
Integrating Programming by Example and
Natural Language Programming

Mehdi Manshadi, Daniel Gildea, James Allen
Department of Computer Science, University of Rochester

Rochester, NY 14627
{mehdih,gildea,james}@cs.rochester.edu

Abstract

We motivate the integration of programming by example and
natural language programming by developing a system for
specifying programs for simple text editing operations based
on regular expressions. The programs are described with un-
constrained natural language instructions, and providing one
or more examples of input/output. We show that natural lan-
guage allows the system to deduce the correct program much
more often and much faster than is possible with the in-
put/output example(s) alone, showing that natural language
programming and programming by example can be combined
in a way that overcomes the ambiguities that both methods
suffer from individually and, at the same time, provides a
more natural interface to the user.

Introduction
Recent work on Programming by Example or PbE, also re-
ferred to as Programing by Demonstration or PbD1, (Lau
et al. 2003; Liang, Jordan, and Klein 2010; Gulwani 2011)
has shown the feasibility of learning simple programs (gen-
erally constrained text editing tasks) from small numbers of
examples, that is input/output (I/O) pairs. Natural Language
Programming, on the other hand, has received less attention,
mainly because natural language carries a lot of ambiguity
as opposed to formal (i.e. programming) languages in which
no ambiguity is allowed. In this paper we motivate the inte-
gration of the two methods by offering the first PbE system
that leverages a high-level natural language description of
the programming task. We show that this system requires
fewer examples, and hence lowers the complexity of PbE
problem as well as the amount of effort from the user.

Our usage scenario and motivation is described in more
detail in the next section. In the subsequent sections, we de-
scribe the baseline Programming by Example system, aug-
ment this baseline with probabilistic features, and integrate
it with natural language descriptions. We then describe our
train/test procedures, experiments, and results.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Although often used interchangeably, the two terms are not
technically the same. The former only observes the beginning and
the final states, but the latter requires step by step demonstration.

Motivation
Dijkstra (1979) states that natural language programming is
simply impossible, or at least impractical, by arguing that
formal symbolisms are “an amazingly effective tool for rul-
ing out all sorts of nonsense that, when we use our native
tongues, are almost impossible to avoid”. Although there is
no doubt that, when it comes to precision, where no am-
biguity is tolerated, the level of vagueness and ambiguity of
natural language is a major drawback, we argue that in many
practical situations there are ways to circumvent or to at least
defer the necessity of using a formal language. The fact that
many (novice) programmers actually use natural language
programming as a major resource supports this claim. Pro-
gramming forums contain thousands of posts in which pro-
grammers describe their problem in natural language and
ask an expert for a piece of code solving that problem. Of
course, for the very reason that Dijkstra mentions, a natural
language (NL) description often raises lots of questions.

Our study of 242 posts on regular expression (regex) pro-
gramming2 shows that people adopt a key strategy to deal
with ambiguity. In around 50% of the posts, they use some
(often a single) example(s) to resolve the ambiguities that
the NL description may raise. Looking at these posts, we
can see how natural it feels for people to give a high-level
description of a task and then one or more examples that
demonstrate the details left out in the NL description. If this
solution is found natural when dealing with human experts,
why not use the same solution when dealing with machines?

For example, consider the sentence Copy the first number
on each line describing a text editing task. It is quite hard to
figure out the precise program intended by the user.

First, there are multiple interpretations of the sentence,
two of them3 demonstrated in Figures 1(a) and 1(b). In Fig-
ure 1(a), it is interpreted as to copy the first number occur-
ring on each line of the input to the output. In Figure 1(b),
the interpretation is to copy the first occurrence of a number
in the text to all (other) lines of the input.

Second, many details are left out in the NL description.
For example, what is the format of the output? Do we sep-
arate the output numbers by space, comma, newline, etc.?
More importantly, what counts as a number? Does every se-

2http://forums.devshed.com
3Resulted from the two ways of preposition phrase attachment.

Target
I5 5910 9-10 pm 5910
I90 3590 3-5 pm 3590

Source

(a) An examples for the first interpretation

100 Orange CA 100 Orange CA
Apple CA 100 Apple CA
Potato ID 100 Potato ID

Source Target

(b) An example for the second interpretation

Figure 1: Two interpretations of the sentence
Copy the first number on each line.

quence of digits count as number, like “5” in “I5” or “1” and
“3” in “1-3 pm”, or does it have to be surrounded by whites-
pace? Providing an example such as the I/O (source/target)
pair in Figure 1(a) gives an answer to most of these ques-
tions and resolves a lot of the ambiguities. While providing
all the details in the NL description may be painful, giving
a single I/O pair is pretty straightforward. We follow this
strategy and propose a system that takes a high-level NL de-
scription of a text editing task plus a single example of an
I/O pair and generates a program achieving this task.

There are at least two ways to approach this, one from the
perspective of natural language processing and one from a
PbE point of view. The former processes the NL description
and leverages the example(s) to resolve the ambiguities. The
latter takes the opposite approach, that is, it takes the I/O
pair(s) and generates the space of all programs that map the
input(s) to the output(s). It then picks the one that is best
supported by the NL description. In this paper we explore
the latter approach, building on recent developments in PbE.

In order to show how an NL description helps a PbE
system to generate the intended program, consider a task
demonstrated by the example in Figure 1(a) with no natural
language description. There are many programs that map the
source to the target, a few of them given below: Print the sec-
ond column, Print the second-to-the-last column, Print the
second sequence of digits, Print the first sequence of digits
surrounded by whitespace, Print any string of four consecu-
tive digits. Given an NL description like the one in Figure 1
together with the source/target, it would be very likely for
the system to produce the intended program. This is the in-
tuition behind the model proposed in this paper.

The PbE system
In this section, we describe our baseline PbE system. The
model we present here is based on a state-of-the-art PbE
system (Gulwani 2011). Like many other program induction
systems (Lau et al. 2003), the model benefits from the idea
of version space algebra (Mitchell 1982), which divides a
problem into independent subproblems and solves each sub-
problem individually, to avoid dealing with the combinato-
rial complexity of solving the whole problem at once. How-
ever, to be able to make such an independence assumption,

start= 0
5

1 2 3
9 1 0

4 =end

F (s) = {"5", s[1,2], s[3,4], s[pos(s, "[A-Z]+", 0,1

F (s) = {"10", s[5,7], s[10,12], s[pos(s, "-",2,4
"[0-9]+", 1), pos("[0-9]+", "\s+", 3)], ...}

"[0-9]+", 1), pos(s, "[0-9]+","\s+", 1)], ...}
. . .

. . .

(s,t) =("I5 5910 9-10 pm" , "5910")

Figure 2: DAG of the given (s,t). For brevity, all links be-
tween each two nodes are collapsed into one super-link.

some restrictions must be defined on the range of problems
allowed. In order to fulfill this and in general to decrease the
complexity of the search algorithm, Gulwani (2011) intro-
duces a string mapping language and only allows for pro-
grams expressed in this language. Our model uses a subset
of this language that deals with regular expression (regex)
programming. We call this subset δ1.

Let s, t be two strings with s = f(t) for some function f .
In δ1, f is defined as one of the following functions:

i. f(s) = c, where c is a constant e.g. f(x) ="5910" for
every string x.

ii. s[p(s) : q(s)]; a substring of the input from position p
to position q. e.g. f(s) = s[5 : 9]. p, q are in general
functions of the input s (defined below).

iii. f1(s).f2(s); that is a concatenation of smaller strings, e.g.
f1(s) ="59", f2(s) = s[10 : 12].

The positions p, q can be either a constant integer or a func-
tion pos(s, r1, r2, c), defined as the cth instance of a po-
sition in s, where regular expressions r1 and r2 match a
substring of s immediately to the left and to the right of
that position respectively. For example if the first line of
the source/target in Figure 1(a) is given as (s, t), we have
t = s[p, q], where p = pos(s,"\s+","[0-9]+", 1), q =
pos(s,"[0-9]+","\s+", 2) ("\s" refers to whitespace).

The concatenation function (type iii) allows us to repre-
sent t, in the I/O pair (s, t), as a concatenation of smaller
strings. The production of each substring can be done inde-
pendently. Therefore, we can compactly represent the set P
of all programs P that map s to t as a directed acyclic graph
(DAG)G. Figure 2 represents the DAG corresponding to the
above example. In general, there are many links lki,j (each as-
sociated with a single function fki,j) between any two nodes
i and j. In Figure 2, for readability and brevity purposes,
we have used a compact representation of G in which we
consider a single link between any two nodes, but associate

it with the set Fi,j of all functions fki,j . In the original rep-
resentation, any path from start (node 0) to end (node |t|)
forms a single program4 mapping s to t. In the compact rep-
resentation, however, for each link li,j on a path, a function
fki,j is non-deterministically picked from Fi,j , in order to
produce a single program.

In general, there are infinitely many regular expressions
r1 and r2 that can identify a position p in s using the pos
function. In order to limit the possible functions pos, r1 and
r2 are forced to be a sequence of tokens T1T2 . . . TN1 and
TN1+1TN1+2 . . . TN respectively, in which each token Ti is
of the form C, ¬C, C+ or (¬C)+, where C is a standard
character class such as Alphanumeric ([a-zA-Z0-9]),
Digit ([0-9]), Upper ([A-Z]), etc.5 Let |C| be the number
of character classes defined in the system. |T | = 4|C| will
then be the number of tokens allowed. If we fix a maximum
N0 on the number of tokens in r = r1·r2 = T1T2 . . . TN , the
maximum number of substring functions identifying a par-
ticular subsequence of the input s is O(|T |2N0).6 Although
huge, this number is constant with respect to the size of the
I/O pair.7 On the other hand each subsequence t[i, j] of out-
put (which corresponds to the nodes (i, j) in the DAG) can
come from at most |s| substrings of the input. Therefore, the
size of DAG is O(|t|2|s|) or O(n3) (n = |s|+ |t|).

So far, we have shown how to represent the space of pos-
sible solutions for a single I/O pair, but the goal of the PbE
system is to converge to a unique (or at least a few) solu-
tion(s) given multiple examples. In order to achieve this, we
intersect the space of solutions for all I/O pairs. Consider
DAG G1 = (V1, E1) and DAG G2 = (V2, E2) for the input
pair (s1, t1) and (s2, t2) respectively. We build a new DAG
G = (V1 × V2, E1 × E2) such that for every link i1 → j1
and i2 → j2 in G1 and G2, associated with the set of func-
tions F 1

i1,j1 and F 2
i2,j2 , the link ((i1, i2) → (j1, j2)) in G

is associated with the set F 1
i1,j1 ∩ F 2

i2,j2 . The definition
extends to the case of m pairs, where the nodes are points in
an m-dimensional space. It is easy to see that:

|G| = O(n3m) (1)

where n = maxmi=1 |si|+ |ti|.

Building a probabilistic PbE model
In this section, we propose a model which improves over the
baseline PbE by incorporating probabilities, hence proba-
bilistic PbE or PPbE. The framework we lay out is expanded
in the next section, in order to incorporate NL descriptions.

4We use the term program to refer to a sequence of functions.
5In practice, we had to take care of a special but quite frequent

case, where a word, a number, etc is not surrounded by whitespace
but by the start-token (∧) and/or the stop-token ($). We cover these
cases by allowing the first token in r1 and/or the last token in r2 to
be disjoined with start/stop-tokens respectively (i.e. (∧|T1) and/or
(TN |$)). Gulwani (2011) uses a top-level “switch” function to take
care of these cases and more.

6s[p, q] includes two positions, hence, the factor 2 in 2N0.
7Notice here that although pos takes an integer c as an argu-

ment, given a position p and the regexes r1 and r2, there is only a
single positive integer c such that p = pos(s, r1, r2, c).

The intersection of DAGs for all pairs, as defined in the
previous section, is rarely ever a single path/program, but is
either empty (i.e. no solution) or contains many solutions.
The baseline system uses the shortest program heuristic to
choose one program over another, where the length of a pro-
gram depends on the number of links in the path, the type
of the function associated with each link, the length of the
regular expressions, etc. and is predefined. But we augment
links with probabilities. Each link l, associated with a unique
function f(l), is assigned a probability p(l) defined in a
maximum entropy (MaxEnt) model.

p(l) =
1
Z

exp

(
−
∑
i

wiφi(l)

)
(2)

The features φi are attributes of the function f(l), such as the
type of the function (constant, a substring with one or two
constant integers as positions, a substring with one or two
pos functions, etc.), the length of the regular expressions (if
any), the character classes used in the regular expressions,
etc.

Given a set of examples E = {(s1, t1), . . . (sm, tm)}, we
are required to find the most likely program:

Popt = arg max
P∈δ1

p(P|E) = arg max
P(si)=ti,i=1:m

p(P)

= arg max
P∈G

p(P)
(3)

where G is the intersection of all individual DAGs Gi (the
space of solutions for the I/O pair (si, ti)) and P ranges over
all the paths from start to end in G. Assuming that the like-
lihoods of the links are independent, and defining the cost
c(l) of each link l as the negative log likelihood, we have:

Popt = arg max
P=l1···l|p|

|P|∏
k=1

p(lk) = argmin
P=l1···l|P|

|P|∑
k=1

c(lk) (4)

Hence, Popt may be found efficiently by Viterbi algorithm:

λ(v) = min
u,j
{λ(u) + c(lj(u→ v))} (5)

where u, v are two nodes of the DAG and lj(u→ v) ranges
over all links between u and v. The complexity of the Viterbi
algorithm is equal to |G|, which from Eq. (1) is O(n3m).

Our model is reduced to the baseline system, if we prede-
fine the cost c(l) of each link based on the length of the as-
sociated function f(l). The power of the model, however, is
exploited when the costs are learned based on the frequency
with which a function has occurred in the data. For exam-
ple, a longer regex would have a lower cost if it occurs more
frequently in the data. Therefore, using some training data,
the model defines a distribution over the programs, in order
to make more accurate predictions. We find that our MaxEnt
model outperforms the baseline system significantly, even
without incorporating NL descriptions.

Incorporating natural language
Incorporating NL descriptions into MaxEnt is straightfor-
ward. We simply condition all the probabilities in Eqs. (2)

through (4) on the NL description D. In particular, for link
probabilities, we have:

p(l | D) =
1
Z

exp

(
−
∑
i

wiφi(l,D)

)
(6)

We refer to this model as NLPbE.

Feature extraction
In order to extract meaningful features from natural lan-
guage descriptions, we apply a dependency parser to each
description. We use dependency parsing because it not
only encodes the syntactic structure of a sentence, but it
also includes some semantic information by encoding the
predicate-argument structure of the sentence in the depen-
dency links. For example, for this domain it is critical to rec-
ognize the main predicate of the sentence because it speci-
fies the main operation to be done, as in switch the first word
with the last word. Given a description D and a dependency
tree T , the root of T would most likely be the main predi-
cate, and its children the arguments of the predicate. Simi-
larly, it is easy to locate the modifiers of a noun by looking
at its children in T . Given a noun phrase like a number fol-
lowed by a comma, this information can help the model to
boost the programs containing regular expressions such as
"[0-9]+," or ",[0-9]+". Following this intuition, the
features we extract from D, are the set of all its words (as
lexical items) plus their locations in the dependency tree,
represented by the depth of the corresponding node and the
lexical word of their children and their parent.

Train and test procedures
Training
Adopting a discriminative model, we use a supervised
method for training. To provide annotated data, each text
editing task needs to be labeled with a program expressed
in the language δ1. This is very labor-intensive if done by
hand. Therefore we use a trick to get around the hand anno-
tation. Thanks to the data from Manshadi, Keenan, and Allen
(2012), each task in the corpus comes with a description D
and a set E of 4 I/O pairs: E = {(s1, t1), . . . , (s4, t4))}. We
run the baseline PbE engine on these I/O pairs to label each
task in the training set. 8 For each I/O pair (si, ti), we build
the DAG Gi, the space of all programs that map si to ti. We
then take the intersection of Gis to build the DAG G which
maps all the inputs to their corresponding outputs. Many of
the links in Gis are filtered out when taking the intersection,
and hence do not appear in G. We label those links with a mi-
nus, forming the class C− of all incorrect links. Conversely,

8In practice, we manually guide the PbE system towards find-
ing the correct program. While labeling each task with an exact
program is a painful job, it is not quite as hard to provide guide-
lines, such as a subset of character classes that are likely to be part
of the correct program. Incorporating these guidelines in the PbE
engine has two advantages. First, it helps the PbE engine to con-
verge to a solution in a shorter time. Second, the induced programs
will be closer to the the gold-standard programs as a result of the
gold-standrad guidelines.

every link l in G is labeled with a plus, forming C+, the class
of correct links.

Once all the tasks in the training set make their contri-
bution to C+ and C−, a MaxEnt classifier is trained on the
points in the two classes, in order to learn the weight vector
W = (w1, w2, ...) used in Eq. (6).

Evaluation
As mentioned above, each individual task in the corpus
is represented with a description D and a set E of m
examples. In general, for each task in the test set, E is
split into two subsets, the set of inducing examples EI =
{(s1, t1), . . . , (sd, td))}, used by the trained model for pro-
gram induction, and the set of verifying examples EV =
{(sd+1, td+1), . . . , (sm, tm))} used to verify whether the in-
duced program works on these examples.

The program induction works as follows. A DAG Gi is
built for each pair (si, ti) ∈ EI as described before, then all
Gis are intersected to build the DAG G. The baseline PbE
system uses the shortest program heuristic to choose a pro-
gram P . The probabilistic PbE (PPbE), and the NL-based
model (NLPbE), use the Viterbi algorithm in Eq. (5) to in-
duce P , in which c(l) is the negative log likelihood, and p(l)
is calculated as in Eqs. (2) and (6) respectively.

An issue with the evaluation of a program induction sys-
tem is that, in general, there is no such a thing as the cor-
rect program, and even if there is, there is no way to decide
whether the induced program is correct. 9 As a result to eval-
uate the models, we run P on all examples in EV and label
P as correct iff for every (sj , tj) in EV , P(sj) = tj . The
accuracy of the model is then defined as:

At = NCt /Nt (7)
where Nt is the number of tasks in the test set and NCt is
the number of those tasks whose induced program P is la-
beled correct. We call this the task-based accuracy. An issue
with the task-based metric is that since there is no way to
decide whether a program is correct or not, it is not fair to
assign a binary label (i.e. correct/incorrect) to the predicted
programs. This is in particular important for Manshadi et
al.’s corpus, where different examples of a task are provided
by different workers on mechanical turk, who may not nec-
essarily agree on what the intended program is. Besides,
the task-based metric is sensitive to the number of verify-
ing examples. The higher the number is, the lower the ac-
curacy would be. We propose an alternative method where
the performance is evaluated based on the number of exam-
ples (sj , tj) ∈ EV that the induced program P solves cor-
rectly, that is, P(sj) = tj . The example-based accuracy Ae
is, therefore, defined as:

Ae = NCe /Ne (8)
where Ne is the total number of verifying examples in the
test set10 and NCe is the number of those examples solved
correctly by the induced program. At = Ae, if |EV | = 1.

9This is because in general, the equivalence of two programs
is an undecidable problem. Even in the special case of finite state
machines, where the equivalence is decidable, it is computationally
very expensive to decide the equivalence.

10Ne = Nt|EV |, if |EV | is the same for all tasks in the test set.

Model At Ae
PbE 10.3% 19.7%
PPbE 18.6% 31.1%
NLPbE 42.2% 60.3%

(a) Task/example-based accuracy for |EV | = 3

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

1 2 3

PbE

PPbE

NLPbE

(b) The accuracy of models vs. number of inducing examples

Figure 3: Experiments.

Experiments
We borrowed the data from Manshadi, Keenan, and Allen
(2012). Their corpus consists of 773 text editing tasks, out
of which 338 tasks can be expressed in the language δ1. Each
task comes with a description and a set of 4 examples.

We split the corpus into three sets at random. 58 tasks
were used for development, 210 for training, and the re-
maining 70 for evaluation. Remember that the model was in-
tended to take a description of a task in natural language and
a single example of the input/output and to predict the in-
tended program. As mentioned before, this is how most peo-
ple choose to describe their tasks to human experts. Hence,
we believe it would be a natural, yet practical, interface
when dealing with machines as well. Our first experiment
evaluates the model in this configuration. For comparison
purposes we have also evaluated the baseline PbE syste-
mand our probabilistic PbE (PPbE) in the same configura-
tion. Since every task comes with 4 examples and we use
one for program induction, the rest are used for evaluation
(|EI | = 1, |EV | = 3). The results are listed in Figure 3(a).

In the second experiment, we are looking to see how the
contribution of NL descriptions varies as the number of in-
ducing examples (i.e. |EI |) increases. Figure 3(b) shows the
performance of all three models with the number of inducing
examples ranging from 1 to 3 (hence 3*3=9 evaluations). In
order to to have a fair comparison, for each task k in the test
set, the same EVk (|EVk | = 1) is used for all 9 cases.

Discussion
As seen in Figure 3(a), with a single example, the baseline
system does a poor job on program induction, as with only
one input/output there are many possible programs that can
map the input to the output and the shortest program heuris-
tic does not seem to be a good predictor. Leveraging the fre-

quency of the functions and their arguments (in particular,
regular expressions and their character classes), extracted
from the training data, PPbE model outperforms the baseline
by 11%. Incorporating NL descriptions results in yet another
significant improvement and more than triples the accuracy.
Given that we do not perform any deep semantic analysis on
the NL descriptions, the results are very promising, encour-
aging us to further explore the merits of this integration.

As expected, by increasing the number of inducing I/O
pairs, the overall accuracy of all models improves11, but the
leverage of the natural language descriptions in the perfor-
mance drops (Figure 3(b)). The leverage drops significantly
when we go from |EI | = 1 to |EI | = 2. This is because the
second example eliminates many possibilities the first one
invokes.For example, given only a single I/O pair (s, t), a
particular occurrence of newline in the output, say t[4 : 5],
may be a copy of any occurrence of newline in the input,
say s[5 : 6], s[8 : 9], etc., or it may be no substring of input
but simply a constant character "\n" inserted by the pro-
gram. In the former case, there are in general exponentially
many regular expressions that can generate that particular
substring of input. When the second input (s′, t′) is given,
many of those will be ruled out, when selecting a substring
of s′ not equal to "\n". In fact, from Figure 3(b), the sec-
ond example provides almost as much information to the
PbE system as the features extracted from the NL descrip-
tion. With a deeper model of NL descriptions, however, we
believe this will no longer be the case.

One point to remember here is that increasing the number
of inducing examples is very expensive as the complexity
of the induction is exponential in the number of examples,
whereas leveraging NL descriptions comes almost for free
(conplexity-wise). Given that time complexity is the main
bottleneck of PbE systems, leading to those systems being
barely practical, this is a huge advantage that NLPbE offers.

What does the model learn?
Nouns that are the arguments of the main verb (often nodes
at depth 1 in the dependency tree), provide invaluable hints.
For example, the model learns that there is a high correla-
tion between the word number and the token "[0-9]+".
Pre-noun modifiers such as ordinal numbers (e.g. first line,
second number, etc.) will boost functions with certain ar-
guments (e.g. the ordinal number second boosts a function
pos() with number 2 in its last argument position). The main
verb of the sentence is also quite informative. For example,
the action print and delete treat their arguments in the oppo-
site way (e.g. while print likes a regex in the first position of
a substring function, delete prefers the other way around).

The model is able to learn more indirect information as
well. Consider the above example on finding a function gen-
erating a particular occurrence of newline in the output.

11It seems that the overall accuracy converges to 76% and no
longer increases by much by increasing the number of inducing
examples. This is because in this corpus, the examples of every
task are provided by different workers (given the NL description)
who may not have the same interpretation of the NL description,
and hence may provide inconsistent examples.

When a task asks for listing some elements of the input text,
often those elements are separated by some delimiter such as
newline. Therefore, the NLPbE model learns that if the main
verb of the NL description is List, Extract, Pull out, etc. (as
in List all words staring with a capital letter), a newline in
the output is very likely to be a constant string inserted by
the program, as opposed to a substring of input. The baseline
system, on the other hand, almost always prefers a substring
function generating newline, because it assigns a lower cost
to substring than to a constant string.

Related work
We use natural language features to guide the induction of a
program from an input/output example, and thus make use of
previous work on program induction. We adopt the approach
of Gulwani (2011) as our starting point, itself based on the
version space approach of Lau et al. (2003). An interest-
ing competing approach is that of Liang, Jordan, and Klein
(2010), which uses a hierarchical Bayesian prior over pro-
grams to encourage the re-use of routines inside programs
for different tasks. Using this type of program induction in
combination with natural language could have the benefit of
allowing more complex subroutines to be identified at cost
of more complex inference. Menon et al. (2013) develop
a programing by example system based on a probabilistic
context-free grammar and a set of manually provided clues.
They use the grammar to generate programs in a descend-
ing order of probabilities, producing the first program that
solves all the I/O pairs. The model is solely used to speed up
the search process and is claimed to perform the induction
significantly faster without sacrificing the accuracy.

Manshadi, Keenan, and Allen (2012) suggest using the
crowd to do natural language programming. They offer to
obtain input/output pairs from the crowd by providing them
with the natural language descriptions, and then use pro-
graming by example to induce a program. We have borrowed
their data including the examples provided by the crowd, but
instead of using standard programing by example, we have
used those examples to train a model that incorporates natu-
ral language descriptions into a programing by example sys-
tem to make faster, more accurate predictions.

PLOW (Allen et al. 2007) learns programs that can run
in a web browser from a user demonstration with verbal de-
scription of each step. Using deep understanding of the user
commands and heuristic learning on the observed actions in
the web browser, they achieve one-shot learning of simple
tasks. While the domain of web browsing is more complex
than ours, the programs learned are generally simpler. Their
technique requires that the entire task be demonstrated, as
they learn from execution instances (programing by demon-
stration) rather than just the input/output states as used in
our system (programing by example).

Recent years have seen a great deal of interest in au-
tomatic learning of natural language semantics, with a
number of new systems automatically learning correspon-
dences between sentences and meaning representations such
as database queries (Zettlemoyer and Collins 2005; 2009;
Clarke et al. 2010; Liang, Jordan, and Klein 2011) or plans
for navigation (Vogel and Jurafsky 2010; Chen and Mooney

2011). The training phase of our system is similar, in that
it automatically learns the correspondences from examples,
and does not require any initial dictionary. Furthermore, we
do not make use of any gold-standard, human-annotated pro-
grams, but rather train the natural language features using
programs induced from examples. This bears some similar-
ity to the way in which Clarke et al. (2010) and Liang, Jor-
dan, and Klein (2011) train a system mapping language to
database queries by using the results of database queries,
without access to gold-standard queries for the training sen-
tences. Similarly, Chen and Mooney (2011) learn correspon-
dences from language to navigation plans using observed
sequences of navigation actions, without access to gold-
standard navigation plans. While we use similar methods in
training our natural language semantic component, our over-
all approach to the problem of human-computer interaction
is quite different, in that we make use of one input/output
example at test time, as way of combining natural language
programming with programming by example.

Summary and future work

We presented a hybrid model which uses natural language
description of text-editing tasks with one (or more) exam-
ple(s) of the input/output to find the intended program. In-
corporating natural language descriptions results in 40% im-
provement over a plain PbE system when both systems are
given a single example of the input/output. We achieve this
performance despite the small size of the training set and
despite our simple model of natural language.

To the best of our knowledge this is the first work on
the integration of programming by example and natural lan-
guage programming. The framework presented here lays out
the ground work and establishes a baseline for future efforts
in this direction. Early results are encouraging, and we hope,
motivate a new line of research on automatic programming.

This work can be improved in several directions. First,
increasing the size of the corpus should improve the perfor-
mance as it produces more reliable statistics. Alternatively,
since even automatic labeling of the tasks is time consum-
ing, leveraging unlabeled data to do semi-supervised learn-
ing can help to overcome the limited availability of labeled
data. A more complex model of natural language, a deep
semantic analysis in particular, is also likely to have a sig-
nificant impact on the performance. The most important im-
provement, however, would be to relax the independence as-
sumption on the sequence of operations in a program. By al-
lowing to define the probability of each link solely based on
the its own associated function, the independence assump-
tion remarkably simplifies the model. One way to avoid this
issue is to frame it as a structured learning problem.

The true power of such a hybrid model is exploited when
increasing the expressiveness. Standard PbE systems suffer
from limited coverage. The restrictions on the range of prob-
lems allowed cannot be relaxed, because otherwise the space
of possible solutions explodes. Incorporating natural lan-
guage can help to drastically narrow down the search space,
and hence allow for expanding the coverage.

References
Allen, J.; Chambers, N.; Ferguson, G.; Galescu, L.; Jung,
H.; Swift, M.; and Taysom, W. 2007. Plow: a collaborative
task learning agent. In Proceedings of the 22nd national
conference on Artificial intelligence - Volume 2, AAAI’07,
1514–1519. AAAI Press.
Chen, D. L., and Mooney, R. J. 2011. Learning to interpret
natural language navigation instructions from observations.
In AAAI.
Clarke, J.; Goldwasser, D.; Chang, M.-W.; and Roth, D.
2010. Driving semantic parsing from the world’s response.
In Proceedings of the Fourteenth Conference on Computa-
tional Natural Language Learning (CoNLL-2010), 18–27.
Dijkstra, E. W. 1979. On the foolishness of ”natural
language programming”. In Program Construction, Inter-
national Summer School, 51–53. London, UK: Springer-
Verlag.
Gulwani, S. 2011. Automating string processing in spread-
sheets using input-output examples. In Proceedings of the
38th annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, POPL ’11, 317–330. ACM.
Lau, T.; Wolfman, S. A.; Domingos, P.; and Weld, D. S.
2003. Programming by demonstration using version space
algebra. Machine Learning 53:111–156.
Liang, P.; Jordan, M. I.; and Klein, D. 2010. Learning pro-
grams: A hierarchical bayesian approach. In ICML, 639–
646.
Liang, P.; Jordan, M. I.; and Klein, D. 2011. Learning
dependency-based compositional semantics. In ACL, 590–
599.
Manshadi, M.; Keenan, C.; and Allen, J. 2012. Using
the crowd to do natural language programming. In Pro-
ceeding of the Twenty-Sixth AAAI Conference on Artifi-
cial Intelligence, Workshop on Human-Computer Interac-
tion (HCOMP-2012). AAAI.
Menon, A. K.; Tamuz, O.; Gulwani, S.; Lampson, B.; Jung,
H.; and Kalai, A. T. 2013. A machine learning frame-
work for programming by example. In the Proceedings of
the 30th International Conference on Machine Learning, TO
APPEAR.
Mitchell, T. M. 1982. Generalization as search. Artificial
Intelligence 18.
Vogel, A., and Jurafsky, D. 2010. Learning to follow naviga-
tional directions. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, 806–814.
Zettlemoyer, L. S., and Collins, M. 2005. Learning to
map sentences to logical form: Structured classification with
probabilistic categorial grammars. In UAI, 658–666.
Zettlemoyer, L. S., and Collins, M. 2009. Learning context-
dependent mappings from sentences to logical form. In
ACL/AFNLP, 976–984.

