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Abstract

Instruction scheduling in general, and software pipe-
lining in particular face the difficult task of schedul-
ing operations in the presence of uncertain latencies.
The largest contributor to these uncertain latencies is
the use of cache memories required to provide adequate
memory access speed in modern processors. Schedul-
ing for instruction-level parallel architectures with non-
blocking caches usually assigns memory access latency
by assuming either that all accesses are cache hits or
that all are cache misses. We contend that allowing
memory latencies to be set by cache reuse analysis leads
to better software pipelining than using either the all-
hit or all-miss assumption.

Using a simple cache reuse model in our modulo
scheduling software pipelining optimization, we achieved
a benefit of 10% improved execution performance over
assuming all-cache-hits and we used 18% fewer regis-
ters than were required by an all-cache-miss assump-
tion. In addition, we outline refinements to our simple
reuse model that should allow modulo scheduling with
reuse to achieve improved execution performance over
the all-cache-miss assumption as well. Therefore, we
conclude that software pipelining algorithms for target
architectures with non-blocking cache, but without ro-
tating register files, should use a memory-reuse latency
model.

1 Introduction

Over the past decade, the computer industry has re-
alized dramatic improvements in the power of micro-
processors. These gains have been achieved both by
cycle-time improvements and by architectural innova-
tions like multiple instruction issue and pipelined func-
tional units. As a result of these improvements, today’s
microprocessors can perform more operations per ma-
chine cycle than their predecessors. Computers that can
issue multiple operations in a single cycle are typically
called instruction-level parallel (ILP) architectures. In
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order to fully utilize ILP hardware, either the compiler
or the architecture (or preferably both) must order the
operations to be executed to allow for maximum paral-
lelism. This “ordering” of operations is typically called
instruction scheduling.

In modern processors, main-memory access time is
at least an order of magnitude slower than processor
speed. A small, fast cache memory is used to alleviate
this problem. However, the cache cannot eliminate all
accesses to main memory and programs incur a signif-
icant penalty in performance when a miss in the cache
occurs. To help tolerate the cache miss latency, non-
blocking caches have been designed to allow cache ac-
cess to continue when misses occur. This is important
to ILP because it allows the instruction scheduler to
overlap more operations with memory accesses, possi-
bly hiding main-memory latency. Thus, a significant
increase in ILP can be achieved [6].

The existence of a cache, however, produces a prob-
lem for the instruction scheduler since the latency of a
memory operation is not static. To deal with this sit-
uation, instruction schedulers typically either assume
that all memory accesses are cache hits or assume that
they are all cache misses. Assuming all hits reduces
the lifetimes of registers and keeps register pressure to
a minimum. However, significant penalties are incurred
when a cache miss occurs. Assuming all cache misses
tolerates the latency of a cache miss better, but may in-
crease register pressure significantly. Additionally, non-
loop scheduling methods may not be able to find suf-
ficient parallelism to hide latency in the all-cache-miss
assumption.

To take full advantage of the parallelism available in
ILP computers, advanced instruction scheduling tech-
niques such as software pipelining have been developed
[3, 10, 14, 18]. Software pipelining allows iterations of a
loop to be overlapped with one another in order to take
advantage of the parallelism in a loop body. While soft-
ware pipelining can yield significant performance gains
by overlapping loop iterations, it can also require signif-
icant register resources. One solution to providing ade-
quate registers for software pipelining involves including
special hardware called rotating register files that allow
multiple hardware copies of registers, one for each of
several possible loop iterations. While it is true that
rotating register files dramatically ease the register bur-
den of software pipelining it is also true that few current
ILP architectures include them. For those ILP comput-



ers without rotating register files we need a software
solution to the problem of software pipelining’s register
proliferation. While there are several varieties of soft-
ware pipelining we shall restrict ourselves in this paper
to discussion of modulo scheduling, perhaps the most
popular software pipelining technique currently avail-
able. However, since difficulties with uncertain laten-
cies and exploding register requirements exist no mat-
ter how software pipelining is implemented, our discus-
sion and results should apply to other forms of software
pipelining as well.

This paper concerns practical issues of implement-
ing modulo scheduling for an architecture with a non-
blocking cache, but without rotating register files. For
such an architecture we wish, as always, to minimize
loop execution time but we also must consider the neg-
ative effect that modulo scheduling has on the register
pressure of a loop. For indeed, if modulo scheduling
increases register demands to the point that consider-
able register spilling is required, the execution efficiency
obtainable by modulo scheduling will be lost.

Modulo scheduling for “traditional” machines with-
out rotating register files relies on Modulo Variable Ex-
pansion (MVE) [11], to generate correct code. MVE
will assign multiple registers to a single loop value to
account for the fact that values’ lifetimes typically exist
across several loop iterations. This is required by soft-
ware pipelining’s overlapping of values from different
loop iterations.

Assuming that memory latencies are all cache misses
to avoid paying the cache-miss penalties associated with
assuming all cache hits will likely lead modulo schedul-
ing to overlap more lifetimes. This can lead to sig-
nificantly greater register usage since the register life-
times get stretched by the assumption that each load is
a cache miss. In the presence of rotating registers this
additional register pressure can be accommodated (at a
significant hardware cost) but when no such hardware
is available, MVE may cause an explosion in register
pressure.

Given that both all-hit and all-miss assumptions have
negative consequences for performance, we would like
to recognize those memory accesses that are hits and
those that are misses and schedule using the “correct”
latency for each memory access. Currently, memory
reuse (cache hit) information is available to the com-
piler [5, 19]. Our contention is that by using such reuse
information we can improve software pipelining with
respect to using either an all-hit or all-miss latency as-
sumption.

In the remainder of this paper, we first discuss soft-
ware pipelining (Section 2) with special attention paid
to register requirements and pipelining with uncertain
memory latencies. Section 3 describes the dependence-
based memory reuse analysis that we use. Section 4
details our experimental evaluation of modulo schedul-
ing with reuse information, Section 5 describes refine-
ments to our simple cache model that will allow further
improvement over those shown in our experimental re-
sults and Section 6 presents our conclusions.

2 Software Pipelining

While local and global instruction scheduling can, to-
gether, exploit a large amount of parallelism for non-
loop code, to best exploit instruction-level parallelism
within loops requires software pipelining. Software pipe-
lining can generate efficient schedules for loops by over-
lapping execution of operations from different iterations
of the loop. This overlapping of operations is analogous
to hardware pipelines where speed-up is achieved by
overlapping execution of different operations.

Allan et al. [3] provide an good summary of current
software pipelining methods, dividing software pipelining
techniques into two general categories called kernel recog-
nition methods and modulo scheduling methods. In
the kernel recognition technique, a loop is unrolled an
“appropriate” number of times, yielding a representa-
tion for N loop bodies which is then scheduled. Af-
ter scheduling the N copies of the loop, some pattern
recognition technique is used to identify a repeating
kernel within the schedule. Examples of kernel recogni-
tion methods are Aiken and Nicolau’s perfect pipelining
fn]ethod [1, 2] and Allan’s petri-net pipelining technique
4].

In contrast to kernel recognition methods, modulo
scheduling does not schedule multiple iterations of a
loop and then look for a pattern. Instead, modulo
scheduling selects a schedule for one iteration of the loop
such that, when that schedule is repeated, no resource
or dependence constraints are violated. This requires
analysis of the data dependence graph (DDG) for a loop
to determine the minimum number of instructions re-
quired between initiating execution of successive loop
iterations. Once that minimum initiation interval is
determined, instruction scheduling attempts to match
that minimum schedule while respecting resource and
dependence constraints. Lam’s hierarchical reduction is
a modulo scheduling method as is Warter’s [17, 18] en-
hanced modulo scheduling which uses IF-conversion to
produce a single super-block to represent a loop. Rau
[14] provides a detailed discussion of an implementation
of modulo scheduling.

2.1 Modulo Scheduling

Our software pipelining implementation is based upon
Iterative Modulo Scheduling and follows the method
presented by Rau [14]. As such we identify the mini-
mum initiation interval (II) for each innermost loop and
attempt to schedule the loop in II instructions. Thus,
the overall iterative modulo scheduling technique con-
verts the loop into a prelude, a pipelined loop body, and
a postlude.

For example, consider a generalized loop, L1, with of
four operations we will call A, B, C, and D. For purposes
of illustration let us assume that dependences require a
sequential ordering of these operations within a single
loop iteration. Thus, even if our target architecture
allows 4 operations to be issued at once, a schedule for
a single loop iteration, requiring 4 instructions would
be



do N times
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due to dependences among the operations. A software
pipelined version of this loop might well be able to is-
sue all 4 operations in one instruction by overlapping
execution from different loop iterations. This might,
under ideal circumstances, lead to a single-instruction
loop body of A*3B*+2C*1D! where X7 denotes op-
eration X from iteration j of the loop'. Of course, if
the loop body is concurrently executing operations from
multiple loop iterations in a pipelined fashion, we need
a prelude to set up the software pipeline and a postlude
to empty it. The entire idealized loop then becomes:

(Prelude)
A (iteration 1)
B (iteration 1) A (iteration 2)
C (iteration 1) B (iteration 2) A (iteration 3)

(Loop Body)
do N-3 times (with index i)
ABCD (A of iteration i+3, B of i+2, C of i+l,
D of i)

(Postlude)
D (iteration N-2) C (iteration N-1) B (iteration N)
D (iteration N-1) C (iteration N)
D (iteration N)

2.2 Increased Register Requirements

As shown in the above example, software pipelining can,
by exploiting inter-iteration concurrency, dramatically
reduce the execution time required for a loop. Such
overlapping of loop iterations also leads to additional
register requirements, however. For illustrative pur-
poses let us reconsider our 4-operation loop, L1. Let
us assume that operation A computes a value, v, in
a register and that operation D uses v. In the initial
sequential version of a loop body one register is suffi-
cient to store ¢’s value, since the value computed by
the next iteration’s A is not available until after D has
used the value computed by the current iteration. No-
tice, however, that, in the software pipelined version,
we need to maintain several different copies of v because
we have different loop iterations in execution simulta-
neously. Specifically we need to have as many registers
“assigned” to v as we have different iterations of L1 in
execution concurrently, namely 4 in our example.
Given that software pipelining leads to increased reg-
ister requirements due to inter-iteration register depen-
dences how can software pipelining overcome this diffi-
culty? Many, including Rau [16] have advocated rotat-
ing register files in which each “register” listed in the
schedule actually represents a group of registers and
hardware is included to rotate among the physical reg-
isters associated with each abstract schedule register.
This allows each loop iteration in execution simultane-
ously to have its own “version” of the needed register.
Of course, this requires significantly more physical reg-
isters than are found in most ILP processors to date, as

I This notation is borrowed from Allan et al. [3]

well as the added hardware complexity to automatically
rotate among the available physical registers associated
with an “abstract” register listed in the schedule.

When rotating registers are not available on the tar-
get architecture, software support is needed to produce
correct schedules. The most popular technique is Lam’s
modulo variable expansion (MVE) [10]. MVE overcomes
inter-interval dependences by copying the loop body, or
kernel M times, where M is the number of different loop
iterations included in the longest lifetime for any vari-
able in the loop. Each register within the (II-length)
loop body is then “expanded” to become a group of reg-
isters, one per copy of the original loop body, thereby
removing conflicts produced by register reuse depen-
dences.

Whether using rotating registers or MVE to ensure
semantics-preserving software pipelining, inter-iteration
register dependences created by software pipelining con-
tinue to be a considerable deterrent to modulo schedul-
ing.

2.3 Scheduling with Uncertain Latencies

Modern processors, whether ILP or not, have been forced
to adopt a multi-level memory hierarchy to deal with
the fact that processor speeds far exceed memory ac-
cess speeds and the gap continues to grow. Thus, almost
all modern processors include at least one level of cache
memory to make use of program locality, thereby signifi-
cantly reducing average memory access times over what
would be possible without a small high-speed memory.

Of course one attribute of memory systems that in-
clude cache is that the actual access time for any mem-
ory operation is unknown at compile time. Performance
will be best if a memory load will be a cache hit most
of the time, and thus require on the order of one or two
cycles to be resolved. However, the possibility exists
that a load will be a cache miss, leading to delays of 20
or more cycles.

This uncertainty in the latency of memory loads cre-
ates a problem for instruction scheduling in general
and software pipelining in particular. Should a com-
piler schedule code assuming that all loads are cache
hits? Should it assume that all loads are cache misses?
Most instruction schedulers assume that all loads will
be cache hits and, thus, schedule with a short latency
for each load instruction. This is fine when, as is most
often the case, the load is in fact a cache hit. When
a cache miss occurs, however, a traditional processor
stalls. Some modern processors, e.g. the DEC Alpha
[7], provide a non-blocking cache that allow cache ac-
cesses to continue after a miss. When scheduling for
such an architecture it can be especially important to
schedule instructions to hide memory latencies as much
as possible. Non-blocking caches at least allow for the
possibility that assuming cache misses (and thereby in-
serting as many operations as possible between a load
and the first use of the loaded register) might be a viable
scheduling alternative.

When considering non-loop code, assuming a cache-
hit latency may, in fact, be an excellent scheduling pol-
icy. We would expect most loads to be cache hits. In
addition, while this optimistic view may lead to unnec-
essary stalls in non-loop code we may have little viable



alternative. As for non-loop code, we might not be able
to hide the long latency of a cache miss even if we could
recognize it. The situation is quite different for soft-
ware pipelining, however. An arbitrary use of cache-hit
latency will lead to processor stalls, just as in non-loop
code. Now, of course the stalls are more costly, just due
to the fact that most of the execution time of programs
is spent in loops. More importantly, when software
pipelining a loop, modulo scheduling can, by overlap-
ping more loop iterations, hide almost any memory la-
tency. This is in stark contrast to scheduling of non-loop
code and may well make assuming cache-miss latencies
a good policy. If we can (by overlapping more loop it-
erations) guarantee that we hide all latencies, modulo
scheduling can guarantee excellent execution time for a
loop.

Unfortunately, as we have discussed, overlapping more
loop iterations leads to exploding register requirements.
If we assume all loads are cache misses we may unnec-
essarily exhaust registers for the sake of hiding possibly
non-existent latencies. Rau [15] and Huff [8] both rec-
ommend assuming all loads are cache misses in their
modulo scheduling. Note that both assume rotating
register files as well, however, which tends to lessen the
register problem.

Assuming all loads are cache hits can potentially
cripple modulo scheduling’s execution efficiency due to
stalls, while assuming all loads are cache misses exac-
erbates the already serious register proliferation prob-
lem of modulo scheduling by (perhaps unnecessarily) in-
creasing the number of overlapped loop iterations in an
attempt to hide latency. To address the problem of local
instruction scheduling with uncertain latencies, Eggers
and co-workers [9, 12] have suggested balanced schedul-
ing for architectures with non-blocking caches. Bal-
anced scheduling sets memory latencies based, not upon
some architecturally predefined value, but rather based
upon the number of instructions available to hide the
latency of a particular load. While balanced scheduling
is a step in the proper direction, in that it uses program
information to set latencies, we feel it does not go far
enough, at least not for software pipelining. Instead of
merely averaging latencies based upon necessary sched-
ule length, we wish to identify those loads that will be
cache hits and those that will be cache misses. We pro-
pose using well-established memory reuse analysis tech-
niques to identify those loads that will be cache hits and
those that will be cache misses and use that information
to determine the latency of each load in the loop to be
software pipelined.

3 Memory Reuse Analysis

Since modulo scheduling suffers whenever we either as-
sume that 1) all loads are cache hits, or 2) all loads
are cache misses, we would like a mechanism to identify
those loads that will lead to a cache hit and those that
will lead to a cache miss. Given this information, we
can schedule each load with its appropriate latency. In
this section, we outline such a memory reuse analysis.
In our simple model of memory reuse we will assume
that each static load in a program will either always
be hit or always be a miss. Of course, in general that
assumption is not valid. Even given its limitations our

DO 10 I = 1,N
DO 10 J = 1,N
DO 10 K = 1,N

10 A(I+1,J,K-1) = A(I,J,K) + C(I,J,K)

| }

<17 0> _1>

Figure 1: Example Dependence Graph

simple model allows for an improved modulo scheduler,
however. Section 5 describes a more complete model
of cache behavior and possible further refinements to
modulo scheduling to take advantage of a more sophis-
ticated cache model. Since ours is a dependence-based
reuse model we first digress for a brief discussion of pro-
gram dependence.

3.1 Dependence

A dependence exists between two references if there ex-
ists a control-flow path from the first reference to the
second, and both references access the same memory
location. The dependence is

e a true dependence if the first reference writes to
the location and the second reads from it,

e an antidependence if the first reference reads from
the location and the second writes to it,

e an output dependence if both references write to
the location, and

e an input dependence if both references read from
the location.

If two references, v and w, are contained in n com-
mon loops, separate instances of the execution of the
references can be described by an iteration vector. An

iteration vector, denoted ;, is simply the values of the
loop control variables of the loops containing v and
w. The set of iteration vectors corresponding to all
iterations of the of the loop nest is called the itera-
tion space. Using iteration vectors, a distance vector,
0 = (01,02,...,d,), can be defined for each dependence:
if v accesses location Z on iteration ¢, and w accesses
location Z on iteration i,,, the distance vector for this
dependence is iy — iy. Under this definition, the k!
component of the distance vector is equal to the num-
ber of iterations of the kt* loop (numbered from out-
ermost to innermost) between accesses to Z. As an
example, consider Figure 1. The distance vector for the

dependence between the definition and use of array A
is (1,0, —1).

3.2 Reuse Model

The two sources of data reuse are temporal reuse — mul-
tiple accesses to the same memory location —and spatial
reuse — accesses to nearby memory locations that share



a cache line or a block of memory at some level of the
cache hierarchy. Temporal and spatial reuse may result
from self reuse from a single array reference or group
reuse from multiple references. Without loss of gener-
ality, in this paper we assume column-major storage for
arrays.

The reuse model used in this paper is identical to
the one described by Carr, et al. [5].To simplify analy-
sis, we concentrate on reuse that occurs between a small
number of inner loop iterations. This memory model as-
sumes there will be no conflict or capacity cache misses
in one iteration of the innermost loop. To compute
cache reuse, we first apply algorithm RefGroup, shown
below, to calculate group reuse. Two references are in
the same reference group if they exhibit group-temporal
or group-spatial reuse (i.e., they access the same cache
line on the same or different iterations of an inner loop).
In our simple model, any reference having either group
or self reuse is considered to always be a cache hit. A
reference with no reuse is considered to always be a
cache miss.

RefGroup: Two references Refi and Refo belong to
the same reference group with respect to loop [ if
at least one of the two following conditions holds:

1. 3 Ref gRefg , and

(a) Sisa loop-independent dependence, or

(b) d; is a small constant d (|d| < 2) and all
other entries are zero,

2. 3 Refi 0 Ref> , and dy is less than the cache-
line size and all other entries are zero. dy is the
distance associated with the induction vari-
able in the first subscript position.

Condition 1 accounts for group-temporal reuse and con-
dition 2 detects some forms of group-spatial reuse.

To compute self-reuse properties, we consider a rep-
resentative reference from each RefGroup separately. If
the reference is invariant with respect to the innermost
loop, it has self-temporal reuse. If the inner-loop induc-
tion variable appears only in the first subscript position
of the reference, then the reference has self-spatial reuse.

Consider the following example.

bo 10 J =1,N
DO 10 I = 1,N
10 A(I,J) = A(I-1,J) + C(J,I)
+ C(J-1,I) + B(J)

A(I-1,7J) has group-temporal reuse, C(J-1,I) has group-

spatial reuse, A(I,J) and A(I-1,J) have self-spatial
reuse, B(J) has self-temporal reuse and C(J,I) has no
reuse. In our model, C(J,I) is always a cache miss and
all other references are always cache hits.

4 Experiment

To evaluate our contention that taking advantage of
memory reuse information can improve software pipe-
lining’s efficiency, we compiled and simulated 75 Fortran
loops in which our software pipelining used one of three
different memory latency policies, namely 1) all loads

are cache hits, 2) all loads are cache misses, 3) each load
is either always a cache hit or always a cache miss, as
determined by memory reuse analysis. Our hypothesis
is that software pipelining in which the load latency is
determined by reuse should yield better execution per-
formance than pipelining with an all-hit latency policy,
and while it should lead to slightly poorer execution
performance than pipelining with an all-miss latency
policy (assuming an infinite number of registers) the
reuse policy should lead to significantly fewer registers
required for the loop.

4.1 Machine Model

The hypothetical superscalar architecture that we chose
for our tests is an instruction-level parallel machine with
two integer and two floating point functional units, each
of which may issue an instruction in each cycle should
data dependences allow. The latency for integer in-
structions is two cycles, while the latency for floating
point instructions is four cycles. Only one load or store
can be issued per cycle. All loads and stores use an
integer unit and the cache hit latency is two cycles.

Since one of the parameters we wished to investi-
gate was register usage, there were two possible ways
to go. We could have chosen a fixed, relatively small
number of registers similar to current ILP machines
and “measured” register pressure as part of execution
time, since spilling would necessarily degrade loop per-
formance. However, in an attempt to separate register
concerns and loop performance concerns we chose to in-
clude 256 integer and 256 floating point registers in our
machine model. In this manner, we ensured that we
would not spill and therefore can evaluate the effect on
register pressure by a direct measurement of how many
registers were required to generate software pipelined
code for the loop.

The cache model we have chosen is an 8K direct-
mapped cache with 32-byte lines. The cache is non-
blocking and allows up to 6 outstanding misses to occur
in parallel. The penalty for a miss to cache is an addi-
tional 25 cycles. When a miss occurs, two consecutive
32-byte lines are brought into the cache.

We simulated loop behavior only by resetting the
simulator for each outermost loop construct. Thus,
while we only pipelined innermost loops we counted all
nested loops in our simulation results. However, we did
not, simulate non-loop code.

4.2 Test Programs

We software pipelined 107 Fortran innermost loops
from three SPEC programs and an additional 13 loops
from Fortran kernels, yielding a total of 120 innermost
loops. For 45 of those loops there was no difference in
any of the pipelined schedules depending upon whether
we used a cache-hit assumption, a cache-miss assump-
tion or a reuse model to determine load latency. Table
1 lists the sources of the 75 loops tested.

We used iterative modulo scheduling to pipeline the
loops, and restricted our attention to loops with no
control flow or function calls. Thus, we pipelined only
single-block loops for this study.



[ Program | No. of Loops Tested |

Spec
hydro2d 36
su2cor 16
swm256 10
Others
kernels | 13
[ Total ] 75

Table 1: Test Loops

4.3 Results

Table 2 gives summary results for the performance, in
terms of execution cycles, of the 75 loops tested. The
first column shows the “normalized” execution time for
code compiled with an all-hit latency policy. The second
column shows the same computation for the all-miss la-
tency policy and the third column gives the results of
code compiled with reuse information. We normalized
the cycles of each of the 75 loops so that whichever of
the three compiled codes (hit, miss, reuse) required the
fewest cycles was set to 100, and the other two were
normalized with that value. The values listed in Ta-
ble 2 represent the unweighted average of these nor-
malized execution values for all 75 loops. As expected
we see that loops pipelined with latencies set by reuse
required fewer cycles, on average than those compiled
with latencies set by a cache-hit assumption. In fact,
the difference in performance between reuse and hit la-
tencies is roughly 10%. Based only on execution cycles,
we also expected reuse to perform slightly worse than
cache-miss, due in part to our modulo scheduler’s over-
simplified model of cache behavior that each static load
either always be a hit or always be a miss. We an-
ticipated that this would lead to a small performance
penalty, but, in fact, virtually all of the roughly 8%
degradation we saw in performance between cache miss
and reuse policies can be attributed to this simplifica-
tion, as we will explain shortly (in Section 4.4.) Fi-
nally, the summary data shows that miss was not al-
ways the best performance policy. If it were always best
its value would be 100 instead of 104. In fact several
loops showed better performance with reuse than cache
miss. This was unexpected and we attribute the fact to
the somewhat larger overhead associated with software
pipelining when using a cache-miss policy than when
using reuse, or cache hit. We discuss this “overhead” in
Section 4.4.

While Table 2 provides some indication of the over-
all performance of the three memory latency choices
tested, it hides a great deal of detail. The longer ver-
sion of the table, with all 75 loops listed individually can
be found in Tables 4 and 5. Table 2 shows that the
reuse version of a loop improved on the hit version on
only 17 of the 75 loops tested, while hit never did better
than reuse. That means that all of the roughly 10% av-
erage performance improvement was found in less than
one fourth of the loops. In fact, for 13 of the loops, the
reuse-compiled code was more than 20% faster than the
code compiled with hit latencies. The largest difference
was a factor of 2.61. The other 56 loops all produced
the same results when compiled with hit latencies or

reuse latencies. In contrast, while miss resulted in bet-
ter schedules 34 times out of 75, reuse outperformed
miss 19 times, by as much as 41% in one instance. To
obtain the roughly 8% average improvement of cache
miss to reuse then, cache miss had to be significantly
better than reuse for some loops and in fact this is what
we found. While reuse outperformed miss by at least
20% only twice, miss was more than 20% faster than
reuse for 19 of the 75 loops. The maximum penalty of
reuse for any loop was 69%.

Table 3 shows register requirements of the pipelined
loops. Notice that while compiling with reuse required
about one register more on average than compiling with
hit latencies, it needed more than 6 fewer registers than
those required by assuming miss latency. This repre-
sents a 17.9% registers savings over that needed for
schedules that assume miss latency. For architectures
with moderate numbers of registers this can be a con-
siderable factor in deciding between using miss latencies
and reuse information. When we restrict ourselves to
those loops in which miss provided at least 20% better
execution performance the difference is even greater.
For those loops, reuse required an average of 31.6 reg-
isters while miss required 40.9, a savings of 22.8%.

4.4 Discussion

Our basic premise was that compiling with reuse in-
formation would allow for more efficient pipelined loops
than would compiling with hit latency and for fewer reg-
isters required than would compiling with miss latency.
Our experimental evidence certainly suggests that this
is true. Compared with using hit latency, reuse pro-
duced loops requiring 10% fewer cycles on average while
requiring less than one additional register on average.
When compared with using miss latency, reuse required
6 fewer registers on average, but it did suffer substan-
tial performance degradation on many loops. This led
to an overall average degradation of 8% in execution
performance.

To understand the reason for this degradation we
need to return to the definition of reuse types, namely
temporal vs. self-spatial reuse. In temporal reuse, we
reuse an individual data item that was previously ac-
cessed. Thus, for any reference with temporal reuse,
only a small number (d from our reuse model) misses
will occur for the entire loop execution. Self-spatial
reuse, in contrast, occurs because more than a single
data item is brought into the cache at once. In a sense
self-spatial reuse is indirect reuse. The “hit” is not due
to that particular data item having been previously ac-



[ Cache Hit | Cache Miss | Reuse |

123 |

104 [ 112 |

Table 2: Summary Performance Numbers — Normalized

[ Cache Hit | Cache Miss | Reuse |

337 |

08 [ 346 |

Table 3: Summary of Registers Required

cessed, but rather from “neighbor” data having been
accessed previously. If we assume stride-1 access of data
(accessing adjacent data items on successive loop itera-
tions) then rather than d misses for the entire loop, as
with temporal reuse, spatial reuse leads to one miss ev-
ery N loop iterations, where N is the number of adjacent
data elements brought into the cache at once. Notice
that this is quite different from our compiler’s assump-
tion that every access is a hit when we have spatial
reuse.

Investigation of the 34 loops for which miss led to
more effective pipelined schedules showed that they all
exhibited spatial reuse. Many of the loops included
several spatial reuse loads. This means that in our ma-
chine model, each spatial reuse load will incur a 25-cycle
penalty each 8 loop iterations (since we bring 8 data
items into the cache for each miss). This in itself is re-
sponsible for the degraded performance of reuse with re-
spect to assuming miss latency. In Section 5 we suggest
some refinements to our cache model that require a com-
bination of software and a small amount of hardware.
The refinements should eliminate the penalty that our
reuse policy showed with respect to using miss latency.

Perhaps more puzzling is the fact that for 19 loops
the schedule generated with reuse information required
fewer cycles than that produced using miss latency. Our
intuition suggested that miss should always yield a bet-
ter schedule, but it did not. Closer investigation of the
loops in question showed that, for all of them, the soft-
ware pipelining “overhead” of prelude and postlude as
well as preconditioning was significantly greater for the
miss schedule than for the reuse schedule. This is a
reasonable expectation because the longer latencies re-
quired by the miss policy led to more loop iterations
being included in the pipelined kernel. When more it-
erations are included in the kernel, all of the prelude,
postlude and preconditioning suffer. Recall that the
prelude sets up the pipeline and the postlude drains
it. Thus if we have more iterations within the kernel,
more operations are required to set up and drain the
pipe. Preconditioning is required to ensure that the en-
tire loop is executed the proper number of times. If
modulo variable expansion requires the loop kernel to
be unrolled M times to accommodate register require-
ments, then the (unrolled) kernel for a loop to be ex-
ecuted N times must be executed N/M times. If N/M
is not an integer the remainder is executed as a non-
pipelined loop body. Longer register lifetimes, due to
assuming miss latency, will lead to more kernel unrolling

needed by modulo variable expansion and thus, poten-
tially, more executions of the non-pipelined precondi-
tioning code. Investigation of the loops where reuse
required fewer cycles than miss showed that, indeed,
the precondition loop was executed several more times
for the miss pipeline, thus leading to significant perfor-
mance degradation.

5 Refinements

The experimental data in Section 4 indicates that schedul-
ing with reuse information can achieve performance equiv-
alent to all-cache-miss with lower register pressure if
we could properly handle references having self-spatial
reuse. Due to potential alignment problems, just as-
suming the the first out of [ (where [ is the cache-line
size) consecutive references is a miss and the others are
hits is not adequate. Below we suggest two possible
alternatives.

1. We could use a software-prefetch instruction on
self-spatial references to bring in one or more con-
secutive cache lines. This would allow us to con-
tinue to schedule loads and stores as we currently
do while avoiding the cache miss penalty. One
could also prefetch references that are determined
to be all cache misses [13]. However, this could
potentially hurt the schedule due to an increase in
the number of instructions issued.

2. We could also modify the hardware to prefetch the
next cache line on a hit or miss if that line were
not already in the cache. This would require no
extra instructions and would allow references with
self-spatial reuse to miss only on the first reference.

We suggest a combination of prefetching and schedul-
ing with reuse information to obtain the best overall
performance. The use of prefetching with self-spatial
references eliminates the penalty of missing once per
cache line. The use of scheduling with reuse informa-
tion on cache misses allows us to hide the latency of a
miss with little increase in registers over the all-cache-
hit assumption and no additional overhead of prefetch
instructions for each reference.



6 Conclusion

In this paper, we have demonstrated experimentally
that using reuse information while software pipelining
is effective. On our benchmark suite we produce on
average 10% better schedules than an all-cache-hit as-
sumption (a factor of 2.61 better on one loop) and on av-
erage we use 18% fewer registers than an all-cache-miss
assumption. Even though all-cache-miss sometimes out
performs reuse, it does so at the cost of 23% more regis-
ters. We have proposed a combination scheduling-with-
reuse/prefetching scheme that will eliminate the edge in
performance held by all-cache-miss at the cost of no ex-
tra registers.

Given that the cycle time of cache-miss latencies is
increasing, software pipelining methods must eliminate
the performance degradation caused by these latencies.
The methods presented in this paper are an important
step in eliminating the latency problem.
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Cache Hit Cache Miss Reuse
Execution | Registers | Execution | Registers | Execution | Registers
Hydro2d
100 16 141 22 100 16
100 16 110 24 110 16
198 19 119 24 100 16
100 18 120 25 100 18
100 18 119 27 100 18
100 47 100 47 101 47
159 36 100 45 107 36
125 18 100 18 105 18
177 45 100 48 114 48
115 35 100 45 112 35
100 16 141 22 100 16
110 23 108 44 100 23
100 25 114 32 100 25
105 25 100 33 105 25
103 41 100 42 104 41
192 22 100 27 100 27
100 15 116 21 100 15
100 15 117 21 100 15
100 15 116 21 100 15
100 15 116 21 100 15
131 41 100 44 131 41
122 38 100 51 122 38
117 20 100 33 117 20
128 21 100 36 128 21
134 21 100 36 134 21
120 20 100 33 118 20
113 19 100 32 113 29
123 20 100 35 123 20
134 19 100 24 134 19
142 20 100 32 142 20
169 21 100 36 169 21
149 46 100 68 149 46
100 17 119 22 100 17
130 14 100 22 130 14
154 46 100 68 154 46
134 14 100 21 134 14

Table 4: Performance Numbers — Normalized Execution and Registers



Cache Hit Cache Miss Reuse
Execution | Registers | Execution | Registers | Execution | Registers
Su2cor
261 22 100 30 121 30
103 62 100 92 106 62
156 80 100 59 100 59
100 16 100 16 100 16
100 17 114 27 100 17
100 59 110 68 100 59
100 20 117 30 100 20
110 25 100 31 110 25
118 23 100 31 118 23
119 fd 100 68 119 kd
140 59 100 75 140 59
116 72 100 82 104 75
209 64 100 71 100 71
128 12 100 17 128 12
100 29 100 29 100 29
114 63 100 63 114 63
Swm?256
104 110 100 142 103 110
150 36 100 46 100 46
100 38 105 42 100 38
123 92 100 108 123 92
123 33 100 58 100 58
124 54 100 50 124 54
105 36 100 46 104 36
129 25 100 29 100 29
100 43 110 73 101 43
180 27 100 32 180 27
Kernels
100 19 100 19 100 19
100 12 100 17 100 12
100 20 100 20 100 20
153 20 104 25 100 25
101 19 100 19 101 19
100 12 100 17 100 12
100 15 100 15 100 15
101 129 102 7 100 130
122 14 100 20 122 14
100 20 100 20 100 20
164 21 100 27 100 27
100 20 100 20 100 20
100 22 108 50 100 22

Table 5: Performance Numbers — Normalized Execution and Registers



