Assignment #5

- Choose one of the given choices or propose something new
- Demo in 12/6-12/10 (also turn in stuff as usual)
- For your own topic:
 - must substantially related to computer networks.
 - must contact me and have my approval before next Monday.
 - depending on the scope of the project, you may work in a group of two.
- For some assignments, you might need to access PlanetLab
 - go to my office after next Monday’s class and I will set up them for you

Multimedia and Quality of Service

Classes of MM applications:
- Stored audio and video
- Real-time interactive audio and video

Fundamental characteristics:
- Typically delay sensitive
 - end-to-end delay
 - delay jitter: variability of packet delays within the same packet stream
- But loss tolerant: infrequent losses cause minor glitches
Stored Multimedia

- Media stored at source
- Transmitted to client
- Client playout may begin before all data has arrived (streaming)
 - Timing constraint for still-to-be transmitted data: in time for playout
 - Sensitive to end-to-end delay or delay jitter?
- Allow interactive control:
 - Fast forwarding/rewinding

Real-Time Interactive Multimedia

- Applications:
 - IP telephony, video conference
- Sensitive to both end-to-end delay and jitters
- End-end delay requirements:
 - Audio: < 150msec good, < 400msec OK
 - Higher delays noticeable, impair interactivity
 - Includes application-level (compression/decompression) and network delays

Multimedia Over Today’s Internet

Internet: “best-effort service”
- No guarantees on delay, loss

Outline

- Multimedia applications
- Stored multimedia
- Real-time interactive multimedia
- RTP (Real-time Transport Protocol)
Stored Multimedia over the Internet: the basic approach

- Web Browser
- Web Server with Audio Files
- Media Player

Client

- audio or video stored in files
- files transferred as HTTP object
 - received in entirety at client
 - then passed to player
- media player
 - decompression depending on media format
 - user interface allow interactive control
 - no “pipelining,” long delays until playout!

Stored Multimedia over the Internet: streaming approach

1. HTTP request/response for metafile

2. metafile

3. audio/video file requested and sent over HTTP

- browser GETs metafile
 - location of the media file, type of encoding, ...
- browser launches the media player, passing metafile
- the media player contacts server and the server streams audio/video to player
 - pipelining: client playout may begin before all data has arrived

Streaming from a Streaming Server

- This architecture allows for non-HTTP protocol between server and media player
- Can also use UDP instead of TCP.

Streaming Multimedia: Client Buffering

- Client-side buffering, playout delay compensate for network-added delay, delay jitter
Streaming Multimedia: Client Buffering

- Client-side buffering, playout delay compensate for network-added delay, delay jitter

Streaming Multimedia: TCP or UDP?

TCP
- send at maximum possible rate under TCP
 - rate fluctuates due to TCP congestion control
 - hard to control

UDP
- server sends at rate appropriate for client (oblivious to network congestion!)
 - easier to control
 - retransmission of lost packets (at the application-layer) when timing constraints permit

Outline

- Multimedia applications
- Stored multimedia
- Real-time interactive multimedia
- RTP (Real-time Transport Protocol)

Real-time Interactive Multimedia: Internet Phone

- speaker’s audio: alternating talk spurts, silent periods.
 - 64 kbps during talk spurts
- packets generated only during talk spurts
 - 20 msec chunks at 8 Kbytes/sec: 160 bytes data
- application-layer header added to each chunk.
- chunk+header encapsulated into UDP segment.
- application sends UDP segment into socket every 20 msec during talk spurts.
Internet Phone: Fixed Playout Delay

- Receiver attempts to playout each chunk exactly \(q \) ms after chunk was generated.
 - chunk has time stamp \(t \): play out chunk at \(t + q \).
 - chunk arrives after \(t + q \): data arrives too late for playout \(\Rightarrow \) delay loss

- Tradeoff for \(q \):
 - large \(q \): less packet delay loss
 - small \(q \): better interactive experience
 - typical maximum tolerable delay: 400 ms

Internet Phone: Packet Loss

- network loss:
 - IP packet lost due to network congestion (router buffer overflow)
- small tolerable playout delay prohibits retransmission
- loss tolerance: depending on voice encoding, packet loss rates between 1% and 10% can be tolerated
- beyond, we need loss concealments – recover from packet loss without retransmission
 - any idea?

Recovery from Packet Loss (1)

Forward Error Correction (FEC):

- for every group of \(n \) chunks create a redundant chunk by exclusive OR-ing the \(n \) original chunks
- send out \(n + 1 \) chunks, increasing the bandwidth by factor \(1/n \)
- can reconstruct the original \(n \) chunks if there is at most one lost chunk from the \(n + 1 \) chunks
- playout delay needs to be long enough for the client receiving all \(n + 1 \) packets

Impact of increasing \(n \):

- less bandwidth waste
- longer playout delay
- higher probability that 2 or more chunks will be lost

Recovery from Packet Loss (2)

- piggyback lower quality stream:
 - send lower resolution audio stream as the redundant information
 - the receiver can conceal non-consecutive loss
 - What is the impact on playout delay?
Recovery from Packet Loss (3)

Interleaving
- chunks are broken up into smaller units (e.g. four 5 msec units per chunk)
- Packet contains small units from different chunks
- if packet is lost, still have most of every chunk
- has no redundancy overhead, but adds to playout delay

Streaming Multimedia on the Internet: Summary
- use UDP to avoid TCP congestion control (delays) for time-sensitive traffic
- compensate delays and jitters:
 - client-side buffering
- error recovery (on top of UDP)
 - retransmissions, time permitting (for stored multimedia)
 - conceal errors: FEC, interleaving (for real-time interactive multimedia)

Outline
- Multimedia applications
- Stored multimedia
- Real-time interactive multimedia
- RTP (Real-time Transport Protocol)

Real-time Transport Protocol (RTP)
- RTP specifies a packet structure for packets carrying audio and video data
- RTP packet provides
 - payload type identification
 - packet sequence numbering
 - timestamping
- RTP runs in the end systems
- RTP packets are encapsulated in UDP segments
- Interoperability: If two Internet phone applications run RTP, then they may be able to work together
RTP Header

- **Payload Type (7 bits):** Indicates type of encoding currently being used.
- **Sequence Number (16 bits):** Increments by one for each RTP packet sent, and may be used to detect packet loss and to restore packet sequence.
- **Timestamp field (32 bits):** Reflects the sampling instant of the first byte in the RTP data packet.

What does RTP do and **not** do?

- RTP specifies packet structure for multimedia data.
- RTP **does not** specify actions on receiving such packets.
- RTP **does not** provide any mechanism to ensure timely delivery of data or provide other quality of service guarantees.
- RTP encapsulation is only seen at the end systems: it is transparent to intermediate routers.

Disclaimer

- Parts of the lecture slides contain original work of James Kurose, Larry Peterson, and Keith Ross. The slides are intended for the sole purpose of instruction of computer networks at the University of Rochester. All copyrighted materials belong to their original owner(s).