section 2.4.

2.4. Security of RSA and Possible
Attacks on RSA

The security of the RSA cryptosystem
strongly depends on whether factoring
large integers is intractable. It is widely

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 517

believed that there is no efficient factoring
algorithm, since no such algorithm could
be designed as yet, despite considerable ef-
forts in the past. However, it is not known
whether the problem of factoring large in-
tegers is as hard as the problem of crack-
ing the RSA system.

Here is a list of potential attacks on the
RSA system. To preclude these direct at-
tacks, some care must be taken in choos-
ing the primes p and q, the modulus n,
the exponent e, and the private key d .
For further background on the security
of the RSA system and on proposed at-
tacks to break it, the reader is referred
to Boneh [1999], Shamir [1995], Kaliski
and Robshaw [1995], and Moore [1992].
For each attack on RSA that has been pro-
posed in the literature to date, some prac-
tical countermeasures are known, rules of
thumb that prevent the success of those
attacks or, at least, that make their likeli-
hood of success negligibly small.

Factoring attacks. The aim of the at-
tacker Erich is to use the public key (n, e)
to recover the private key d by factoring n,
that is, by computing the primes p and q
with n = pq. Knowing p and q, he can just
like Bob compute φ(n) = (p−1)(q−1) and
thus the inverse d of e modulo φ(n), us-
ing the extended algorithm of Euclid; see
Figure 1 and Lemma 2.3. There are vari-
ous ways in which Erich might mount this
type of attack on RSA.

—Brute-Force Attack. Erich might try to
factor the modulus n simply by exhaus-
tive search of the complete key space.
Choosing n sufficiently large will pre-
vent this type of attack. Currently, it is
recommended to use moduli n with at
least 768 bits, that is, the size of 512 bits
formerly in use no longer provides ad-
equate protection today. Of course, the
time complexity of modular exponenti-
ation grows rapidly with the modulus
size, and thus there is a trade-off be-
tween increasing the security of RSA
and decreasing its efficiency.

It is also generally accepted that those
moduli n consisting of prime factors p
and q of roughly the same size are the
hardest to factor.

—General-Purpose Factoring Methods.
Examples of such general factoring al-
gorithms are the general number field
sieve (see, e.g., Lenstra and Lenstra
[1993]) or the older quadratic sieve
(see, e.g., Buchmann [2001] and Stinson
[1995]). They are based on the follow-
ing simple idea. Suppose n is the num-
ber to be factorized. Using the respec-
tive “sieve,” one determines integers a
and b such that

a2 ≡ b2 mod n and a 6≡ ±b mod n.
(2.8)

Thus, n divides a2 − b2= (a − b)(a+ b),
but neither a − b nor a + b. Hence,
gcd(a − b, n) is a nontrivial factor of n.
The general number field sieve and the
quadratic sieve differ in the specific way
the integers a and b satisfying Eq. (2.8)
are found.

—Special-Purpose Factoring Methods.
Depending on the form of the primes
p and q, it might be argued that using
special-purpose factoring methods such
as Pollard’s [1974] “p− 1 method” may
be more effective and more successful
than using general-purpose factoring
methods. This potential threat led to
the introduction of strong primes that
resist such special-purpose factoring
methods. A strong prime p is required
to satisfy certain conditions such as
that p−1 has a large factor r and r −1,
in turn, has a large factor, etc.

—Elliptic Curve Method. This factor-
ing method was introduced by Lenstra
[1987], and it has some success prob-
ability regardless of the form of the
primes chosen. Consequently, the most
effective countermeasure against the el-
liptic curve method is to use primes of
very large size. This countermeasure
simultaneously provides, with a very
high probability, protection against all
known types of special-purpose factor-
ing methods. In short, randomly chosen
large primes are more important than
strong primes. Note that weak primes
are believed to be rare; Pomerance and
Sorenson [1995] study the density of
weak primes.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

518 Jörg Rothe

—Factoring on a Quantum Computer.
Last, we mention that Shor’s [1997]
algorithm for factoring large numbers
on a quantum computer poses a po-
tential threat to the security of RSA
and other cryptosystems whose secu-
rity relies on the hardness of the factor-
ing problem. More precisely, Shor’s ef-
ficient quantum algorithm determines
the order of a given group element, a
problem closely related to the factor-
ing problem. Using Miller’s [1976] ran-
domized reduction, if one can efficiently
compute the order of group elements,
then one can efficiently solve the fac-
toring problem. However, the quantum
computer is a theoretical construct cur-
rently. Whether or not Shor’s quantum
factoring algorithm will be a practi-
cal threat remains to be seen in the
future.

Superencryption. Early on, Sim-
mons and Norris [1977] proposed an at-
tack on RSA called superencryption. This
attack is based on the observation that a
sufficient number of encryptions will even-
tually recover the original message, since
the RSA encryption function is an injective
mapping onto a finite set, which makes the
graph of the function a union of disjoint
cycles. This attack is a threat to the se-
curity of RSA, provided that the number
of encryptions required is small. Luckily,
superencryption is not a practical attack
if the primes are large and are chosen at
random.

Wiener’s Attack. Wiener [1990] pro-
posed an attack on the RSA system by a
continued fraction approximation, using
the public key (n, e) to provide sufficient
information to recover the private key d .
More precisely, Wiener proved that if the
keys in the RSA system are chosen such
that n = pq, where q < p < 2q, and
d < 1

3
4
√

n, then given the public key (n, e)
with ed ≡ 1modφ (n) the private key d
can be computed in linear time.

Here is a proof sketch of Wiener’s re-
sult (see Boneh [1999]). Since ed ≡ 1
mod φ(n), there exists a k such that ed −
kφ(n) = 1, which implies that k/d is an

approximation of e/φ(n):∣∣∣∣ e
φ(n)

− k
d

∣∣∣∣ = ∣∣∣∣ 1
dφ(n)

∣∣∣∣ . (2.9)

Erich does not know φ(n), but he can use n
in place of φ(n). Using ed − kφ(n) = 1 and
the easily verified fact that |n − φ(n)| <
3
√

n, in place of Eq. (2.9) we now have∣∣∣∣ en − k
d

∣∣∣∣ = ∣∣∣∣1− k(n− φ(n))
dn

∣∣∣∣
≤
∣∣∣∣3k
√

n
dn

∣∣∣∣ = 3k
d
√

n
.

Since kφ(n) = ed − 1 < ed and e < φ(n),
we have k < d < 1

3
4
√

n. Hence,∣∣∣∣ en − k
d

∣∣∣∣ < 1
d 4
√

n
<

1
2d2 .

There are at most log n fractions k
d with

d < n approximating e
n so tightly, and they

can be obtained by computing the log n
convergents of the continued fraction ex-
pansion of e

n (see Hardy and Wright [1979,
Thm. 177]). Since ed −kφ(n) = 1, we have
gcd(k, d) = 1, so k

d is a reduced fraction.
Note that this attack is efficient and

practical, and thus is a concern, only if
the private key d is chosen to be small
relative to n. For example, if n is a 1024
bits number, then d must be at least 256
bits long in order to prevent Wiener’s at-
tack. A small value of d , however, enables
fast decryption and in particular is desir-
able for low-power devices such as “smart-
cards.” Therefore, Wiener proposed cer-
tain techniques that avoid his attack.

The first technique is to use a large en-
cryption exponent, say ẽ = e + `φ(n) for
some large `. For a large enough ẽ, the fac-
tor k in the above proof is so large that
Wiener’s attack cannot be mounted, re-
gardless of how small d is.

The second technique uses the Chinese
Remainder Theorem to speed up decryp-
tion, even if d is not small. Let d be a
large decryption exponent such that both
d p ≡ d mod p− 1 and dq ≡ d mod q− 1
are small. Then, one can decrypt a given

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 519

cipher text c as follows. Compute mp = cd p

mod p and mq = cdq mod q, and use the
Chinese Remainder Theorem to obtain the
unique solution m modulo n = pq of
the two equations m = mp mod p and
m = mq mod q. The point is that al-
though d p and dq are small, d can be cho-
sen large enough to resist Wiener’s attack.

Boneh and Durfee [2000] recently im-
proved Wiener’s result: Erich can effi-
ciently compute d from (n, e) provided that
d < n0.292.

Small-Message Attack. RSA en-
cryption is not effective if both the
message m to be encrypted and the expo-
nent e to be used for encryption are small
relative to the modulus n. In particular,
if c = me < n is the cipher text, then
m can be recovered from c by ordinary
root extraction. Thus, either the public
exponent should be large or the messages
should always be large. It is this latter
suggestion that is more useful, for a small
public exponent is often preferred in order
to speed up the encryption and to preclude
Wiener’s attack.

Low-Exponent Attack. One should
take precautions, though, not to choose
the public exponent too small. A preferred
value of e that has been used often in the
past is e = 3. However, if three parties
participating in the same system encrypt
the same message m using the same pub-
lic exponent 3, although perhaps differ-
ent moduli n1, n2, and n3, then one can
easily compute m from the three cipher
texts:

c1 = m3 mod n1

c2 = m3 mod n2

c3 = m3 mod n3.

In particular, the message m must be
smaller than the moduli, and so m3

will be smaller than n1n2n3. Using the
Chinese Remainder Theorem (see, e.g.,
Knuth [1981] and Stinson [1995]), one can
compute the unique solution

c = m3 mod n1n2n3 = m3.

Hence, one can compute m from c by or-
dinary root extraction.

More generally, suppose that k related
plain texts are encrypted with the same
exponent e:

c1 = (a1m+ b1)e mod n1

c2 = (a2m+ b2)e mod n2

...
ck = (akm+ bk)e mod nk ,

where ai and bi, 1 ≤ i ≤ k, are known
and k > e(e + 1)/2 and min(ni) > 2e2

.
Then, an attacker can solve for m in
polynomial time using lattice reduction
techniques. This observation is due to
Johan Håstad [1988], and his “broadcast
attack” has been strengthened by Don
Coppersmith [1997]. This attack is a con-
cern if the messages are related in a
known way. Padding the messages with
pseudorandom strings prior to encryption
prevents mounting this attack in practice
(see, e.g., Kaliski and Robshaw [1995]). If
the messages are related in a known way,
they should not be encrypted with many
RSA keys.

A recommended value of e that is com-
monly used today is e = 216+1. One advan-
tage of this value for e is that its binary ex-
pansion has only two ones, which implies
that the square-and-multiply algorithm of
Figure 2 requires very few operations,4
and so is very efficient.

Forging RSA Signatures. This at-
tack is based on the fact that the RSA en-
cryption function is a homomorphism: if
(n, e) is the public key and m1 and m2 are
two messages, then

me
1 ·me

2 ≡ (m1 ·m2)e mod n. (2.10)

Another identity that can easily be verified
is:

(m · re)d ≡ md · r mod n. (2.11)

In particular, these identities can be
used to mount an attack on the digital

4 How many exactly?

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

520 Jörg Rothe

signature scheme based on the RSA
algorithm, see Figure 4 and Section 2.3.
Given previous message-signature pairs
(m1, sigA(m1)), . . . , (mk , sigA(mk)), Erich
can use the congruences (2.10) and (2.11)
to compute a new message-signature pair
(m, sigA(m)) by

m = re
k∏

i=1

mei
i mod n;

sigA(m) = r
k∏

i=1

(sigA(mi))ei mod n,

where r and the ei are arbitrary. Hence,
Erich can forge Alice’s signature without
knowing her private key, and Bob will not
detect the forgery, since m ≡ (sigA(m))e

mod n. Note that, in Eq. (2.10), even if
m1 and m2 are meaningful plain texts,
m1 · m2 usually is not. Thus, Erich can
forge Alice’s signature only for messages
that may or may not be useful. However,
he might choose the messages mi so as to
generate a meaningful message m with
a forged digital signature. This chosen-
plain-text attack can again be avoided by
pseudorandom padding techniques that
destroy the algebraic relations between
messages. Pseudorandom padding is also
a useful countermeasure against the fol-
lowing chosen-cipher-text attack: Erich in-
tercepts some cipher text c, chooses r ∈ N
at random, and computes c · re mod n,
which he sends to the legitimate receiver
Bob. By Eq. (2.11), Bob will decrypt the
string ĉ = cd · r mod n, which is likely to
look like a random string. Erich, however,
if he were to get his hands on ĉ, could ob-
tain the original message m by multiply-
ing by r−1, the inverse of r modulo n, that
is, by computing m = r−1 · cd · r mod n.

3. PROTOCOLS FOR SECRET-KEY
AGREEMENT, PUBLIC-KEY ENCRYPTION,
AND DIGITAL SIGNATURES

Consider again a scenario where Alice and
Bob want to exchange messages over an
insecure channel such as a public tele-
phone line, and where Erich is an eaves-
dropper:

This is why Alice and Bob want to en-
crypt their messages. For efficiency pur-
poses, they decide to use a symmetric cryp-
tosystem in which they both possess the
same key for encryption and for decryp-
tion; recall Definition 1.1. But then, how
can they agree on a joint secret key when
they can communicate only over an in-
secure channel? If they were to send an
encrypted message containing the key to
be used in subsequent communications,
which key should they use to encrypt this
message?

This paradoxical situation is known as
the secret-key agreement problem, and it
was considered to be unsolvable since the
beginning of cryptography. It was quite a
surprise when, in 1976, Whitfield Diffie
and Martin Hellman [1976] did solve
this long-standing, seemingly paradoxical
problem by proposing the first secret-key
agreement protocol. We describe their pro-
tocol in Section 3.1. Interestingly, it was
the Diffie–Hellman protocol that inspired
Rivest, Shamir, and Adleman to invent the
RSA system. That is, Diffie and Hellman’s
key idea to solve the secret-key agree-
ment problem opened the door to modern
public-key cryptography, which no longer
requires sending secret keys over insecure
channels.

Strangely enough, the reverse hap-
pened in the nonpublic sector. The
Communications Electronics Security
Group (CESG) of the British Govern-
ment Communications Head Quarters
(GCHQ) claims to have invented the RSA
public-key cryptosystem prior to Rivest,
Shamir, and Adleman and the Diffie–
Hellman secret-key agreement scheme
independently of Diffie and Hellman. And
they did so in reverse order. James Ellis

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 521

Fig. 5 . The Diffie–Hellman secret-key agreement protocol.

first discovered the principle possibility
of public-key cryptography in the late
sixties. In 1973, Clifford Cocks developed
the mathematics necessary to realize
Ellis ideas and formulated what four
years later became known as the RSA
system. Soon thereafter, inspired by Ellis’
and Cocks’ work, Malcolm Williamson
invented what became known as the
Diffie–Hellman secret-key agreement
scheme, around the same time Diffie
and Hellman succeeded. None of the
results of Ellis, Cocks, and Williamson
became known to the public then. The full
story—or what of it is publicly known by
now—is told in Singh’s [1999] book.

Section 3.2 shows how to modify the
Diffie–Hellman protocol in order to obtain
a public-key cryptosystem. This protocol is
due to Taher ElGamal [1985]. Just like the
Diffie–Hellman protocol, ElGamal’s cryp-
tosystem is based on the difficulty of com-
puting discrete logarithms.

Section 3.3 gives an interesting proto-
col due to an unpublished work of Adi
Shamir. In this protocol, keys do not need
to be agreed upon prior to exchanging en-
crypted messages.

Another cryptographic task is the gen-
eration of digital signatures: Alice wants
to sign her encrypted messages to Bob
in a way that allows Bob to verify that
Alice was indeed the sender of the mes-

sage. Digital signature protocols are used
for the authentication of documents such
as email messages. The goal is to preclude
Erich from forging Alice’s messages and
her signature. Digital signature protocols
are described in Section 2.3 (RSA digital
signatures), in Section 3.2 (ElGamal dig-
ital signatures) and in Section 3.4 (Rabi
and Sherman digital signatures).

3.1. Diffie and Hellman’s Secret-Key
Agreement Protocol

Figure 5 shows how the Diffie–Hellman
secret-key agreement protocol works. It is
based on the modular exponential func-
tion with base g and modulus p, where
p is a prime and g is a primitive root
of p in Z∗p, the cyclic group of prime
residues modulo p; recall thatZ∗p has order
φ(p) = p− 1. The formal definition is as
follows:

Definition 3.1

—For n ∈ N, a primitive root of n is any
element a ∈ Z∗n satisfying that, for each
d with 1 ≤ d < φ(n), it holds that

ad 6≡ 1 mod n.

Equivalently, a primitive root of n is a
generator of Z∗n.

—Let p be a prime, and let g be a primitive
root of p. The functionα(g , p) : Zp−1 → Z∗p

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

522 Jörg Rothe

that is defined by

α(g , p)(a) = ga mod p.
is called the modular exponential func-
tion with base g and modulus p. Its in-
verse function, which for fixed p and g
maps α(g , p)(a) to a = logg α mod p, is
called the discrete logarithm.
As noted above, every primitive root of

p generates the entire group Z∗p. More-
over, Z∗p has precisely φ(p− 1) primitive
roots. For example, Z∗5 = {1, 2, 3, 4} and
Z∗4 = {1, 3}, so φ(4) = 2, and the two prim-
itive roots of 5 in Z∗5 are 2 and 3, since

21 = 2; 22 = 4;
23 ≡ 3 mod 5; 24 ≡ 1 mod 5;
31 = 3; 32 ≡ 4 mod 5;
33 ≡ 2 mod 5; 34 ≡ 1 mod 5.

Not every integer has a primitive root: 8
is the smallest such example. It is known
from elementary number theory that an
integer n has a primitive root if and only
if n is 1 or 2 or 4, or is of the form qk or 2qk

for some odd prime q.
The protocol from Figure 5 works, since

kA = βa = gba = gab = αb = kB.

Thus, the keys computed by Alice and Bob
indeed are the same.

Computing discrete logarithms is con-
sidered to be a very hard problem: no effi-
cient algorithms are known for solving it.
In contrast, the modular exponential func-
tion can be computed efficiently, using the
fast exponentiation algorithm “square-
and-multiply” described as Figure 2. That
is why modular exponentiation is consid-
ered to be a candidate for a “one-way func-
tion,” that is, a function that is easy to
compute but hard to invert. Things are
bad. It is currently not known whether or
not one-way functions exist. Things are
worse. Although they are not known to
exist, one-way functions play a key role
in cryptography, and the security of many
cryptosystems is based on the assumption
that one-way functions do exist. We dis-
cuss the notion of one-way functions in
more detail in Section 5.

If Erich is listening carefully to Alice
and Bob’s communication in the Diffie–
Hellman protocol (see Figure 5), he knows
p, g , α, and β. He wants to com-
pute their joint secret key, kA= kB. This
problem is known as the Diffie–Hellman
problem. If Erich could solve the dis-
crete logarithm problem efficiently, he
could easily compute a= logg α mod p
and b= logg β mod p and, thus, kA=βa

mod p and kB=αb mod p. That is, the
Diffie–Hellman problem is no more dif-
ficult than the discrete logarithm prob-
lem. The converse question—of whether
the Diffie–Hellman problem is as hard as
the discrete logarithm problem—is still
an unproven conjecture. Fortunately, as
noted above, the discrete logarithm prob-
lem is viewed as being intractable, so this
attack is very unlikely to be a practical
threat. On the other hand, it is the only
known attack for computing the keys di-
rectly from α and β in the Diffie–Hellman
protocol. Note, however, that no proof of
security for this protocol has been estab-
lished until now.

Note also that computing the keys kA =
kB directly from α and β is not the only
possible attack on the Diffie–Hellman pro-
tocol. For example, it is vulnerable to the
Man-in-the-middle attack. Unlike passive
attacks against the underlying mathemat-
ics of a cryptosystem, in which an eaves-
dropper tries to gain information without
affecting the protocol, the Man-in-the-
middle attack is an active attack, in which
an eavesdropper attempts to alter the pro-
tocol to his own advantage. That is, Erich,
as the “man in the middle,” might pretend
to be Alice when communicating with Bob,
and he might pretend to be Bob when com-
municating with Alice. He could intercept
α= ga mod p that Alice sends to Bob and
he could also intercept β = gb mod p that
Bob sends to Alice, passing on his own
values αE in place of α to Bob and βE in
place of β to Alice. That way, Erich could
compute two (possibly distinct) keys, one
for communicating with Alice, the other
one for communicating with Bob, with-
out them having any clue that they in
fact are communicating with him. Thus,

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 523

Fig. 6 . A public-key cryptosystem based on the Diffie–Hellman protocol, which uses the
encryption and decryption algorithms Ek and Dk of a given symmetric cryptosystem.

Alice and Bob cannot be certain of the au-
thenticity of their respective partners in
the communication. In Section 4, we intro-
duce zero-knowledge protocols, which can
be used to ensure proper authentication.

By slightly modifying the Diffie–
Hellman protocol, it is possible to obtain
a public-key cryptosystem. The variant
of the Diffie–Hellman protocol presented
here in fact is a “hybrid cryptosystem,”
a public-key cryptosystem making use of
a given symmetric cryptosystem. Such
hybrid systems are often useful in prac-
tice, for they combine the advantages of
asymmetric and symmetric cryptosys-
tems. Symmetric systems are usually
more efficient than public-key systems.

The protocol works as follows. Alice and
Bob agree on a large prime p and a primi-
tive root g of p, which are public. They also
agree on some symmetric cryptosystem
S = (P, C,K, E ,D) with encryption func-
tions E = {Ek |k ∈ K} and decryption func-
tions D = {Dk | k ∈ K}. The subsequent
steps of the protocol are shown in Figure 6.
The message to be sent is encrypted using
the symmetric system S, and the symmet-

ric key k used in this encryption is trans-
mitted in a Diffie–Hellman-like fashion.
This modification of the original Diffie–
Hellman protocol is the standard usage of
Diffie–Hellman.

The system in Figure 6 modifies the
original Diffie–Hellman protocol in the fol-
lowing way. While in the Diffie–Hellman
scheme Alice and Bob simultaneously com-
pute and send their “partial keys” α and β,
respectively, they do so sequentially in the
protocol in Figure 6. That is, Alice must
wait for Bob’s value β, his public key, to
be able to compute the key k with which
she then encrypts her message m via
the symmetric cryptosystem S. Moreover,
Bob generates, once and for all, his pub-
lic β for possibly several communications
with Alice, and also for possibly several
users other than Alice who might want
to communicate with him. In contrast,
Alice has to generate her α anew again
and again every time she communicates
with Bob, just like in the original Diffie–
Hellman protocol. This modification of
Diffie–Hellman is usually referred to as
Predistributed Diffie–Hellman. In a key

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

524 Jörg Rothe

Fig. 7 . The ElGamal public-key cryptosystem.

distribution scheme, one party chooses a
key and then transmits it to another party
or parties over an insecure channel. In
contrast, in a secret-key agreement scheme
such as the original Diffie–Hellman pro-
tocol from Figure 5, two or more parties
jointly compute, by communicating over
an insecure channel, a shared secret key,
which depends on inputs from both or all
parties.

3.2. ElGamal’s Public-Key Cryptosystem
and Digital Signature Protocol

Taher ElGamal [1985] developed a public-
key cryptosystem and a digital signature
protocol that are based on the Diffie–
Hellman protocol. In fact, the variant
of Diffie–Hellman presented in Figure 6
is somewhat reminiscent of the original
ElGamal public-key cryptosystem, which
we will now describe.

Figure 7 shows ElGamal’s public-key
cryptosystem. After Alice and Bob have
agreed on a prime p and a primitive root
g of p, Bob picks a random value b ∈
Z∗p−1 and computes his public key β =
gb mod p. If Alice wants to send him a

message m ∈ Z∗p, she looks up β and
“disguises” m by multiplying it with βa

modulo p, where a ∈ Z∗p−1 is a random
number she has picked. This yields the
first part c of the cipher text, the second
part is α = ga mod p. She sends both c
and α to Bob. To decrypt, Bob first com-
putes x = p− 1 − b. Since 1 ≤ b ≤ p− 2,
it follows that 1 ≤ x ≤ p − 2. Bob then
can recover the original plain text m by
computing:

cαx ≡ mβa ga(p−1−b) ≡ mgba+a(p−1)−ab

≡ m(g p−1)a ≡ m mod p.

Just as in the Diffie–Hellman protocol,
the security of the ElGamal protocol is
based on the difficulty of computing dis-
crete logarithms. Although it is not known
whether breaking the ElGamal protocol is
as hard as solving the discrete logarithm
problem, it can be shown that breaking
the ElGamal protocol is precisely as hard
as solving the Diffie–Hellman problem. To
prevent known attacks on the ElGamal
cryptosystem, the prime p should be cho-
sen large enough (at least 150 digits long)

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 525

Fig. 8 . The ElGamal digital signature protocol.

and such that p− 1 has at least one large
prime factor.

ElGamal’s system can be modified so as
to yield a digital signature protocol. A par-
ticularly efficient variant of this protocol
that is due to an idea of Schnorr [1990] is
now the United States “Digital Signature
Standard” [NIST 1991, 1992].

The ElGamal digital signature proto-
col is presented in Figure 8. Suppose that
Bob wants to send a message m to Al-
ice. To prove that he indeed is the sender,
he wants to sign the message in a way
that Alice can verify. Let a large prime
p and a primitive root g of p be given
as in the ElGamal public-key cryptosys-
tem, see Figure 7. As in that protocol, Bob
chooses his private b and computes β = gb

mod p. In addition, he now chooses a num-
ber r coprime with p−1, and he computes
ρ = gr mod p and a solution s to the
congruence

b · ρ + r · s ≡ m mod p− 1 (3.12)

using the extended algorithm of Euclid,
see Figure 1 and Lemma 2.3.

Bob keeps b and r secret, and he sends
along with his message m his digital sig-

nature sigB(m) = (ρ , s) and the value β to
Alice.

Alice checks the validity of the signature
by verifying the congruence

gm ≡ βρ · ρs mod p. (3.13)

The protocol is correct, since by Fermat’s
Little Theorem (see Theorem 2.2) and by
Equation (3.12), it holds that

gm ≡ gb·ρ+r·s ≡ βρ · ρs mod p.

Note that the public verification key,
which consists of the values p, g , and β,
is computed just once and can be used to
verify any message that is signed with p,
g , b, and β. However, a new value of r is
chosen every time a message is signed.

3.3. Shamir’s No-Key Protocol

Adi Shamir proposed a cryptosystem
by which Alice and Bob can exchange
messages that are encrypted by Alice’s
and Bob’s individual secret keys, yet in
which there is no need for Alice and
Bob to previously agree on a joint se-
cret key. This clever idea is described

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

526 Jörg Rothe

Fig. 9 . Shamir’s no-key protocol.

in an unpublished paper of Shamir,
and it is again based on the modular
exponentiation function and the diffi-
culty of efficiently computing discrete log-
arithms that was useful for the Diffie–
Hellman secret-key agreement protocol
described in Section 3.1. The Shamir
protocol is often called Massey–Omura
in the literature. Both inventors were
preceded by Malcolm Williamson from
GCHQ who developed the same pro-
tocol in the nonpublic sector around
1974.

Figure 9 shows how Shamir’s no-key
protocol works. In this protocol, let m be
the message that Alice wants to send to
Bob. First, Alice and Bob agree on a large
prime p. Alice generates a pair (a, a−1)
satisfying

aa−1 ≡ 1 mod p− 1,

where a−1 is the inverse of a modulo p−1.
Recall from Section 2.2 that, given a prime
p and an integer a ∈ Z∗p, the inverse a−1 of
a modulo p − 1 can easily be computed.
Similarly, Bob generates a pair (b, b−1)
satisfying

bb−1 ≡ 1 mod p− 1,

where b−1 is the inverse of b modulo p−1.
See Figure 9 for the rest of the steps.

The protocol is correct, since for all mes-
sages m, 1 ≤ m ≤ p, it holds that:

m≡maa−1
mod p and m≡mbb−1

mod p.

Hence, looking at Figure 9, we obtain

zb−1 ≡ ya−1b−1 ≡ xba−1b−1 ≡ maba−1b−1

≡ m mod p,

so Step 8 of Figure 9 is correct.
Note that modular exponentiation is

used here both for encryption and decryp-
tion. The key property for this protocol
to work is that modular exponentiation is
symmetric in the exponents, that is, for all
a and b, it holds that

α(g , p)(a · b) ≡ ga·b ≡ gb·a mod p.

3.4. Rivest, Rabi, and Sherman’s Secret-Key
Agreement and Digital Signature
Protocols

Ron Rivest, Muhammad Rabi, and Alan
Sherman developed secret-key agree-
ment and digital signature protocols.
The secret-key agreement protocol from
Figure 10 is attributed to Rivest and
Sherman in Rabi and Sherman [1993,
1997]. The digital signature protocol from

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 527

Fig. 10 . The Rivest–Sherman secret-key agreement protocol, which uses a strongly nonin-
vertible, associative one-way function σ .

Figure 11 is due to Rabi and Sherman
[1993, 1997].

Here is a brief, intuitive explanation
of how these protocols work. The key
building block of both protocols is a
total, strongly noninvertible, associative
one-way function. As mentioned earlier,
one-way functions are theoretical con-
structs not known to exist. However, there
are plausible assumptions under which
one-way functions of various types can
be constructed. In Section 5, under a
quite plausible complexity-theoretic as-
sumption, we will see how to construct
a concrete candidate for a total, strongly
noninvertible, associative one-way func-
tion. For now, assume that σ is such a func-
tion. That is, σ is a total two-ary (i.e., two-
argument) function mapping pairs of posi-
tive integers to positive integers such that:

—σ is associative, that is, the equation
σ (x, σ (y , z)) = σ (σ (x, y), z) holds for all
x, y , z ∈ N.

—σ is strongly noninvertible, that is, σ is
hard to invert even if in addition to the
function value one of the arguments is
given.

Look at Rivest and Sherman’s secret-
key agreement protocol in Figure 10. Since

σ is associative, we have:

kA = σ (x, σ (y , z)) = σ (σ (x, y), z) = kB,

and thus the keys computed by Alice and
Bob indeed are the same. On the other
hand, if Erich was listening carefully,
he knows not only two function values,
σ (x, y) and σ (y , z), but he also knows y ,
the first argument of σ (y , z) and the sec-
ond argument of σ (x, y). That is why σ
must be strongly noninvertible, in order to
prevent the direct attack that Erich com-
putes Alice’s secret number x from σ (x, y)
and y or Bob’s secret number z from
σ (y , z) and y , in which case he could eas-
ily obtain their joint secret key, kA = kB.
Analogous comments apply to Rabi and
Sherman’s digital signature protocol pre-
sented in Figure 11.

3.5. Discussion of Diffie–Hellman
versus Rivest–Sherman

While the secret-key agreement protocol of
Diffie and Hellman [1976] is widely used
in practice, that of Rivest and Sherman
(see Rabi and Sherman [1993, 1997]) is not
(yet) used in applications and, thus, might
appear somewhat exotic at first glance.
Note, however, that neither the Diffie–
Hellman nor the Rivest–Sherman protocol

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

528 Jörg Rothe

Fig. 11 . The Rabi–Sherman digital signature protocol, which uses a strongly noninvertible,
associative one-way function σ .

has a proof of security up to date. So, let us
digress for a moment to compare the state
of the art on these two protocols.

—While the Diffie–Hellman protocol
uses a concrete function, the Rivest–
Sherman protocol is based on an
unspecified, “abstract” function that is
described only by listing the properties
it should satisfy. That is not to say
that Rivest–Sherman is an abstract
version of Diffie–Hellman. Rather, the
Rivest–Sherman protocol may be seen
as an alternative to the Diffie–Hellman
protocol. The advantage of Rivest and
Sherman’s approach is that it is more
flexible, as it does not depend on a
single function.

—The security of the Diffie–Hellman
scheme is based on the (unproven, yet
plausible) assumption that computing
discrete logarithms is a computationally
intractable task.

In contrast, the Rivest–Sherman
scheme uses a candidate for a strongly
noninvertible, associative one-way func-
tion (see Section 5.1 for the formal
definition) as its key building block.

Although it is not known whether such
functions exist, it has been shown re-
cently by Hemaspaandra and this au-
thor [1999] that they do exist in the
worst-case model under the (unproven,
yet plausible) assumption that P 6= NP,
where P denotes the class of polynomial-
time solvable problems, and NP de-
notes the class of problems that can be
solved nondeterministically in polyno-
mial time. Section 5 presents this result
and a sketch of its proof.

—Breaking Diffie–Hellman is not even
known to be as hard as computing dis-
crete logarithms, even though some nice
progress in this direction has been made
recently by Maurer and Wolf [1999],
who established conditions for relat-
ing the hardness of breaking Diffie–
Hellman to that of computing discrete
logarithms. Again, their results rest on
unproven, yet plausible assumptions.
In particular, let ν(p) denote the mini-
mum, taken over all numbers d in the
interval [p− 2

√
p+ 1, p+ 2

√
p+ 1], of

the largest prime factors of d . The
“smootheness assumption” says that

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 529

ν(p) is polynomial in log p. Why is
this assumption plausible? The idea is
that numbers in the Hasse–Weil inter-
val (which are sizes of elliptic curves)
are smooth with the same probabil-
ity as random numbers of the same
length, and these probabilities are in-
dependent. Under this smoothness as-
sumption, Maurer and Wolf [1999]
proved that breaking Diffie–Hellman
and computing the discrete logarithm
are polynomial-time equivalent tasks in
the underlying cyclic group, where the
equivalence is nonuniform.

Similarly, even if strongly noninvert-
ible, associative one-way functions were
known to exist, one could not conclude
that the Rivest–Sherman protocol is
secure; rather, strong noninvertibility
merely precludes certain types of di-
rect attacks [Rabi and Sherman 1997;
Hemaspaandra and Rothe 1999]. More-
over, strongly noninvertible, associative
one-way functions could be constructed
so far only in the worst-case complex-
ity model, assuming P 6= NP. Although
this result is relevant and interesting in
a complexity-theoretic setting, it has no
direct implications in applied cryptogra-
phy. For cryptographic applications, one
would need to construct such functions
based on the average-case complexity
model, under plausible assumptions.

As noted in the outline of the tu-
torial, there is some hope for obtain-
ing such a strong result by combining
Hemaspaandra and Rothe’s [1999] tech-
nique on constructing strongly noninvert-
ible, associative one-way functions in the
worst case with Ajtai’s [1996] techniques
on constructing hard instances of lattice
problems. The shortest lattice vector prob-
lem, denoted by SVP, is the problem of
finding a shortest lattice vector in the
lattice generated by a given lattice ba-
sis. Roughly speaking, Ajtai [1996] proved
that the problem SVP is as hard in the
average-case as it is in the worst-case com-
plexity model.

More precisely, Ajtai constructed an infi-
nite family {3n}n≥1 of lattices, where each
3n is represented by a basis as an instance

of SVP, and he showed the following re-
sult: Suppose one can compute in polyno-
mial time, for each n, an approximately
shortest vector in a lattice 3i randomly
chosen from {3n}n≥1, with nonnegligible
probability. Then, the length of a short-
est vector in every lattice from {3n}n≥1 can
be estimated to within a fixed polynomial
factor in polynomial time with probability
close to one. However, since the best ap-
proximation factor known to be achieved
by polynomial-time algorithms is essen-
tially exponential, and since the best al-
gorithms known to achieve polynomial-
factor approximations run in exponential
time, it follows that, as mentioned above,
“SVP is as hard in the average-case as it is
in the worst-case model.” In this regard,
the SVP is a unique problem; for no other
problem in NP that is believed to be out-
side P such a strong connection is known to
hold.

Based on the worst-case/average-case
equivalence of SVP, Ajtai and Dwork
[1997] designed a public-key cryptosys-
tem whose cryptographic security depends
only on worst-case complexity assump-
tions. However, the worst-case hardness
of SVP (in the Euclidean norm) had re-
mained an open problem for a long time.
Solving this problem, Ajtai [1998] es-
tablished the NP-hardness of SVP un-
der randomized reductions. His result
was strengthened by Micciancio [2001],
who also simplified Ajtai’s proof. Since
the construction of strongly noninvert-
ible, associative one-way functions in
Hemaspaandra and Rothe [1999] is based
on the assumption P 6= NP, it seems rea-
sonable to consider the NP-hard problem
SVP to be a good candidate for achieving
strongly noninvertible, associative one-
way functions even in the technically more
demanding average-case model.

The complexity of SVP and the use
of lattices in crytography are covered in
the surveys by Cai [1999], Kumar and
Sivakumar [2001], and Nguyen and Stern
[2001]. Interestingly, lattices are use-
ful both in breaking existing cryptosys-
tems like RSA (e.g., the low-exponent at-
tacks of Håstad [1988] and Coppersmith
[1997], see Section 2.4) and in designing

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

530 Jörg Rothe

secure cryptosystems (e.g., the Ajtai–
Dwork public-ley cryptosystem).

4. INTERACTIVE PROOF SYSTEMS AND
ZERO-KNOWLEDGE PROTOCOLS

In Section 3.1, we mentioned the Man-in-
the-middle attack on the Diffie–Hellman
secret-key agreement protocol. Imagine
that Bob has just agreed with his partner
on a joint secret key via a public telephone
line. Of course, he assumes it was Alice he
was talking to. Bob was so clever to use the
Diffie–Hellman protocol, and so he thinks
that Erich does not have a clue about what
secret key they have chosen:

But Erich was even smarter. Here is
what really happened:

This situation raises the issue of authen-
tication: How can Bob be certain that it
in fact was Alice he was communicating
with, and not Erich pretending to be Al-
ice? In other words, how can Alice prove
her identity to Bob beyond any doubt?

In Section 3, we have seen how to use
digital signatures for the authentication
of documents such as e-mail messages. In
this section, our goal is to achieve authen-
tication of an individual rather than a doc-
ument. One way to achieve this goal is
to assign to Alice’s identity some secret
information such as her PIN (“Personal
Identifaction Number”) or any other pri-
vate information that nobody else knows.

We refer to the information proving Alice’s
identity as Alice’s secret.

But here’s another catch. Alice would
like to convince Bob of her identity by
proving that she knows her secret. Ideally,
however, she should not disclose her se-
cret because then it wouldn’t be a secret
anymore: If Bob, for example, knew Al-
ice’s secret, he could pretend to be Alice
when communicating with somebody else.
So the question is:

How can one prove the knowledge of a secret
without telling the secret?

That is precisely what zero-knowledge
protocols are all about.

4.1. Interactive Proof Systems

Zero-knowledge protocols are a spe-
cial form of interactive proof systems,
which we will describe first. Interactive
proof systems were introduced by Shafi
Goldwasser, Silvio Micali, and Charles
Rackoff [Goldwasser et al. 1985, 1989].
Independently, Babai and Moran [1988]
and Babai [1985] developed the essen-
tially equivalent notion of Arthur–Merlin
games.

As in the previous protocols, we consider
the communication between two parties,
the “prover” Alice and the “verifier” Bob:

For now, we are not interested in the se-
curity aspects that may arise when the
communication is eavesdropped; rather,
we are concerned with the following com-
munication problem: Alice and Bob want
to jointly solve a given problem L, that
is, they want to decide whether or not
any given instance belongs to L. For
concreteness, consider the graph isomor-
phism problem.

Definition 4.1. The vertex set of any
graph G is denoted by V (G), and the edge
set of G is denoted by E(G). Let G and

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 531

H be undirected, simple graphs, that is,
graphs with no reflexive or multiple edges.

An isomorphism between G and H is a
bijective mapping π from V (G) onto V (H)
such that, for all i, j ∈ V (G),

{i, j } ∈ E(G) ⇔ {π (i), π (j)} ∈ E(H).

Graph-Isomorphism denotes the set of all
pairs of isomorphic graphs.

The graph isomorphism problem is to
determine whether or not any two given
graphs are isomorphic. This problem be-
longs to NP, and since there is no effi-
cient algorithm known for solving it, it is
widely considered to be a hard, intractable
problem. However, it is not known to
be complete for NP, that is, it is not
known whether this problem belongs to
the hardest NP problems. In fact, due to
its “lowness” properties, it is doubted that
the graph isomorphism problem is NP-
complete. A set A is low for a complex-
ity class C if it does not yield any addi-
tional computational power when used as
an oracle by the machines representing
the class C, that is, if CA = C. Schöning
[1987] showed that Graph-Isomorphism is
in the second level of the low hierarchy
within NP, that is, it is low for NPNP, the
second level of the polynomial hierarchy.
It follows that if Graph-Isomorphism were
NP-complete then the polynomial hierar-
chy would collapse, which is considered
unlikely. Moreover, Köbler et al. [1992]
proved Graph-Isomorphism low for PP,
probabilistic polynomial time.

Therefore, it is conjectured that the
graph isomorphism problem might be nei-
ther in P nor NP-complete, and this
is what makes this problem so inter-
esting for complexity theoreticians. Of
course, proving this conjecture would im-
mediately prove P different from NP;
so, such a proof seems beyond current
techniques. For more complexity-theoretic
background on the graph isomorphism
problem, we refer to the book by Köbler
et al. [1993].

We mention in passing that (language
versions of) the factoring problem and the
discrete logarithm problem are not known

to be NP-complete either. Unlike the graph
isomorphism problem, however, no low-
ness properties are known for these two
problems. Grollmann and Selman [1988]
have shown that a language version of the
discrete logarithm problem is contained
in UP, which denotes Valiant’s [1976]
class “unambiguous polynomial time.” NP-
complete problems are very unlikely to be-
long to UP, so this result gives some evi-
dence against the NP-completeness of the
discrete logarithm problem.

Returning to Alice and Bob’s commu-
nication problem, their task is to decide
whether or not any given pair (G, H) of
graphs is isomorphic. Alice, the prover,
tries to prove them isomorphic by provid-
ing Bob with an isomorphism π between
G and H. She intends to convince Bob no
matter whether or not G and H in fact are
isomorphic. But Bob is impatient. To ac-
cept the input, he wants to be convinced
with overwhelming probability that the
proof provided by Alice indeed is correct.
Even worse, he is convinced only if every
potential prover strategy Alice might come
up with yields an overwhelming success
probability. If Alice can accomplish this
then Bob accepts the input, otherwise he
rejects it.

To formalize this intuition, imagine
Alice and Bob to be Turing machines.
Alice, the prover, is an all-powerful Turing
machine with no computational limitation
whatsoever. Bob, the verifier, is a random-
ized Turing machine working in polyno-
mial time, but capable of making random
moves by flipping an unbiased coin. In Def-
inition 4.2 below, in case of acceptance, it
is enough that Alice finds one sufficient
strategy to convince Bob. In case of rejec-
tion, however, rather than considering ev-
ery potential prover strategy of Alice, it is
useful to quantify over all possible provers
that may replace Alice.

For the definition of randomized Tur-
ing machines, we refer to any textbook
on complexity theory such as Balcázar
et al. [1995], Bovet and Crescenzi [1993],
Hemaspaandra and Ogihara [2001], and
Papadimitriou [1994]. Essentially, every
nondeterministic Turing machine can be
viewed as a randomized Turing machine

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

532 Jörg Rothe

by defining a suitable probability measure
on the computation trees of the machine.

Definition 4.2 (Interactive Proof System)
[Goldwasser et al. 1985, 1988]

(1) An interactive proof system (or “IP pro-
tocol”) (A, B) is a protocol between
Alice, the prover, and Bob, the verifier.
Alice runs a Turing machine A with
no limit on its resources, while Bob
runs a polynomial-time randomized
Turing machine B. Both access the
same input on a joint input tape, and
they are equipped with private work
tapes for internal computations. They
also share a read-write communica-
tion tape to exchange messages. Alice
does not see Bob’s random choices. Let
Pr((A, B)(x) = 1) denote the probabil-
ity (according to the random choices
made in the communication) that Bob
accepts the input x; that is, for a
particular sequence of random bits,
“(A, B)(x) = 1” denotes the event that
Bob is convinced by Alice’s proof for x
and accepts.

(2) An interactive proof system (A, B)
accepts a set L if and only if for each x:

x ∈ L ⇒ (∃A)
[
Pr((A, B)(x)= 1) ≥ 3

4

]
;

(4.14)

x 6∈ L ⇒ (∀Â)
[
Pr((Â, B)(x)= 1) ≤ 1

4

]
,

(4.15)

where in (4.14) we quantify over the
prover strategies (or “proofs”) for x
of the prescribed Turing machine A,
whereas in (4.15) we quantify over the
proofs Â for x of any prover (i.e., any
Turing machine of unlimited compu-
tational power) that may replace the
fixed Turing machine A.

(3) IP denotes the class of all sets that
can be accepted by an interactive proof
system.

Note that the acceptance probabilities
of at least 3

4 if x ∈ L (respectively, of at
most 1

4 if x 6∈ L) are chosen at will.
By probability amplification techniques
[Papadimitriou 1994; Balcázar et al. 1995;

Bovet and Crescenzi 1993], one can use
any constants 1

2 + ε and 1
2 − ε, respec-

tively, where ε > 0. It is even possible
to make the error probability as small as
2−p(|x|), for any fixed polynomial p. Better
yet, Goldreich, et al. [1987] have shown
that one can even require the acceptance
probability of exactly 1 if x ∈ L, without
changing the class IP.

In the literature, verifier and prover
are sometimes referred to as Arthur and
Merlin. In fact, the Arthur-Merlin games
introduced by Babai and Moran [1988] and
Babai [1985] are nothing else than the
interactive proof systems of Goldwasser
et al. [1985, 1989]. One difference be-
tween Definition 4.2 and the definition
of Arthur–Merlin games is that the ran-
dom bits chosen by Arthur are public (i.e.,
they are known to Merlin), while they
are private to Bob in Definition 4.2. How-
ever, Goldwasser and Sipser [1989] have
shown that the privacy of the verifier’s
random bits does not matter: Arthur–
Merlin games are equivalent to interactive
proof systems.

What if Bob has run out of coins?
That is, what if he behaves determin-
istically when verifying Alice’s proof for
“x ∈ L”? Due to her unlimited compu-
tational power, Alice can provide proofs
of unlimited length, that is, of length not
bounded by any function in the length
of x. However, since Bob is a polynomial-
time Turing machine, it is clear that he
can check only proofs of length polyno-
mially in |x|. It follows that IP, when
restricted to deterministic polynomial-
time verifiers, is just a cumbersome way
of defining the class NP. Hence, since
Graph-Isomorphism belongs to NP, it must
also belong to the (unrestricted) class IP.
We omit presenting an explicit IP proto-
col for Graph-Isomorphism here, but we re-
fer to Section 4.3, where in Figure 13 an
IP protocol for Graph-Isomorphism with an
additional property is given: it is a zero-
knowledge protocol.

But what about the complement of
Graph-Isomorphism? Does there exist an
interactive proof system that decides
whether or not two given graphs are non-
isomorphic? Note that even though Alice

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 533

Fig. 12 . The Goldreich–Micali–Wigderson IP protocol for Graph-Isomorphism.

is all-powerful computationally, she may
run into difficulties when she is trying
to prove that the graphs are nonisomor-
phic. Consider, for example, two noniso-
morphic graphs with 1000 vertices each.
A proof of that fact seems to require Alice
to show that none of the 1000! possible per-
mutations is an isomorphism between the
graphs. Not only would it be impossible for
Bob to check such a long proof in polyno-
mial time, also for Alice it would be liter-
ally impossible to write this proof down.
After all, 1000! is approximately 4 ·102567.
This number exceeds the number of atoms
in the entire visible universe,5 which is
currently estimated to be around 1077, by
a truly astronomical factor.

That is why the following result of
Goldreich et al. [1986, 1991] was a bit of a
surprise.

THEOREM 4.3 (GOLDREICH ET AL. 1986,
1991). Graph-Isomorphism is in IP.

PROOF. Figure 12 shows the interac-
tive proof system for the graph nonisomor-
phism problem.

Let us check that the implications (4.14)
and (4.15) from Definition 4.2 do hold.
Suppose that G1 and G2 are nonisomor-
phic. Then, it is easy for Alice to determine

5 Dark matter excluded.

that graph Gb, b ∈ {1, 2}, to which H is
isomorphic. So she sends a = b, and Bob
accepts with probability 1. That is,

(G1, G2) ∈ Graph-Isomorphism
⇒ (∃A)[Pr((A, B)(G1, G2) = 1) = 1].

Now suppose that G1 and G2 are isomor-
phic. Then, no matter what clever strat-
egy Alice applies, her chance of answer-
ing correctly (i.e., with a = b) is no better
than 1/2 because she does not see Bob’s
random bit b and so can do no better than
guessing. That is,

(G1, G2) 6∈ Graph-Isomorphism ⇒
(∀Â)

[
Pr((Â, B)(G1, G2) = 1) ≤ 1

2

]
.

Note that the acceptance probability of
≤ 1

2 above is not yet the acceptance
probability of ≤ 1

4 required in (4.15) of
Definition 4.2. However, as mentioned
above, standard probability amplification
techniques yield an error probability as
close to zero as one desires. We leave the
details to the reader.

By definition, IP contains all of NP.
The above result shows that IP also con-
tains a problem from coNP, the class of
complements of NP problems, which is

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

534 Jörg Rothe

unlikely to be contained in NP. So, the
question arises of how big the class IP ac-
tually is. A famous result of Shamir [1992]
settled this question: IP equals PSPACE,
the class of problems that can be decided
in polynomial space.

4.2. Zero-Knowledge Protocols

Recalling the issue of authentication men-
tioned at the beginning of this section, we
are now ready to define zero-knowledge
protocols.

As mentioned above, GraphIsomorphism
is in IP. To prove that the two given graphs
are isomorphic, Alice simply sends an iso-
morphism π to Bob, which he then checks
deterministically in polynomial time. Sup-
pose, however, that Alice wants to keep
the isomorphism π secret. On the one
hand, she does not want to disclose her
secret; on the other hand, she wants to
prove to Bob that she knows it. What
she needs is a very special IP proto-
col that conveys nothing about her se-
cret isomorphism, and yet proves that the
graphs are isomorphic. The next section
will present such a zero-knowledge proto-
col for Graph-Isomorphism.

But what is a zero-knowledge protocol
and how can one formalize it? The intu-
ition is this. Imagine that Alice has a twin
sister named Malice who looks just like
her. However, Malice does not know Alice’s
secret. Moreover, Malice does not have
Alice’s unlimited computational power;
rather, just as the verifier Bob, she only op-
erates like a randomized polynomial-time
Turing machine. Still, she tries to simu-
late Alice’s communication with Bob. An
IP protocol has the zero-knowledge prop-
erty if the information communicated in
Malice’s simulated protocol cannot be dis-
tinguished from the information commu-
nicated in Alice’s original protocol. Malice,
not knowing the secret, cannot put any in-
formation about the secret into her simu-
lated protocol, and yet she is able to gener-
ate that clone of the original protocol that
looks just like the original to an indepen-
dent observer. Consequently, the verifier
Bob (or any other party such as Erich) can-
not extract any information from the orig-

inal protocol. In short, if there’s nothing in
there, you can’t get anything out of it.

Definition 4.4 (Zero-Knowledge Proto-
cols) [Goldwasser et al. 1985, 1989].
Let (A, B) be an interactive proof system
accepting a problem L. We say (A, B) is a
zero-knowledge protocol for L if and only if
there exists a simulator Malice such that
the following holds:

—Malice runs a randomized polynomial-
time Turing machine M to simulate the
prover Alice in her communication with
Bob, thus yielding a simulated protocol
(M , B);

—for each x ∈ L, the tuples (a1, a2, . . . , ak)
and (m1, m2, . . . , mk) representing the
communication in (A, B) and in (M , B),
respectively, are identically distributed
over the coin tosses of A and B in (A, B)
and of M and B in (M , B), respectively.

The above definition is called “honest-
verifier perfect zero-knowledge” in the
literature. That is, (a) one assumes that
the verifier is honest, and (b) one requires
that the information communicated in
the simulated protocol perfectly coincides
with the information communicated in
the original protocol.

Assumption (a) is not quite realistic for
most cryptographic applications. A dis-
honest verifier might alter the protocol to
his own advantage. Therefore, one should
modify the definition above to require that
for each verifier B∗ there exists a simu-
lator M ∗ generating a simulated protocol
not distinguishable from the original one.
However, honest-verifier zero-knowledge
protocols with public random bits can al-
ways be transformed to protocols that
have the zero-knowledge property also in
the presence of dishonest verifiers.

Regarding assumption (b), there
are several other notions of zero-
knowledge that are weaker than perfect
zero-knowledge, such as “statistical zero-
knowledge” and “computational
zero-knowledge.” In a statistical zero-
knowledge protocol (also known as almost-
perfect zero-knowledge protocol), one re-
quires that the information communicated
in the original and in the simulated

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 535

protocol be indistinguishable by certain
statistical tests. In a computational zero-
knowledge protocol, one merely requires
that the information communicated in the
original and in the simulated protocol be
computationally indistinguishable, that
is, for each randomized polynomial-time
Turing machine, the probability of de-
tecting differences in the corresponding
distributions is negligibly small.

In the latter model, Goldreich et al.
[1986, 1991] showed what is considered
by far the most important result on zero-
knowledge: Every problem in NP has
a computational zero-knowledge proto-
col under the plausible assumption that
there exist cryptographically secure bit-
commitment schemes. The key idea is
a computational zero-knowledge proto-
col for Graph-Three-Colorability, a well-
known NP-complete problem. In contrast,
it seems unlikely [Brassard and Crepeau
1989] that such a strong claim can be
proven for the perfect zero-knowledge
model presented in Definition 4.4.

For more information about interactive
proof systems and zero-knowledge, we
refer to the books by Goldreich [2001,
Chap. 4], Köbler et al. [1993, Chap. 2],
Papadimitriou [1994, Chap. 12.2],
Balcázar et al. [1990, Chap. 11], and
Bovet and Crescenzi [1993, Chap. 10] and
to the surveys by Oded Goldreich [1988],
Shafi Goldwasser [1989], and Joan
Feigenbaum [1992].

4.3. Zero-Knowledge Protocol for the Graph
Isomorphism Problem

Goldreich et al. [1986, 1991] proposed
a zero-knowledge protocol for the graph
isomorphism problem. This result was
quite a surprise, since previously zero-
knowledge protocols were known only for
problems contained both in NP and coNP.
It is considered to be unlikely that NP
equals coNP; in particular, it is considered
to be unlikely that Graph-Isomorphism is
in coNP.

THEOREM 4.5 [GOLDREICH ET AL. 1986,
1991]. Graph-Isomorphism has a zero-
knowledge protocol.

PROOF. Figure 13 shows the Goldreich–
Micali–Wigderson protocol. One differ-
ence to the protocol for the graph non-
isomorphism problem in Figure 12 is that
now Alice too makes random choices.

Alice’s secret is the isomorphism π she
has chosen. The protocol is correct, since
Alice knows her secret π and also her ran-
dom permutation ρ. Hence, she can easily
compute the isomorphism σ with σ (Gb) =
H to prove her identity to Bob. When do-
ing so, she does not have to disclose her
secret π to Bob in order to convince him of
her identity. In particular,

(G1, G2) ∈ Graph-Isomorphism
⇒ (∃A)[Pr((A, B)(G1, G2) = 1) = 1],

so the implication (4.14) from
Definition 4.2 holds. Since Alice her-
self has chosen two isomorphic graphs,
the case (G1, G2) 6∈ Graph-Isomorphism
does not occur, so the implication (4.15)
from Definition 4.2 trivially holds if the
protocol is implemented properly. Thus,
the protocol is an interactive proof system
for Graph-Isomorphism.

Recall that Alice wants to prove her
identity via this protocol. Suppose that
Erich or Malice want to cheat by pre-
tending to be Alice. They do not know
her secret isomorphism π , but they do
know the public isomorphic graphs G1
and G2. They want to convince Bob that
they know Alice’s secret, which corre-
sponds to (G1, G2). If, by coincidence, Bob’s
bit b equals their previously chosen bit a,
they win. However, if b 6= a, computing
σ = ρ ◦ π or σ = ρ ◦ π−1 requires knowl-
edge of π . Without knowing π , comput-
ing π from the public graphs G1 and G2
seems to be impossible for them, since
Graph-Isomorphism is a hard problem, too
hard even for randomized polynomial-
time Turing machines. Thus, they will fail
provided that the graphs are chosen large
enough.

Since they cannot do better than guess-
ing the bit b, they can cheat with proba-
bility at most 1

2 . Of course, they can al-
ways guess the bit b, which implies that
their chance of cheating successfully is

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

536 Jörg Rothe

Fig. 13 . The Goldreich–Micali–Wigderson zero-knowledge protocol for graph isomorphism.

exactly 1
2 . Hence, if Bob demands, say, k

independent rounds of the protocol to be
executed, he can make the cheating prob-
ability as small as 2−k , and thus is very
likely to detect any cheater. Note that af-
ter only 20 rounds the odds of malicious
Malice getting away with it undetected are
less than one to one million. Hence, the
protocol is correct.

It remains to show that the protocol in
Figure 13 is zero-knowledge. Figure 14
shows a simulated protocol with Malice,
who does not know the secret π , replac-
ing Alice. The information communicated
in one round of the protocol is given by
a triple of the form (H, b, σ). Whenever
Malice chooses a bit a with a = b, she sim-

ply sends σ = ρ and wins: Bob, or any inde-
pendent observer, will not detect that she
in fact is Malice. Otherwise, whenever a 6=
b, Malice fails. However, that’s no problem
at all: She simply deletes this round from
the simulated protocol and repeats. Thus,
she can produce a sequence of triples of
the form (H, b, σ) that is indistinguishable
from the corresponding sequence of triples
in the original protocol between Alice and
Bob. It follows that the Goldreich–Micali–
Wigderson protocol is zero-knowledge.

4.4. Fiat and Shamir’s Zero-Knowledge
Protocol

Based on a similar protocol by Goldwasser
et al. [1989], Fiat and Shamir [1986]

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 537

Fig. 14 . How to simulate the Goldreich–Micali–Wigderson protocol without knowing the
secret π .

proposed a zero-knowledge protocol for a
number-theoretical problem. It is based
on the assumption that computing square
roots in Z∗n is infeasible in practice. Due to
its properties, the Fiat–Shamir protocol is
particularly suitable for authentication of
individuals in large computer networks. It
is a public-key protocol, it is more efficient
than other public-key protocols such as
the RSA algorithm, it can be implemented
on a chip card, and it is zero-knowledge.
These advantages resulted in a rapid
deployment of the protocol in practical
applications. The Fiat–Shamir protocol is
integrated in the “Videocrypt” Pay-TV sys-
tem [Cohen and Hashkes 1991]. The orig-
inal Fiat–Shamir identification scheme
has later been improved by Feige et al.
[1988] to a zero-knowledge protocol in

which not only the secret square roots
modulo n are not revealed, but also the in-
formation of whether or not there exists a
square root modulo n is not leaked.

The theory of zero-knowledge may
also become important in future inter-
net technologies. To prevent confusion,
we note that Zero-Knowledge Systems,
Inc., a Montréal-based company that was
founded in 1997 and provides products
and services enabling users to protect
their privacy on-line on the World Wide
Web, is not a commercial fielding of zero-
knowledge protocols (I. Goldberg, personal
communication).

THEOREM 4.6 [FIAT AND SHAMIR 1986].
The Fiat–Shamir procedure given in
Figure 15 is a zero-knowledge protocol.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

538 Jörg Rothe

Fig. 15 . The Fiat–Shamir zero-knowledge protocol.

PROOF. Look at Figure 15. The proto-
col is correct, since Alice knows the secret
s∈Z∗n that she has chosen, and thus she
can compute y = r · sb, where b is the bit
that Bob has chosen at random. Hence, it
holds in Z∗n that

y2 ≡ (r · sb)2 ≡ r2 · s2b ≡ r2 · vb

≡ x · vb mod n,

so Bob accepts Alice’s identity.
Suppose now that Erich or Malice want

to cheat by pretending to be Alice. They
do not know her secret s, nor do they
know the primes p and q, but they do
know the public n = pq and v = s2

mod n. They want to convince Bob that
they know Alice’s secret s, the square root
of v modulo n. If, by coincidence, Bob’s bit
b equals zero then y = r · s0 = r and
they win. However, if b = 1, computing
a y that satisfies y2 ≡ x · vb mod n re-
quires knowledge of the secret s, assum-

ing that computing square roots modulo n
is hard. Without knowing s, if Malice or
Erich were able to compute the correct an-
swer for both b = 0 and b = 1, say yb with
y2

b ≡ x · vb mod n, they could efficiently
compute square roots modulo n as follows:
y2

0 ≡ x mod n and y2
1 ≡ x · v mod n im-

plies (y1/ y0)2 ≡ v mod n; hence, y1/ y0 is
a square root of v modulo n.

It follows that they can cheat with prob-
ability at most 1

2 . Of course, they can
always guess the bit b in advance and
prepare the answer accordingly. Choosing
x = r2 · v−b mod n and y = r implies that

y2 ≡ r2 ≡ r2 · v−b · vb ≡ x · vb mod n.
(4.16)

Thus, Bob will not detect any irregulari-
ties and will accept. Hence, their chance
to cheat successfully is exactly 1

2 . Again, if
Bob demands, say, k independent rounds
of the protocol to be executed, he can

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 539

Fig. 16 . How to simulate the Fiat–Shamir protocol without knowing the secret s.

make the cheating probability as small as
desired and is very likely to detect any
cheater.

It remains to show that the Fiat–Shamir
protocol in Figure 15 is zero-knowledge.
Figure 16 shows a simulated protocol with
Malice, who does not know the secret s, re-
placing Alice. The information communi-
cated in one round of the protocol is given
by a triple of the form (x, b, y). In addi-
tion to the randomly chosen r ∈ Z∗n, Mal-
ice guesses a bit c ∈ {0, 1} and computes
x = r2·v−c mod n, which she sends to Bob.
Whenever c happens to be equal to Bob’s
bit b, Malice simply sends y = r and wins.
By an argument analogous to Eq. (4.16)
above, neither Bob nor any independent
observer will detect that she actually is

Malice:

y2 ≡ r2 ≡ r2 · v−c · vb ≡ x · vb mod n.

Otherwise, whenever c 6= b, Malice fails.
However, that’s no problem at all: She
simply deletes this round from the simu-
lated protocol and repeats. Thus, she can
produce a sequence of triples of the form
(x, b, y) that is indistinguishable from the
corresponding sequence of triples in the
original protocol between Alice and Bob.
It follows that the Fiat–Shamir protocol is
zero-knowledge.

We have chosen to give here the original
Fiat–Shamir identification scheme as pre-
sented in most books (see, e.g., Goldreich

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

540 Jörg Rothe

[2001] and Beutelspacher et al. [2001]).
Note, however, that quite a number of
modifications and improvements of the
Fiat–Shamir protocol have been proposed,
including the “zero-knowledge proof of
knowledge” protocol of Feige et al. [1988].
We also note in passing that we omit-
ted many formal details in our argu-
ments in this section. A rigid formalism
(see Goldreich [2001]) is helpful in dis-
cussing many subtleties that can arise
in zero-knowledge protocols. For exam-
ple, looking at Figure 15, Alice could
be impersonated by anyone who picks
the value r = 0 without Bob detecting
this fraud. We refer to Burmester and
Desmedt [1989] for appropriate modifica-
tions of the scheme. Moreover, Burmester
et al. [1989, 1992] proposed efficient zero-
knowledge protocols in a general algebraic
setting.

5. STRONGLY NONINVERTIBLE
ASSOCIATIVE ONE-WAY FUNCTIONS

Recall Rivest and Sherman’s secret-key
agreement protocol (Figure 10) and Rabi
and Sherman’s digital signature proto-
col (Figure 11) presented in Section 3.4.
Both of these protocols use a candidate for
a strongly noninvertible, associative one-
way function. Are these protocols secure?
This question has two aspects: (1) Are
they secure under the assumption that
strongly noninvertible, associative one-
way functions indeed exist? (2) What evi-
dence do we have for the existence of such
functions?

The first question is an open problem.
Security here depends on precisely how
“strong noninvertibility” is defined, and
in which model. Traditional complexity
theory is concerned with the worst-case
model and has identified a large num-
ber of problems that are hard in the
worst case. Cryptographic applications,
however, require the more demanding
average-case model (see, e.g., Goldreich
[1999, 2001] and Luby [1996]) for which
much less is known. As noted by Rabi
and Sherman [1997], no proof of secu-
rity for the Rivest–Sherman and Rabi–

Sherman protocols is currently known,
and even assuming the existence of asso-
ciative one-way functions that are strongly
noninvertible in the weaker worst-case
model would not imply that the protocols
are secure. In that regard, however, the
Rivest–Sherman and Rabi–Sherman pro-
tocols are just like many other protocols
currently used in practical applications.
For example, neither the Diffie–Hellman
protocol nor the RSA protocol currently
has a proof of security. There are merely
heuristic, intuitive arguments about how
to avoid certain direct attacks. The “secu-
rity” of the Diffie–Hellman protocol draws
on the assumption that computing dis-
crete logarithms is hard, and the “secu-
rity” of the RSA protocol draws on the
assumption that factoring large integers
is hard. Breaking Diffie–Hellman is not
even known to be as hard as the discrete
logarithm problem, and breaking RSA is
not even known to be as hard as the fac-
toring problem. In a similar vein, Rabi
and Sherman [1993, 1997] only give intu-
itive arguments for the security of their
protocols, explaining how to employ the
strong noninvertibility of associative one-
way functions to preclude certain direct
attacks.

Turning to the second question raised
above: What evidence do we have that
strongly noninvertible, associative one-
way functions exist? Assuming P 6=NP, we
will show how to construct total, strongly
noninvertible, commutative,6 associative
one-way functions [Hemaspaandra and
Rothe 1999]. The question of whether or
not P equals NP is perhaps the most
important question in theoretical com-
puter science. It is widely believed that
P differs from NP, although this question
has remained open for more than thirty
years now. For more background on com-
plexity theory, we refer to the textbooks
[Balcázar et al. 1995; Bovet and Crescenzi
1993; Hemaspaandra and Ogihara 2001;
Papadimitriou 1994].

6 Commutativity is needed to extend the Rivest–
Sherman and Rabi–Sherman protocols from two par-
ties to m > 2 parties.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 541

5.1. Definitions and Progress of Results

From now on, we adopt the worst-case
notion of one-way functions that is due
to Grollmann and Selman [1988], see
also the papers by Ko [1985], Berman
[1977], and Allender [1985, 1986], and
the surveys [Selman 1992; Beygelzimer
et al. 1999]. Recall that one-way functions
are easy to compute but hard to invert.
To prevent the notion of noninvertibility
from being trivialized, one-way functions
are required to be “honest,” that is, to
not shrink their inputs too much. Formal
definitions of various types of honesty
can be found in Grollmann and Selman
[1988], Hemaspaandra et al. [1997,
2001], Hemaspaandra and Rothe [2000],
Rothe and Hemaspaandra [2002], Homan
[2000], and Homan and Thakur [2002].

One-way functions are often considered
to be one-argument functions. Since the
protocols from Section 3.4 require two-
argument functions, the original defini-
tion is here tailored to the case of two-
ary functions. Let ρ : N × N → N be
any two-ary function; ρ may be nontotal
and it may be many-to-one. We say that
ρ is (polynomial-time) invertible if there
exists a polynomial-time computable func-
tion g such that for all z ∈ image(ρ),
it holds that ρ(g (z)) = z; otherwise,
we call ρ not polynomial-time invertible,
or noninvertible for short. We say that
ρ is a one-way function if and only if
ρ is honest, polynomial-time computable,
and noninvertible. One-argument one-
way functions are well-known to exist
if and only if P 6=NP (see, e.g., Selman
[1992] and Balcázar et al. [1995]). It is
easy to prove the analogous result for
two-argument one-way functions, see
Hemaspaandra and Rothe [1999] and Rabi
and Sherman [1997].

We now define strong noninvertibility
(strongness, for short). As with noninvert-
ibility, strongness requires an appropri-
ate notion of honesty so as to not be triv-
ial. This notion is called “s-honesty” in
Hemaspaandra et al. [2001], and since it is
merely a technical requirement, we omit
a formal definition here. Intuitively, “s-
honesty” fits the notion of strong nonin-

vertibility in that it is measured not only
in the length of the function value but also
in the length of the corresponding given
argument.

Definition 5.1 (see Rabi and Sher-
man [1997] and Hemaspaandra and Rothe
[1999]). Let σ : N×N→ N be any two-ary
function; σ may be nontotal and it may be
many-to-one. Let 〈·, ·〉 : N×N→ N be some
standard pairing function.

(1) We say that σ is (polynomial-time)
invertible with respect to its first ar-
gument if and only if there exists a
polynomial-time computable function
g1 such that for all z ∈ image(σ)
and for all a and b with (a, b) ∈
domain(σ) and σ (a, b) = z, it holds that
σ (a, g1(〈a, z〉)) = z.

(2) We say that σ is (polynomial-time)
invertible with respect to its second
argument if and only if there exists
a polynomial-time computable funtion
g2 such that for all z ∈ image(σ)
and for all a and b with (a, b) ∈
domain(σ) and σ (a, b) = z, it holds that
σ (g2(〈b, z〉), b) = z.

(3) We say that σ is strongly noninvert-
ible if and only if σ is neither invert-
ible with respect to its first argument
nor invertible with respect to its sec-
ond argument.

(4) We say that σ is a strong one-
way function if and only if σ is s-
honest, polynomial-time computable,
and strongly noninvertible.

Below, we define Rabi and Sherman’s
notion of associativity, which henceforth
will be called “weak associativity.”

Definition 5.2 [Rabi and Sherman 1993,
1997]. A two-ary function σ : N×N→N
is said to be weakly associative if and only
if σ (a, σ (b, c))= σ (σ (a, b), c) holds for all
a, b, c ∈ N for which each of (a, b), (b, c),
(a, σ (b, c)), and (σ (a, b), c) belongs to the
domain of σ .

Although this notion is suitable for to-
tal functions, weak associativity does not
adequately fit the nontotal function case.
More precisely, weak associativity fails

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

542 Jörg Rothe

to preclude, for nontotal functions, equa-
tions from having a defined value to the
left, while being undefined to the right of
their equality sign. Therefore, we present,
in Definition 5.3, another notion of as-
sociativity for two-ary functions that is
suitable both for total and for nontotal
two-ary functions. This definition is due
to Hemaspaandra and Rothe [1999] who
note that the two notions of associativ-
ity are provably distinct (see Proposi-
tion 5.4), and this distinction can be ex-
plained (see Hemaspaandra and Rothe
[1999]) via Kleene’s careful discussion
[Kleene 1952, pp. 327–328] of two distinct
notions of equality for partial functions
in recursion theory: “Weak equality” be-
tween two partial functions explicitly al-
lows “specific, defined function values be-
ing equal to undefined” as long as the func-
tions take the same values on their joint
domain. In contrast, “complete equality”
precludes this unnatural behavior by ad-
ditionally requiring that two given partial
functions be equal only if their domains
coincide; that is, whenever one is unde-
fined, so is the other. Weak associativity
from Definition 5.2 is based on Kleene’s
weak equality between partial functions,
whereas associativity from Definition 5.3
is based on Kleene’s complete equality.

Definition 5.3 [Hemaspaandra and
Rothe 1999]. Let σ : N × N → N be any
two-ary function; σ may be nontotal. De-
fine N⊥ = N∪{⊥}, and define an extension
⊥
σ : N⊥ × N⊥ → N⊥ of σ as follows:

⊥
σ(a, b)=


σ (a, b) if a 6= ⊥ and b 6= ⊥ and

(a, b) ∈ domain(σ)
⊥ otherwise.

We say that σ is associative if and only
if, for all a, b, c ∈ N, it holds that

⊥
σ(

⊥
σ(a, b), c) = ⊥

σ(a,
⊥
σ(b, c)).

We say that σ is commutative if and only
if, for all a, b ∈ N, it holds that

⊥
σ(a, b) = ⊥

σ(b, a).

The following proposition explores
the relation between the two associa-
tivity notions presented respectively in
Definition 5.2 and in Definition 5.3. In
particular, these are indeed different
notions.

PROPOSITION 5.4 [HEMASPAANDRA AND

ROTHE 1999]

(1) Every associative two-ary function is
weakly associative.

(2) Every total two-ary function is associa-
tive exactly if it is weakly associative.

(3) There exist two-ary functions that are
weakly associative, yet not associative.

Rabi and Sherman [1993, 1997] showed
that P 6= NP if and only if commutative,
weakly associative one-way functions ex-
ist. However, they did not achieve strong
noninvertibility. They did not achieve to-
tality of their weakly associative one-
way functions, although they presented a
construction that they claimed achieves
totality of any weakly associative one-
way function. Hemaspaandra and Rothe
[1999] showed that Rabi and Sherman’s
claim is unlikely to be true: Any proof
of this claim would imply that NP =
UP, which is considered to be unlikely.
Intuitively, the reason that Rabi and
Sherman’s construction is unlikely to
work is that the functions constructed in
Rabi and Sherman [1993, 1997] are not
associative in the sense of Definition 5.3.
In contrast, the Rabi–Sherman construc-
tion indeed is useful to achieve total-
ity of the associative, strongly nonin-
vertible one-way functions constructed in
Hemaspaandra and Rothe [1999].

Thus, Rabi and Sherman [1993, 1997]
left open the question of whether there are
plausible complexity-theoretic conditions
sufficient to ensure the existence of to-
tal, strongly noninvertible, commutative,
associative one-way functions. They also
asked whether such functions could be
constructed from any given one-way func-
tion. Section 5.2 presents the answers to
these questions.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 543

Fig. 17 . The three-coloring ψ of graph G.

5.2. Creating Strongly Noninvertible, Total,
Commutative, Associative One-Way
Functions from Any One-Way Function

Theorem 5.5 is the main result of this sec-
tion. Since P 6= NP is equivalent to the
existence of one-way functions with no ad-
ditional properties required, the converse
of the implication stated in Theorem 5.5
is clearly also true. However, we focus
on only the interesting implication direc-
tions in Theorem 5.5 and in the upcoming
Theorem 5.7 and Theorem 5.9.

THEOREM 5.5 [HEMASPAANDRA AND ROTHE

1999]. If P 6= NP, then there exist total,
strongly noninvertible, commutative, asso-
ciative one-way functions.

A detailed proof of Theorem 5.5 can be
found in Hemaspaandra and Rothe [1999],
see also the survey [Beygelzimer et al.
1999]. Here, we briefly sketch the proof
idea.

Assume P 6= NP. Let A be a set in
NP− P, and let M be a fixed NP machine
accepting A. Let x ∈ A be an input ac-
cepted by M in time p(|x|), where p is some
polynomial. A useful property of NP sets
is that they have polynomial-time check-
able certificates.7 That is, for each certifi-
cate z for “x ∈ A,” it holds that: (a) the
length of z is polynomially bounded in the
length of x, and (b) z certifies member-
ship of x in A in a way that can be veri-

7 Other common names for “certificate” are “witness”
and “proof” and “solution.”

fied deterministically in polynomial time.
CertificatesM (x) denotes the set of all
certificates of M on input x. Note that
CertificatesM (x) is nonempty exactly if
x ∈ A.

Example 5.6. For concreteness, con-
sider Graph-Three-Colorability, a well-
known NP-complete problem that asks
whether the vertices of a given graph
can be colored with three colors such
that no two adjacent vertices receive the
same color. Such a coloring is called a le-
gal three-coloring. In other words, a le-
gal three-coloring is a mapping ψ from
the vertex set of G to the set of colors
(RED, GREEN, BLUE) such that the re-
sulting color classes are independent sets.
Figure 17 gives an example.

The standard NP machine for
Graph-Three-Colorability works as
follows: Given a graph G, nondeterminis-
tically guess a three-coloring ψ of G (i.e.,
a partition of the vertex set of G into three
color classes) and check deterministically
whether ψ is legal.

Any legal three-coloring of G is a certifi-
cate for the three-colorability of G (with
respect to the above NP machine). For
the specific graph from Figure 17, one
certificate ψ is specified by the three
color classes ψ−1(GREEN) = {a, g},
ψ−1(RED) = {c, f , h}, and ψ−1(BLUE) =
{b, d , e}.

As is standard, graphs as well as
three-colorings can be encoded as bi-
nary strings that represent nonnegative
integers.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

544 Jörg Rothe

Suppose that for each x ∈ A and for
each certificate z for “x ∈ A,” it holds that
|z| = p(|x|) > |x|. This is only a tech-
nical requirement that makes it easy to
tell input strings apart from their certifi-
cates. For any integers u, v, w ∈ N, let
min(u, v) denote the minimum of u and v,
and let min(u, v, w) denote the minimum
of u, v, and w. Define a two-ary function
σ : N× N→ N as follows:

—If a = 〈x, z1〉 and b = 〈x, z2〉
for some x ∈ A with certificates
z1, z2 ∈ CertificatesM (x) (where, pos-
sibly, z1 = z2), then define σ (a, b) =
〈x, min(z1, z2)〉;

—if there exists some x ∈ A with certifi-
cate z ∈ CertificatesM (x) such that
either a = 〈x, x〉 and b = 〈x, z〉, or
a = 〈x, z〉 and b = 〈x, x〉, then define
σ (a, b) = 〈x, x〉;

—otherwise, σ (a, b) is undefined.

What is the intuition behind the defini-
tion of σ? The number of certificates con-
tained in the arguments of σ is decreased
by one in a way that ensures the associa-
tivity of σ . Moreover, σ is noninvertible,
and it is also strongly noninvertible. Why?
The intuition here is that, regardless of
whether none or either one of its argu-
ments is given in addition to σ ’s function
value, the inversion of σ requires infor-
mation about the certificates for elements
of A. However, our assumption that A 6∈ P
guarantees that this information cannot
efficiently be extracted.

One can show that σ is a commuta-
tive, associative one-way function that is
strongly noninvertible. We will show asso-
ciativity and strongness below. Note that
σ is not a total function. However, σ can be
extended to a total function without losing
any of its other properties already estab-
lished [Hemaspaandra and Rothe 1999].

We now show that σ is strongly non-
invertible. For a contradiction, suppose
there is a polynomial-time computable in-
verter, g2, for a fixed second argument.
Hence, for each w ∈ image(σ) and for each
second argument b for which there is an

a ∈ N with σ (a, b) = w, it holds that

σ (g2(〈b, w〉), b) = w.

Then, contradicting our assumption that
A 6∈ P, one could decide A in polynomial
time as follows:

On input x, compute g2(〈〈x, x〉, 〈x, x〉〉), compute
the integers d and e for which 〈d , e〉 equals
g2(〈〈x, x〉, 〈x, x〉〉), and accept x if and only if
d = x and e ∈ CertificatesM (x).

Hence, σ is not invertible with respect to
its second argument. An analogous argu-
ment shows that σ is not invertible with
respect to its first argument. Thus, σ is
strongly noninvertible.

Next, we prove that σ is associative. Let
⊥
σ be the total extension of σ as in Defini-
tion 5.1. Fix any three elements of N, say
a = 〈a1, a2〉, b = 〈b1, b2〉, and c = 〈c1, c2〉.
To show that

⊥
σ(

⊥
σ(a, b), c) = ⊥

σ(a,
⊥
σ(b, c)) (5.17)

holds, distinguish two cases.

Case 1. a1 = b1 = c1 and {a2, b2, c2} ⊆
{a1} ∪ CertificatesM (a1).

Let x, y ∈ {a, b, c} be any two fixed ar-
guments of σ . As noted above, if x and y
together contain i certificates for “a1 ∈ A,”
where i ∈ {1, 2}, then σ (x, y)—and thus
also

⊥
σ(x, y)—contains exactly max{0, i−1}

certificates for “a1 ∈ A.” In particular,
⊥
σ(x, y) preserves the minimum certificate
if both x and y contain a certificate for
“a1 ∈ A.”

If exactly one of x and y contains a
certificate for “a1 ∈ A,” then

⊥
σ (x, y) =

〈a1, a1〉.
If none of x and y contains a certificate

for “a1 ∈ A,” then σ (x, y) is undefined, so
⊥
σ(x, y) = ⊥.

Let k ≤ 3 be a number telling us
how many of a2, b2, and c2 belong to
CertificatesM (a1). For example, if a2 =
b2 = c2 ∈ CertificatesM (a1) then k = 3.
Consequently:

—If k ≤ 1, then both
⊥
σ (

⊥
σ (a, b), c) and

⊥
σ(a,

⊥
σ(b, c)) equals ⊥.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 545

—If k = 2, then both
⊥
σ (

⊥
σ (a, b), c) and

⊥
σ(a,

⊥
σ(b, c)) equals 〈a1, a1〉.

—If k = 3, then both
⊥
σ (

⊥
σ (a, b), c) and

⊥
σ(a,

⊥
σ(b, c)) equals 〈a1, min(a2, b2, c2)〉.

In each of these three cases, Eq. (5.17) is
satisfied.

Case 2. Suppose Case 1 is not true.
Then, either it holds that a1 6= b1 or a1 6=

c1 or b1 6= c1, or it holds that a1 = b1 = c1
and {a2, b2, c2} is not contained in {a1} ∪
CertificatesM (a1). By the definition of σ ,
in both cases it follows that

⊥
σ(

⊥
σ(a, b), c) = ⊥ = ⊥

σ(a,
⊥
σ(b, c)),

which satisfies Eq. (5.17) and concludes
the proof that σ is associative.

Finally, we mention some related re-
sults of Chris Homan [Homan 2000], who
studied upper and lower bounds on the
ambiguity of associative one-way func-
tions. In particular, extending Rabi and
Sherman’s [1997] result that no total, as-
sociative one-way function is injective, he
proved that no total, associative one-way
function can be constant-to-one. He also
showed that, under the plausible assump-
tion that P 6= UP, there exist linear-to-
one, total, strongly noninvertible, associa-
tive one-way functions.

On a slightly less related note, Homan
and Thakur [2002] recently proved that
one-way permutations (i.e., one-way func-
tions that are total, one-to-one, and onto)
exist if and only if P 6= UP ∩ coUP. This
result gives a characterization of one-way
permutations in terms of a complexity
class separation, and thus the ultimate
answer to a question studied in Grollmann
and Selman [1988], Hemaspaandra et al.
[1997], Hemaspaandra and Rothe [2000],
and Rothe and Hemaspaandra [2002].

5.3. If P 6= NP, then Some Strongly
Noninvertible Functions Are Invertible

Is every strongly noninvertible func-
tion noninvertible? Hemaspaandra et al.
[2001] obtained the surprising result that
if P 6= NP then this is not necessar-
ily the case. This result shows that the

term “strong noninvertibility” introduced
in Rabi and Sherman [1993, 1997] actu-
ally is a misnomer, since it seems to sug-
gest that strong noninvertibility always
implies noninvertibility, which is not true.

THEOREM 5.7. [HEMASPAANDRA ET AL.
2001]. If P 6= NP, then there exists a to-
tal, honest two-ary function that is strongly
one-way but not a one-way function.

We give a brief sketch of the proof. As-
sume P 6= NP. Then, there exists a total
two-ary one-way function, call it ρ. For any
integer n ∈ N, define the notation

odd(n) = 2n+ 1 and even(n) = 2n.

Define a function σ : N×N→ N as follows.
Let a, b ∈ N be any two arguments of σ .

—If a 6= 0 6= b, a = 〈x, y〉 is odd,
and b is even, then define σ (a, b) =
even(ρ(x, y)).

—If a 6= 0 6= b, a is even, and b = 〈x, y〉 is
odd, then define σ (a, b) = even(ρ(x, y)).

—If a 6= 0 6= b, and a is odd if and only if b
is odd, then define σ (a, b) = odd(a + b).

—If a = 0 or b = 0, then define σ (a, b) =
a + b.

We claim that σ is strongly noninvert-
ible. For a contradiction, suppose σ were
invertible with respect to its first argu-
ment via an inverter, g1. By the defini-
tion of σ , for any z ∈ image(ρ) with z 6= 0,
the function g1 on input 〈2, even(z)〉 yields
an odd integer b from which we can read
the pair 〈x, y〉 with ρ(x, y) = z. Hence,
using g1, one could invert ρ in polyno-
mial time, a contradiction. Thus, σ is not
invertible with respect to its first argu-
ment. Analogously, one can show that σ is
not invertible with respect to its sec-
ond argument. So, σ indeed is strongly
noninvertible.

But σ is invertible! By the fourth item in
the definition of σ , every z in the image of σ
has a preimage of the form (0, z). Thus, the
function g defined by g (z) = (0, z) inverts
σ in polynomial time. Hence, σ is not a
one-way function.

Why don’t we use a different notion
of strongness that automatically implies

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

546 Jörg Rothe

noninvertibility? Here is an attempt to
redefine the notion of strongness accord-
ingly, which yields a new notion that we
will call “overstrongness.”

Definition 5.8 [Hemaspaandra et al.
2001]. Let σ : N×N→ N be any two-ary
function; σ may be nontotal and it may be
many-to-one. We say that σ is overstrong if
and only if no polynomial-time computable
function f with f : {1, 2}×N×N→ N×N
satisfies that for each i ∈ {1, 2} and for
each z, a ∈ N:

((∃b ∈ N)[(σ (a, b) = z ∧ i = 1) ∨ (σ (b, a)
= z ∧ i = 2)]) ⇒ σ (f (i, z, a)) = z.

Note that overstrongness implies both
noninvertibility and strong noninvertibil-
ity. However, the problem with this new
definition is that it completely loses the
core of why strongness precludes direct
attacks on the Rivest–Sherman and
Rabi–Sherman protocols. To see why, look
at Figure 10 and Figure 11, which give the
protocols of Rabi, Rivest, and Sherman. In
contrast to overstrongness, Rabi, Rivest,
and Sherman’s original definition of
strong noninvertibility (see Definition 5.1)
respects the argument given. It is this
feature that precludes Erich from being
able to compute Alice’s secret x from the
transmitted values σ (x, y) and y , which
he knows. In short, overstrongness is not
well-motivated by the protocols of Rabi,
Rivest, and Sherman.

We mention without proof some further
results of Hemaspaandra et al. [2001].

THEOREM 5.9 [HEMASPAANDRA ET AL.
2001]

(1) If P 6= NP, then there exists a total,
honest, s-honest, two-ary overstrong
function. Consequently, if P 6= NP, then
there exists a total two-ary function
that is both one-way and strongly one-
way.

(2) If P 6= NP, then there exists a total, s-
honest two-ary one-way function σ such
that σ is invertible with respect to its
first argument and σ is invertible with
respect to its second argument.

(3) If P 6= NP, then there exists a total, s-
honest two-ary one-way function that is
invertible with respect to either one of
its arguments (thus, it is not strongly
one-way), yet that is not invertible with
respect to its other argument.

(4) If P 6= NP, then there exists a total,
honest, s-honest two-ary function that
is noninvertible and strongly nonin-
vertible but that is not overstrong.

ACKNOWLEDGMENTS

I am grateful to Pekka Orponen for inviting me to
be a lecturer of the 11th Jyväskylä Summer School
that was held in August, 2001, at the University of
Jyväskylä. I thank Kari Pasanen for being a great tu-
tor of this tutorial, for carefully proofreading a pre-
liminary draft of this article, and in particular for
subletting his summer house on an island of scenic
Lake Keitele to me and my family during the sum-
mer school. I am grateful to Pekka and Kari for their
hospitality, and I thank my 33 summer school stu-
dents from 16 countries for making this course so
much fun and pleasure. I also thank Eric Allender,
Godmar Back, Harald Baier, Lane Hemaspaandra,
Eike Kiltz, Alan Selman, Holger Spakowski, Gerd
Wechsung, and Peter Widmayer for their insightful
advice and helpful comments and for their interest
in this paper. Last but not least, I thank the anony-
mous ACM Computing Surveys referees whose de-
tailed comments very much helped to fix errors in an
earlier version and to improve the presentation, and
the editor, Paul Purdom, for his guidance during the
editorial process.

REFERENCES

AGRAWAL, M., KAYAL, N., AND SAXENA, N. 2002.
PRIMES is in P. Unpublished manuscript.

AJTAI, M. 1996. Generating hard instances of lat-
tice problems. In Proceedings of the 28th ACM
Symposium on Theory of Computing. ACM, New
York, pp. 99–108.

AJTAI, M. 1998. The shortest vector problem in L2
is NP-hard for randomized reductions. In Pro-
ceedings of the 30th ACM Symposium on Theory
of Computing. ACM, New York, pp. 10–19. Full
version available on-line as ECCC TR97-047 at
ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/1997/
TR97-047/index.html.

AJTAI, M. AND DWORK, C. 1997. A public-key cryp-
tosystem with worst-case/average-case equiva-
lence. In Proceedings of the 29th ACM Sympo-
sium on Theory of Computing. ACM, New York,
pp. 284–293.

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 547

ALLENDER, E. 1985. Invertible functions. Ph.D. dis-
sertation, Georgia Institute of Technology.

ALLENDER, E. 1986. The complexity of sparse sets
in P. In Proceedings of the 1st Structure in
Complexity Theory Conference. Lecture Notes
in Computer Science, vol. 223. Springer-Verlag,
New York, pp. 1–11.

BABAI, L. 1985. Trading group theory for random-
ness. In Proceedings of the 17th ACM Sympo-
sium on Theory of Computing (Apr.). ACM, New
York, pp. 421–429.

BABAI, L. AND MORAN, S. 1988. Arthur-Merlin
games: A randomized proof system, and a hier-
archy of complexity classes. J. Comput. Syst. Sci.
36, 2, 254–276.

BALCÁZAR, J., Dı́AZ, J., AND GABARRÓ, J. 1990. Struc-
tural Complexity II. EATCS Monographs on
Theoretical Computer Science. Springer-Verlag,
New York.

BALCÁZAR, J., Dı́AZ, J., AND GABARRÓ, J. 1995. Struc-
tural Complexity I. EATCS Monographs on
Theoretical Computer Science. 2nd edition,
Springer-Verlag, New York.

BAUER, F. 2000. Decrypted Secrets: Methods and
Maxims of Cryptology. Springer-Verlag, second
edition.

BERMAN, L. 1977. Polynomial Reducibilities and
Complete Sets. Ph.D. dissertation, Cornell Univ.,
Ithaca, N.Y.

BEUTELSPACHER, A. 1994. Cryptology. Spec-
trum series. Mathematical Association of
America.

BEUTELSPACHER, A., SCHWENK, J., AND WOLFENSTETTER,
K. 2001. Moderne Verfahren der Kryptogra-
phie. 4th ed. Vieweg. (in German.)

BEYGELZIMER, A., HEMASPAANDRA, L., HOMAN, C., AND

ROTHE, J. 1999. One-way functions in worst-
case cryptography: Algebraic and security prop-
erties are on the house. SIGACT News 30, 4
(Dec.), 25–40.

BONEH, D. 1999. Twenty years of attacks on the
RSA cryptosystem. Notices AMS 46, 2 (Feb.),
203–213.

BONEH, D. AND DURFEE, G. 2000. Cryptanalysis of
RSA with private key d less than N0.292. IEEE
Trans. Inf. Theory IT-46.

BOVET, D. AND CRESCENZI, P. 1993. Introduction
to the Theory of Complexity. Prentice-Hall,
Englewood Cliffs, N.J.

BRASSARD, G. AND CREPEAU, C. 1989. Sorting out
zero-knowledge. In Advances in Cryptology—
EUROCRYPT 89. Lecture Notes in Computer
Science, vol. 434. Springer-Verlag, New York,
pp. 181–191.

BUCHMANN, J. 2001. Introduction to Cryptography.
Undergraduate Texts in Mathematics. Springer-
Verlag, New York.

BURMESTER, M. AND DESMEDT, Y. 1989. Remarks on
the soundness of proofs. Elec. Lett., 25, 1509–
1511.

BURMESTER, M., DESMEDT, Y., AND BETH, T. 1992. Ef-
ficient zero-knowledge identification schemes for
smart cards. Comput J. 35, 1 (Feb.), 21–29.

BURMESTER, M., DESMEDT, Y., PIPER, F., AND WALKER,
M. 1989. A general zero-knowledge scheme.
In Advances in Cryptology—EUROCRYPT 89.
Lecture Notes in Computer Science, vol. 434.
Springer-Verlag, New York, pp. 122–133.

CAI, J. 1999. Some recent progress on the com-
plexity of lattice problems. In Proceedings of
the 14th Annual IEEE Conference on Computa-
tional Complexity (May). IEEE Computer Soci-
ety Press, Los Alamitos, Calif., pp. 158–179.

COHEN, M. AND HASHKES, J. 1991. A system for
controlling access to broadcast transmissions.
European Patent Application 0 428252 A2. May.

COPPERSMITH, D. 1997. Small solutions to polyno-
mial equations, and low exponent RSA vulnera-
bilities. J. Crypt. 10, 4, 233–260.

DIFFIE, W. AND HELLMAN, M. 1976. New directions
in cryptography. IEEE Trans. Inf. Theory IT-22,
6, 644–654.

ELGAMAL, T. 1985. A public key cryptosystem and
a signature scheme based on discrete loga-
rithms. IEEE Trans. Inf. Theory IT-31, 4, 469–
472.

FEIGE, U., FIAT, A., AND SHAMIR, A. 1988. Zero-
knowledge proofs of identity. J. Crypt. 1, 2, 77–
94.

FEIGENBAUM, J. 1992. Overview of interactive proof
systems and zero-knowledge. In Contemporary
Cryptology: The Science of Information Integrity,
G. Simmons, ed. IEEE Computer Society Press,
Los Alamitos, Calif., pp. 423–439.

FIAT, A. AND SHAMIR, A. 1986. How to prove your-
self: Practical solutions to identification and sig-
nature problems. In Advances in Cryptology—
CRYPTO ’86. Lecture Notes in Computer Sci-
ence, vol. 263. Springer-Verlag, New York,
pp. 186–194.

GILL, J. 1977. Computational complexity of proba-
bilistic Turing machines. SIAM J. Comput. 6, 4,
675–695.

GOLDREICH, O. 1988. Randomness, interactive
proofs, and zero-knowledge—A survey. In The
Universal Turing Machine: A Half-Century Sur-
vey, R. Herken, Ed. Oxford University Press,
Oxford, England, pp. 377–405.

GOLDREICH, O. 1997. A taxonomy of proof systems.
In Complexity Theory Retrospective II, L. Hema-
spaandra and A. Selman, Eds. Springer-Verlag,
New York, pp. 109–134.

GOLDREICH, O. 1999. Modern cryptography, prob-
abilistic proofs, and pseudorandomness. Algo-
rithms and Combinatorics, vol. 17. Springer-
Verlag, New York.

GOLDREICH, O. 2001. Foundations of Cryptogra-
phy. Cambridge University Press, Cambridge,
England.

GOLDREICH, O., MANSOUR, Y., AND SIPSER, M. 1987.
Interactive proof systems: Provers that never

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

548 Jörg Rothe

fail and random selection. In Proceedings of the
28th IEEE Symposium on Foundations of Com-
puter Science. IEEE Computer Society Press,
Los Alamitos, Calif., pp. 449–461.

GOLDREICH, O., MICALI, S., AND WIGDERSON, A. 1986.
Proofs that yield nothing but their validity and
a methodology of cryptographic protocol de-
sign. In Proceedings of the 27th IEEE Sympo-
sium on Foundations of Computer Science. IEEE
Computer Society Press, Los Alamitos, Calif.,
pp. 174–187.

GOLDREICH, O., MICALI, S., AND WIGDERSON, A. 1991.
Proofs that yield nothing but their validity or
all languages in NP have zero-knowledge proof
systems. J. ACM 38, 3 (July), 691–729.

GOLDWASSER, S. 1989. Interactive proof sys-
tems. In Computational Complexity Theory,
J. Hartmanis, Ed. AMS Short Course Lec-
ture Notes: Introductory Survey Lectures.
Proceedings of Symposia in Applied Mathemat-
ics, vol. 38. American Mathematical Society,
Providence, R.I., pp. 108–128.

GOLDWASSER, S., MICALI, S., AND RACKOFF, C. 1985.
The knowledge complexity of interactive proof
systems. In Proceedings of the 17th ACM Sympo-
sium on Theory of Computing (Apr.). ACM, New
York, pp. 291–304.

GOLDWASSER, S., MICALI, S., AND RACKOFF, C. 1989.
The knowledge complexity of interactive proof
systems. SIAM J. Comput. 18, 1 (Feb.), 186–208.

GOLDWASSER, S. AND SIPSER, M. 1989. Private coins
versus public coins in interactive proof systems.
In Randomness and Computation, S. Micali, Ed.,
Advances in Computing Research, vol. 5. JAI
Press, Greenwich, England, pp. 73–90.

GROLLMANN, J. AND SELMAN, A. 1988. Complexity
measures for public-key cryptosystems. SIAM J.
Computing 17, 2, 309–335.

HARDY, G. AND WRIGHT, E. 1979. An Introduction to
the Theory of Numbers. Clarendon Press, Oxford,
England, 5th ed.

HÅSTAD, J. 1988. Solving simultaneous modular
equations of low degree. SIAM J. Comput. 17,
2, 336–341. (Special issue on cryptography.)

HEMASPAANDRA, L. AND OGIHARA, M. 2002. The Com-
plexity Theory Companion. Springer-Verlag,
New York.

HEMASPAANDRA, L., PASANEN, K., AND ROTHE, J. 2001.
If P 6=NP then some strongly noninvertible func-
tions are invertible. In Proceedings of the 13th
International Symposium on Fundamentals of
Computation Theory (Aug.). Lecture Notes in
Computer Science, vol. 2138. Springer-Verlag,
New York, pp. 162–171.

HEMASPAANDRA, L. AND ROTHE, J. 1999. Creating
strong, total, commutative, associative one-way
functions from any one-way function in complex-
ity theory. J. Comput. Syst. Sci. 58, 3, 648–659.

HEMASPAANDRA, L. AND ROTHE, J. 2000. Character-
izing the existence of one-way permutations.
Theoret. Comput. Sci. 244, 1–2, 257–261.

HEMASPAANDRA, L., ROTHE, J., AND WECHSUNG, G.
1997. On sets with easy certificates and the ex-
istence of one-way permutations. In Proceedings
of the 3rd Italian Conference on Algorithms and
Complexity (Mar.). Lecture Notes in Computer
Science, vol. 1203. Springer-Verlag, New York,
pp. 264–275.

HOMAN, C. 2000. Low ambiguity in strong, total,
associative, one-way functions. Tech. Rep. TR-
734. Dept. Computer Science, Univ. Rochester,
Rochester, N.Y. Aug.

HOMAN, C. AND THAKUR, M. 2002. One-way permu-
tations and self-witnessing languages. In Pro-
ceedings of the 2nd IFIP International Confer-
ence on Theoretical Computer Science, Stream 1
of the 17th IFIP World Computer Congress.
Kluwer Academic Publishers, Aug.

KAHN, D. 1967. The Codebreakers: The Story of Se-
cret Writing. MacMillan, New York.

KALISKI, JR. B. AND ROBSHAW, M. 1995. The secure
use of RSA. CryptoBytes 1, 3, 7–13.

KLEENE, S. 1952. Introduction to Metamathemat-
ics. van Nostrand, New York and Toronto.

KNUTH, D. 1981. The Art of Computer Program-
ming: Seminumerical Algorithms, vol. 2 of Com-
puter Science and Information. Addison-Wesley,
Reading, Mass.

KO, K. 1985. On some natural complete operators.
Theoret. Comput. Sci. 37, 1, 1–30.

KÖBLER, J., SCHÖNING, U., AND TORÁN, J. 1992.
Graph isomorphism is low for PP. Computat.
Complex. 2, 301–330.

KÖBLER, J., SCHÖNING, U., AND TORÁN, J. 1993. The
Graph Isomorphism Problem: Its Structural
Complexity. Birkhäuser.

KUMAR, R. AND SIVAKUMAR, D. 2001. Complexity of
SVP—A reader’s digest. SIGACT News 32, 3
(June), 40–52.

LENSTRA, JR., H. 1987. Factoring integers with el-
liptic curves. Ann. Math. 126, 649–673.

LENSTRA, A. AND LENSTRA, JR., H. 1993. The De-
velopment of the Number Field Sieve. Lec-
ture Notes in Mathematics, vol. 1554. Springer-
Verlag, New York.

LUBY, M. 1996. Pseudorandomness and Cryp-
tographic Applications. Princeton Computer
Science Notes. Princeton University Press,
Princeton, N.J.

MAURER, U. AND WOLF, S. 1999. The relationship
between breaking the Diffie-Hellman protocol
and computing discrete logarithms. SIAM J.
Comput. 28, 5, 1689–1721.

MICCIANCIO, D. 2001. The shortest vector in a lat-
tice is hard to approximate to within some con-
stant. SIAM J. Comput. 30, 6 (Mar.), 2008–2035.

MILLER, G. 1976. Riemann’s hypothesis and tests
for primality. J. Comput. Syst. Sci. 13, 300–317.

MOORE, J. 1992. Protocol failures in cryptosys-
tems. In Contemporary Cryptology: The Science
of Information Integrity, G. Simmons, Ed. IEEE

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

Some Facets of Complexity Theory and Cryptography 549

Computer Society Press, Los Alamitos, Calif.,
pp. 541–558.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOL-
OGY (NIST). 1991. Digital signature standard
(DSS). Fed. Reg. 56, 169 (Aug.).

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

(NIST). 1992. The Digital Signature Stan-
dard, proposed by NIST. Commun. ACM, 35, 7
(July), 36–40.

NGUYEN, P. AND STERN, J. 2001. The two faces of lat-
tices in cryptology. In Proceedings of the Interna-
tional Conference on Cryptography and Lattices.
Lecture Notes in Computer Science, vol. 2146.
Springer-Verlag, New York, pp. 146–180.

PAPADIMITRIOU, C. 1994. Computational Complex-
ity. Addison-Wesley, Reading Mass.

POMERANCE, C., AND SORENSON, J. 1995. Counting
the integers factorable via cyclotomic methods.
J. Alg., 19, 2 (Sept.), 250–265.

POLLARD, J. 1974. Theorems on factorization and
primality testing. Proc. Cambridge Philos. Soc.
76, 521–528.

RABI, M. AND SHERMAN, A. 1993. Associative one-
way functions: A new paradigm for secret-key
agreement and digital signatures. Tech. Rep. CS-
TR-3183/UMIACS-TR-93-124. Dept. Computer
Science, Univ. Maryland, College Park, Md.

RABI, M. AND SHERMAN, A. 1997. An observation
on associative one-way functions in complexity
theory. Inf. Proc. Lett., 64, 5, 239–244.

RABIN, M. 1980. Probabilistic algorithms for test-
ing primality. J. Numb. Theory 12, 128–138.

RIVEST, R., SHAMIR, A., AND ADLEMAN, L. 1978. A
method for obtaining digital signature and
public-key cryptosystems. Commun. ACM, 21, 2
(Feb.), 120–126.

ROTHE, J. AND HEMASPAANDRA, L. 2002. On charac-
terizing the existence of partial one-way permu-
tations. Inf. Proc. Lett., 82, 3 (May), 165–171.

SALOMAA, A. 1996. Public-Key Cryptography.
EATCS Monographs on Theoretical Computer
Science, vol. 23. Springer-Verlag, New York.

SCHÖNING, U. 1987. Graph isomorphism is in the
low hierarchy. J. Comput. Syst. Sci. 37, 312–323.

SCHNEIER, B. 1996. Applied Cryptography: Proto-
cols, Algorithms, and Source Code in C. J. Wiley,
New York.

SCHNORR, C. 1990. Efficient identification and sig-
nature schemes for smart cards. In Advances
in Cryptology—CRYPTO ’89. Lecture Notes in
Computer Science, vol. 435. Springer-Verlag,
New York, pp. 239–251.

SELMAN, A. 1992. A survey of one-way functions in
complexity theory. Math. Syst. Theory 25, 3, 203–
221.

SHAMIR, A. 1992. IP=PSPACE. J. ACM 39, 4, 869–
877.

SHAMIR, A. 1995. RSA for paranoids. CryptoBytes
1, 3, 1–4.

SHANNON, C. 1949. Communication theory of se-
crecy systems. Bell System Tech. J. 28, 4, 657–
715.

SHOR, P. 1997. Polynomial-time algorithms for
prime factorization and discrete logarithms on
a quantum computer. SIAM J. Comput. 26, 5,
1484–1509.

SIMMONS, G. 1979. Symmetric and asymmetric en-
cryption. ACM Comput. Surv. 11, 4, 305–330.

SIMMONS, G., AND NORRIS, M. 1977. Preliminary
comments on the MIT public-key cryptosystem.
Cryptologia 1, 4, 406–414.

SINGH, S. 1999. The Code Book. The Science of Se-
crecy from Ancient Egypt to Quantum Cryptog-
raphy. Fourth Estate, London, England.

SOLOVAY, R. AND STRASSEN, V. 1977. A fast Monte
Carlo test for primality. SIAM J. Comput. 6, 84–
85. (Erratum appears in the same journal 7, 1,
118, 1978.)

STINSON, D. 1995. Cryptography Theory and Prac-
tice. CRC Press, Boca Raton, Fla.

VALIANT, L. 1976. The relative complexity of check-
ing and evaluating. Inf. Proc. Lett. 5, 1, 20–23.

WELSH, D. 1998. Codes and Cryptography. Oxford
Science Publications. Clarendon Press, Oxford,
England. 6th ed. (Reprinted with corrections.)

WIENER, M. 1990. Cryptanalysis of short RSA se-
cret exponents. IEEE Trans. Inf. Theory IT-36, 3,
553–558.

Received November 2001; revised July 2002; accepted August 2002

ACM Computing Surveys, Vol. 34, No. 4, December 2002.

