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Publishing data about individuals without revealing sensitive information about them is an
important problem. In recent years, a new definition of privacy called k-anonymity has gained
popularity. In a k-anonymized dataset, each record is indistinguishable from at least k − 1 other
records with respect to certain “identifying” attributes.

In this paper we show using two simple attacks that a k-anonymized dataset has some subtle,
but severe privacy problems. First, an attacker can discover the values of sensitive attributes
when there is little diversity in those sensitive attributes. This is a known problem. Second,
attackers often have background knowledge, and we show that k-anonymity does not guarantee
privacy against attackers using background knowledge. We give a detailed analysis of these two
attacks and we propose a novel and powerful privacy criterion called ℓ-diversity that can defend
against such attacks. In addition to building a formal foundation for ℓ-diversity, we show in an
experimental evaluation that ℓ-diversity is practical and can be implemented efficiently.

Categories and Subject Descriptors: E.m [Data]: Miscellaneous—Privacy

General Terms: Security

Additional Key Words and Phrases: Data privacy, k-anonymity, ℓ-diversity, privacy-preserving
data publishing

1. INTRODUCTION

Many organizations are increasingly publishing microdata – tables that contain
unaggregated information about individuals. These tables can include medical,
voter registration, census, and customer data. Microdata is a valuable source of
information for the allocation of public funds, medical research, and trend analysis.
However, if individuals can be uniquely identified in the microdata, then their
private information (such as their medical condition) would be disclosed, and this
is unacceptable.

To avoid the identification of records in microdata, uniquely identifying informa-
tion like names and social security numbers are removed from the table. However,
this first sanitization still does not ensure the privacy of individuals in the data.
A recent study estimated that 87% of the population of the United States can be
uniquely identified using the seemingly innocuous attributes gender, date of birth,
and 5-digit zip code [Sweeney 2000]. In fact, those three attributes were used to
link Massachusetts voter registration records (which included the name, gender, zip
code, and date of birth) to supposedly anonymized medical data from GIC1 (which

1Group Insurance Company (GIC) is responsible for purchasing health insurance for Mas-

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–47.



2 · Ashwin Machanavajjhala et al.

Non-Sensitive Sensitive

Zip Code Age Nationality Condition

1 13053 28 Russian Heart Disease
2 13068 29 American Heart Disease
3 13068 21 Japanese Viral Infection
4 13053 23 American Viral Infection
5 14853 50 Indian Cancer
6 14853 55 Russian Heart Disease
7 14850 47 American Viral Infection
8 14850 49 American Viral Infection
9 13053 31 American Cancer
10 13053 37 Indian Cancer
11 13068 36 Japanese Cancer
12 13068 35 American Cancer

Fig. 1. Inpatient Microdata

Non-Sensitive Sensitive

Zip Code Age Nationality Condition

1 130** < 30 ∗ Heart Disease
2 130** < 30 ∗ Heart Disease
3 130** < 30 ∗ Viral Infection
4 130** < 30 ∗ Viral Infection

5 1485* ≥ 40 ∗ Cancer
6 1485* ≥ 40 ∗ Heart Disease
7 1485* ≥ 40 ∗ Viral Infection
8 1485* ≥ 40 ∗ Viral Infection

9 130** 3∗ ∗ Cancer
10 130** 3∗ ∗ Cancer
11 130** 3∗ ∗ Cancer
12 130** 3∗ ∗ Cancer

Fig. 2. 4-Anonymous Inpatient Microdata

included gender, zip code, date of birth and diagnosis). This “linking attack” man-
aged to uniquely identify the medical records of the governor of Massachusetts in
the medical data [Sweeney 2002].

Sets of attributes (like gender, date of birth, and zip code in the example above)
that can be linked with external data to uniquely identify individuals in the popu-
lation are called quasi-identifiers. To counter linking attacks using quasi-identifiers,
Samarati and Sweeney proposed a definition of privacy called k-anonymity [Sama-
rati 2001; Sweeney 2002]. A table satisfies k-anonymity if every record in the table
is indistinguishable from at least k − 1 other records with respect to every set of
quasi-identifier attributes; such a table is called a k-anonymous table. Hence, for
every combination of values of the quasi-identifiers in the k-anonymous table, there
are at least k records that share those values. This ensures that individuals cannot
be uniquely identified by linking attacks.

An Example. Figure 1 shows medical records from a fictitious hospital located
in upstate New York. Note that the table contains no uniquely identifying attributes
like name, social security number, etc. In this example, we divide the attributes

sachusetts state employees.
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into two groups: the sensitive attributes (consisting only of medical condition)
and the non-sensitive attributes (zip code, age, and nationality). An attribute is
marked sensitive if an adversary must not be allowed to discover the value of that
attribute for any individual in the dataset. Attributes not marked sensitive are non-
sensitive. Furthermore, let the collection of attributes {zip code, age, nationality}
be the quasi-identifier for this dataset. Figure 2 shows a 4-anonymous table derived
from the table in Figure 1 (here “*” denotes a suppressed value so, for example,
“zip code = 1485*” means that the zip code is in the range [14850 − 14859] and
“age=3*” means the age is in the range [30− 39]). Note that in the 4-anonymous
table, each tuple has the same values for the quasi-identifier as at least three other
tuples in the table.

Because of its conceptual simplicity, k-anonymity has been widely discussed as
a viable definition of privacy in data publishing, and due to algorithmic advances
in creating k-anonymous versions of a dataset [Aggarwal et al. 2004; Bayardo and
Agrawal 2005; LeFevre et al. 2005; Meyerson and Williams 2004; Samarati 2001;
Sweeney 2002; Zhong et al. 2005], k-anonymity has grown in popularity. However,
does k-anonymity really guarantee privacy? In the next section, we will show that
the answer to this question is interestingly no. We give examples of two simple,
yet subtle attacks on a k-anonymous dataset that allow an attacker to identify
individual records. Defending against these attacks requires a stronger notion of
privacy that we call ℓ-diversity, the focus of this paper. But we are jumping ahead
in our story. Let us first show the two attacks to give the intuition behind the
problems with k-anonymity.

1.1 Attacks On k-Anonymity

In this section we present two attacks, the homogeneity attack and the background
knowledge attack, and we show how they can be used to compromise a k-anonymous
dataset.

Homogeneity Attack: Alice and Bob are antagonistic neighbors. One day
Bob falls ill and is taken by ambulance to the hospital. Having seen the ambulance,
Alice sets out to discover what disease Bob is suffering from. Alice discovers the 4-
anonymous table of current inpatient records published by the hospital (Figure 2),
and so she knows that one of the records in this table contains Bob’s data. Since
Alice is Bob’s neighbor, she knows that Bob is a 31-year-old American male who
lives in the zip code 13053 (the quiet town of Dryden). Therefore, Alice knows that
Bob’s record number is 9, 10, 11, or 12. Now, all of those patients have the same
medical condition (cancer), and so Alice concludes that Bob has cancer.

Observation 1. k-Anonymity can create groups that leak information due to
lack of diversity in the sensitive attribute.

Such a situation is not uncommon. As a back-of-the-envelope calculation, sup-
pose we have a dataset containing 60,000 distinct tuples where the sensitive at-
tribute can take three distinct values and is not correlated with the non-sensitive
attributes. A 5-anonymization of this table will have around 12,000 groups2 and,

2Our experiments on real data sets show that data is often very skewed and a 5-anonymous table
might not have so many groups
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on average, 1 out of every 81 groups will have no diversity (the values for the sensi-
tive attribute will all be the same). Thus we should expect about 148 groups with
no diversity. Therefore, information about 740 people would be compromised by a
homogeneity attack. This suggests that in addition to k-anonymity, the sanitized
table should also ensure “diversity” – all tuples that share the same values of their
quasi-identifiers should have diverse values for their sensitive attributes.

The possibility of a homogeneity attack has been previously discussed in the
literature (e.g., [Ohrn and Ohno-Machado 1999]). One solution to the homogeneity
problem, as presented by Ohrn et al. [Ohrn and Ohno-Machado 1999], turns out
to be a specific instance of our general principle of ℓ-diversity (see Section 4). For
reasons that will become clear in Section 4, we refer to that method as entropy
ℓ-diversity. By examining privacy from a different perspective, we prove additional
privacy-preserving properties of entropy ℓ-diversity. We also present other privacy
definitions that satisfy the principle of ℓ-diversity that have greater flexibility.

The next observation is that an adversary could use “background” knowledge to
discover sensitive information.

Background Knowledge Attack: Alice has a pen-friend named Umeko who is
admitted to the same hospital as Bob, and whose patient records also appear in the
table shown in Figure 2. Alice knows that Umeko is a 21 year-old Japanese female
who currently lives in zip code 13068. Based on this information, Alice learns that
Umeko’s information is contained in record number 1,2,3, or 4. Without additional
information, Alice is not sure whether Umeko caught a virus or has heart disease.
However, it is well-known that Japanese have an extremely low incidence of heart
disease. Therefore Alice concludes with near certainty that Umeko has a viral
infection.

Observation 2. k-Anonymity does not protect against attacks based on back-
ground knowledge.

We have demonstrated (using the homogeneity and background knowledge at-
tacks) that a k-anonymous table may disclose sensitive information. Since both of
these attacks are plausible in real life, we need a stronger definition of privacy that
takes into account diversity and background knowledge. This paper addresses this
very issue.

1.2 Contributions and Paper Outline

In the previous section, we showed that k-anonymity is susceptible to homogeneity
and background knowledge attacks; thus a stronger definition of privacy is needed.
In the remainder of the paper, we derive our solution. We start by introducing an
ideal notion of privacy called Bayes-optimal for the case that both data publisher
and the adversary have knowledge of the complete joint distribution of the sensi-
tive and nonsensitive attributes (Section 3). Unfortunately in practice, the data
publisher is unlikely to possess all this information, and in addition, the adversary
may have more specific background knowledge than the data publisher. Hence,
while Bayes-optimal privacy sounds great in theory, it is unlikely that it can be
guaranteed in practice. To address this problem, we show that the notion of Bayes-
optimal privacy naturally leads to a novel practical criterion that we call ℓ-diversity.
ℓ-Diversity provides privacy even when the data publisher does not know what kind
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of knowledge is possessed by the adversary. The main idea behind ℓ-diversity is the
requirement that the values of the sensitive attributes are well-represented in each
group (Section 4).

We show that existing algorithms for k-anonymity can be adapted to compute
ℓ-diverse tables (Section 5), and in an experimental evaluation we show that ℓ-
diversity is practical and can be implemented efficiently (Section 6). We discuss
related work in Section 7, and we conclude in Section 8. Before jumping into the
contributions of this paper, we introduce the notation needed to formally discuss
data privacy in the next section.

2. MODEL AND NOTATION

In this section we will introduce some basic notation that will be used in the re-
mainder of the paper. We will also discuss how a table can be anonymized and
what kind of background knowledge an adversary may possess.

Basic Notation. Let T = {t1, t2, . . . , tn} be a table with attributes A1, . . . , Am.
We assume that T is a subset of some larger population Ω where each tuple ti ∈ T
represents an individual from the population. For example, if T is a medical dataset
then Ω could be the population of the Caribbean island, San Lorenzo. Let A denote
the set of all attributes {A1, A2, . . . , Am} and t[Ai] denote the value of attribute
Ai for tuple t. If C = {C1, C2, . . . , Cp} ⊆ A then we use the notation t[C] to denote
the tuple (t[C1], . . . , t[Cp]), which is the projection of t onto the attributes in C.

In privacy-preserving data publishing, there exist several important subsets of
A. A sensitive attribute is an attribute whose value for any particular individual
must be kept secret from people who have no direct access to the original data. Let
S denote the set of all sensitive attributes. An example of a sensitive attribute is
Medical Condition from Figure 1. The association between individuals and Medical
Condition should be kept secret; thus we should not disclose which particular pa-
tients have cancer, but it is permissible to disclose the information that there exist
cancer patients in the hospital. We assume that the data publisher knows which
attributes are sensitive. To simplify the discussion, for much of this paper we will
also assume that there is only one sensitive attribute; the extension of our results
to multiple sensitive attributes is not difficult and is handled in Section 4.3. All
attributes that are not sensitive are called nonsensitive attributes. Let N denote
the set of nonsensitive attributes. We are now ready to formally define the notion
of a quasi-identifier.

Definition 2.1 Quasi-identifier. A set of nonsensitive attributes {Q1, . . . ,
Qw} of a table is called a quasi-identifier if these attributes can be linked with
external data to uniquely identify at least one individual in the general population
Ω.

One example of a quasi-identifier is a primary key like social security number.
Another example is the set {Gender, Age, Zip Code} in the GIC dataset that was
used to identify the governor of Massachusetts as described in the introduction.
Let us denote the set of all quasi-identifiers by QI. We are now ready to formally
define k-anonymity.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Definition 2.2 k-Anonymity. A table T satisfies k-anonymity if for every tu-
ple t ∈ T there exist k−1 other tuples ti1 , ti2 , . . . , tik−1

∈ T such that t[C] = ti1 [C] =
ti2 [C] = · · · = tik−1

[C] for all C ∈ QI.
The Anonymized Table T ⋆. Since the quasi-identifiers might uniquely identify

tuples in T , the table T is not published; it is subjected to an anonymization
procedure and the resulting table T ⋆ is published instead.

There has been a lot of research on techniques for anonymization (see Section 7
for a discussion of related work). These techniques can be broadly classified into
generalization techniques [Aggarwal et al. 2004; LeFevre et al. 2005], generaliza-
tion with tuple suppression techniques [Bayardo and Agrawal 2005; Samarati and
Sweeney 1998], and data swapping and randomization techniques [Adam and Wort-
mann 1989; Duncan and Feinberg 1997]. In this paper we limit our discussion only
to generalization techniques.

Definition 2.3 Domain Generalization. A domain D⋆ = {P1, P2, . . . } is a
generalization (partition) of a domain D if

⋃

Pi = D and Pi ∩ Pj = ∅ whenever
i 6= j. For x ∈ D we let φD⋆(x) denote the element P ∈ D⋆ that contains x.

Note that we can create a partial order ≺G on domains by requiring D ≺G D⋆ if
and only ifD⋆ is a generalization ofD. Given a table T = {t1, . . . , tn} with the set of
nonsensitive attributes N and a generalizationD⋆

N of domain(N ), we can construct
a table T ⋆ = {t⋆1, . . . , t⋆n} by replacing the value of ti[N ] with the generalized value
φD⋆

N
(ti[N ]) to get a new tuple t⋆i . The tuple t⋆i is called a generalization of the

tuple ti and we use the notation ti
⋆→ t⋆i to mean “t⋆i generalizes ti”. Extending the

notation to tables, T
⋆→ T ⋆ means “T ⋆ is a generalization of T ”. Typically, ordered

attributes are partitioned into intervals, and categorical attributes are partitioned
according to a user-defined hierarchy (for example, cities are generalized to counties,
counties to states, and states to regions).

Example 1 (Continued). The table in Figure 2 is a generalization of the
table in Figure 1. We generalized on the Zip Code attribute by partitioning it
into two sets: “1485*” (representing all zip codes whose first four digits are 1485)
and “130**” (representing all zip codes whose first three digits are 130). Then we
partitioned Age into three groups: “< 30”, “3*” (representing all ages between
30 and 39), and “≥ 40”. Finally, we partitioned Nationality into just one set “*”
representing all nationalities.

The Adversary’s Background Knowledge. Since the background knowledge
attack was due to the adversary’s additional knowledge about the table, let us briefly
discuss the type of background knowledge that we are modeling.

First, the adversary has access to the published table T ⋆ and she knows that T ⋆

is a generalization of some base table T . The adversary also knows the domain of
each attribute of T .

Second, the adversary may know that some individuals are in the table. This
knowledge is often easy to acquire. For example, GIC published medical data
about all Massachusetts state employees. If the adversary Alice knows that her
neighbor Bob is a Massachusetts state employee then Alice is almost certain that
Bob’s information is contained in that table. In this case, we assume that Alice
knows all of Bob’s nonsensitive attributes. In addition, the adversary could have
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knowledge about the sensitive attributes of specific individuals in the population
and/or the table. For example, the adversary Alice might know that neighbor
Bob does not have pneumonia since Bob does not show any of the symptoms of
pneumonia. We call such knowledge “instance-level background knowledge,” since
it is associated with specific instances in the table. In addition, Alice may know
complete information about some people in the table other than Bob (for example,
Alice’s data may be in the table).

Third, the adversary could have partial knowledge about the distribution of sen-
sitive and nonsensitive attributes in the population. We call this “demographic
background knowledge.” For example, the adversary may know
P
(

t[Condition] = “cancer”
∣

∣ t[Age] ≥ 40
)

and may use it to make additional infer-
ences about records in the table.

Now armed with the right notation, let us start looking into principles and defi-
nitions of privacy that leak little information.

3. BAYES-OPTIMAL PRIVACY

In this section we analyze an ideal notion of privacy. We call it Bayes-Optimal Pri-
vacy since it involves modeling background knowledge as a probability distribution
over the attributes and uses Bayesian inference techniques to reason about privacy.
We introduce tools for reasoning about privacy (Section 3.1), use them to discuss
theoretical principles of privacy (Section 3.2), and then point out the difficulties
that need to be overcome to arrive at a practical definition of privacy (Section 3.3).

3.1 Changes in Belief Due to Data Publishing

For simplicity of discussion, we combine all the nonsensitive attributes into a single,
multi-dimensional quasi-identifier attribute Q whose values are generalized to create
the anonymized table T ⋆ from the base table T . Since Bayes-optimal privacy is
only used to motivate a practical definition, we make the following two simplifying
assumptions: first, we assume that T is a simple random sample from some larger
population Ω (a sample of size n drawn without replacement is called a simple
random sample if every sample of size n is equally likely); second, we assume that
there is a single sensitive attribute. We would like to emphasize that both these
assumptions will be dropped in Section 4 when we introduce a practical definition
of privacy.

Recall that in our attack model, the adversary Alice has partial knowledge of the
distribution of the sensitive and non-sensitive attributes. Let us assume a worst
case scenario where Alice knows the complete joint distribution f of Q and S (i.e.,
she knows their frequency in the population Ω). Consider any individual Bob that
Alice knows is in the table. She knows that Bob corresponds to a record t ∈ T that
has been generalized to a record t∗ in the published table T ⋆. She also knows the
value of Bob’s non-sensitive attributes (i.e., she knows that t[Q] = q). Alice’s goal
is to use her background knowledge to discover Bob’s sensitive information — the
value of t[S]. We gauge her success using two quantities: Alice’s prior belief, and
her posterior belief.

Alice’s prior belief, α(q,s), that Bob’s sensitive attribute is s given that his non-
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Notation Description

T Un-anonymized table
T ⋆ The anonymized table
Q Domain of the quasi-identifier attribute
Q⋆ Generalized domain of the quasi-identifier attribute
S Domain of the sensitive attribute
Ω Population of individuals
X Bob, the individual in the population Ω with X[Q] = q and who is known to be in T

Nq Number of individuals w in the population Ω such that w[Q] = q

N(q,s) Number of individuals w in the population Ω such that w[Q] = q and w[S] = s

N(q⋆,s) Number of individuals w in the population Ω such that w[S] = s and w[Q⋆] = q⋆

n Number of tuples in the anonymized table T ⋆

n(q⋆,s) Number of tuples t⋆ in the anonymized table T ⋆ such that t⋆[S] = s and t⋆[Q⋆] = q⋆

Fig. 3. Notation used in the Proof of Theorem 3.1

sensitive attribute is q, is just her background knowledge:

α(q,s) = Pf
(

t[S] = s
∣

∣ t[Q] = q
)

After Alice observes the table T ⋆, her belief about Bob’s sensitive attribute changes.
This new belief, β(q,s,T⋆), is her posterior belief :

β(q,s,T⋆) = Pf

(

t[S] = s
∣

∣ t[Q] = q ∧ ∃t⋆ ∈ T ⋆, t ⋆→ t⋆
)

Given f and T ⋆, we can derive a formula for β(q,s,T⋆) which will help us formulate
our new privacy definition in Section 4. The main idea behind the derivation is
to find a set of equally likely disjoint random worlds (like in [Bacchus et al. 1996])
such that a conditional probability P (A|B) is the number of worlds satisfying the
condition A ∧B divided by the number of worlds satisfying the condition B.

Theorem 3.1. Let T ⋆ be a published table which is obtained by performing gen-
eralizations on a table T ; let X be an individual with X [Q] = q who appears in the
table T (and also T ⋆); let q⋆ be the generalized value of q in T ⋆; let s be a possible
value of the sensitive attribute; let n(q⋆,s′) be the number of tuples t⋆ ∈ T ⋆ where
t⋆[Q] = q⋆ and t⋆[S] = s′; and let f(s′ | q⋆) be the conditional probability of the
sensitive attribute being s′ conditioned on the fact that the nonsensitive attribute Q
is some q′ which can be generalized to q⋆. Then the observed belief that X [S] = s
is given by:

β(q,s,T⋆) =
n(q⋆,s)

f(s|q)
f(s|q⋆)

∑

s′∈S n(q⋆,s′)
f(s′|q)
f(s′|q⋆)

(1)

Proof. For ease of reference, we review the notation used in this proof in Fig-
ure 3.

To help us model the adversary’s uncertainty about the value of Bob’s sensitive
attribute after seeing the anonymized table T ⋆, we will construct a set of random
worlds such that T ⋆ could have come from any one of these random worlds with
equal probability. In all of these worlds, Bob (or X , as we will call him in this
proof) appears in T ⋆. In any two different random worlds, either some individual
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in the population has a different value for the sensitive attribute, or a different
set of individuals appear in T ⋆. Since the random worlds are equally likely and
mutually exclusive, the required conditional probability is the fraction of the total
number of worlds in which X [S] = s (as in [Bacchus et al. 1996]).
Constructing the set of random worlds:
Formally, a random world is a pair (ψ,Zn) where ψ : Ω → S is an assignment
of sensitive values for each individual ω ∈ Ω and Zn is a simple random sample
of n individuals from Ω. We are interested in only those assignments ψ which are
consistent with the adversary’s background knowledge. In particular, the adversary
knows the size of Ω and the distribution of sensitive and nonsensitive attributes; in
other words, for every (q, s), the adversary knows N(q,s) – the number of individuals
with nonsensitive attribute q who have sensitive value s. Therefore for every (q, s),
ψ should assign the value s to exactly N(q,s) out of the Nq individuals who have
the nonsensitive value q. Note that in any two distinct assignments ψ1, ψ2 there is
some individual ω such that ψ1(ω) 6= ψ2(ω); i.e., ω is assigned to different values of
S. Moreover, given only knowledge of the distribution of sensitive and nonsensitive
attributes, the adversary has no preference for any of the ψ and, invoking the
principle of indifference, considers each ψ to be equally likely.

The second component of a random world is Zn. Zn is a size n simple random
sample from the population Ω. By the definition of a simple random sample, each
Zn is equally likely. Since the sample Zn is picked independent of the assignment
ψ, each random world (ψ,Zn) is equally likely.

Each (ψ,Zn) describes a table T(ψ,Zn) containing n tuples with Q and S as
attributes. We are interested in only those random worlds where X appears in
T(ψ,Zn) and where T(ψ,Zn) →⋆ T ⋆. We can rephrase this condition as follows.
We say that a random world (ψ,Zn) is compatible with the published table T ⋆

containing X , written as (ψ,Zn) ⊢ (T ⋆, X), if the following two conditions hold:

(1) X ∈ Zn, where X is the individual with X [Q] = q who is known to be in the
table; and

(2) for every (q⋆, s) pair there are n(q⋆,s) individuals ω in Zn such that ω[Q] is
generalized to q⋆ and such that ψ(ω) = s.

The set of compatible random worlds completely characterizes the set of worlds
which give rise to the anonymized table T ⋆ containing X . It is clear that these
worlds are equally likely. Also any two compatible random worlds are mutually
exclusive because either some individual in the population is assigned a different
value for S or the sample of individuals Zn is different.
Calculating the conditional probability β(q,s,T⋆):
To calculate the conditional probability β(q,s,T⋆), we need to find the fraction of
the total number of compatible random worlds in which X is assigned the sensitive
value s. Let T ⋆X = {(ψ,Zn) ⊢ (T ⋆, X)} be the set of random worlds which are
compatible with T ⋆ containing X . Let T ⋆(X,s) = {(ψ,Zn) ⊢ (T ⋆, X)| ψ(X) = s}
be the set of random worlds compatible with T ⋆ where X is assigned the sensitive
value s. Then,

β(q,s,T⋆) =
|T ⋆(X,s)|
|T ⋆X |

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Note that T ⋆(X,s1) and T ⋆(X,s2) are disjoint sets of random worlds – in all the worlds
in T ⋆(X,s1)

, X is assigned the sensitive value s1 and in all the world in T ⋆(X,s2), X is

assigned the sensitive value s2. Thus

|T ⋆X | =
∑

s′∈S

|T ⋆(X,s′)|

We now proceed to calculate the cardinality of T ⋆(X,s) for each s. First we will

compute the number of assignments ψ such that ψ(X) = s and then for each ψ we
will compute the number of samples Zn such that (ψ,Zn) ⊢ (T ⋆, X). The number
of assignments ψ compatible with the background knowledge such that ψ(X) = s
can be calculated as follows. X is assigned the sensitive value s. Since X [Q] = q,
out of the remaining Nq − 1 individuals having the nonsensitive value q, N(q,s) − 1
of them are assigned s. For every other sensitive value s′, N(q,s′) out of the Nq − 1
individuals are assigned s′. For every q′ 6= q and every s′, some N(q′,s′) out of the
N ′
q individuals having the nonsensitive value q′ are assigned s′. The number of

these assignments is

(Nq − 1)!

(N(q,s) − 1)!
∏

s′ 6=s

N(q,s′)!

∏

q′ 6=q

Nq′ !
∏

s′∈S

N(q′,s′)!

=
N(q,s)

Nq

∏

q′∈Q

Nq′ !
∏

s′∈S

N(q′,s′)!
(2)

For each mapping ψ such that ψ(X) = s, we count the number of Zn’s such that
(ψ,Zn) ⊢ (T ⋆, X) as follows. Let q⋆ be the generalized value of q = X [Q]. X ’s
record will appear as t⋆X = (q⋆, s) in the table T ⋆. Apart from t⋆X , T ⋆ contains
n(q⋆,s)−1 other tuples of the form (q⋆, s). Hence, apart from X , Zn should contain
n(q⋆,s) − 1 other individuals ω with ψ(ω) = s and ω[Q] = q′ where q′ generalizes to
q⋆. For all other (q⋆′, s′) such that q⋆′ 6= q⋆ or s′ 6= s, Zn should contain n(q⋆′,s′)

individuals ω′ where ψ(ω′) = s′ and q⋆′ is the generalized value of ω[Q]. The
number of Zn’s is given by

(

N(q⋆,s) − 1

n(q⋆,s) − 1

)

∏

(q⋆′,s′)∈(Q⋆×S)\{(q⋆,s)}

(

N(q⋆′,s′)

n(q⋆′,s′)

)

=
nq⋆,s

N(q⋆,s)

∏

(q⋆′,s′)∈Q⋆×S

(

N(q⋆′,s′)

n(q⋆′,s′)

)

(3)

The cardinality of T ⋆(X,s) is therefore the product of Equations 2 and 3 and can be
expressed as

|T ⋆(X,s)| =
N(q,s)

Nq

∏

q′∈Q

Nq′ !
∏

s′∈S

N(q′,s′)!
× nq⋆,s

N(q⋆,s)

∏

(q⋆′,s′)∈Q⋆×S

(

N(q⋆′,s′)

n(q⋆′,s′)

)

= n(q⋆,s)

N(q,s)

N(q⋆,s)
× 1

Nq

∏

q′∈Q

Nq′ !
∏

s′∈S

N(q′,s′)!
×

∏

(q⋆′,s′)∈Q⋆×S

(

N(q⋆′,s′)

n(q⋆′,s′)

)

= n(q⋆,s)

N(q,s)

N(q⋆,s)
× E
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The expression E is the same for all s′ ∈ S. Hence, the expression for the observed
belief is

β(q,s,T⋆) =
|T ⋆(X,s)|

∑

s′∈S |T ⋆(X,s′)|

=
n(q⋆,s)

N(q,s)

N(q⋆,s)

∑

s′∈S n(q⋆,s′)
N(q,s′)

N(q⋆,s′)

Using the substitutions f(q, s) = N(q,s)/N and f(q⋆, s) = N(q⋆,s)/N , we get the
required expression.

β(q,s,T⋆) =
n(q⋆,s)

f(q,s)
f(q⋆,s)

∑

s′∈S n(q⋆,s′)
f(q,s′)
f(q⋆,s′)

=
n(q⋆,s)

f(s|q)
f(s|q⋆)

∑

s′∈S n(q⋆,s′)
f(s′|q)
f(s′|q⋆)

Note that in the special case when S and Q are independent, The expression for
the observed belief simplifies to

β(q,s,T⋆) =
n(q⋆,s)

f(s|q)
f(s|q⋆)

∑

s′∈S n(q⋆,s′)
f(s′|q)
f(s′|q⋆)

=
n(q⋆,s)

f(s)
f(s)

∑

s′∈S n(q⋆,s′)
f(s′)
f(s′)

=
n(q⋆,s)

∑

s′∈S n(q⋆,s′)

Armed with a way of calculating Alice’s belief about Bob’s private data after she
has seen T ∗, let us now examine some principles for building definitions of privacy.

3.2 Privacy Principles

Given the adversary’s background knowledge, a published table T ⋆ might leak pri-
vate information in two important ways: positive disclosure and negative disclosure.

Definition 3.1 Positive disclosure. Publishing the table T ⋆ that was de-
rived from T results in a positive disclosure if the adversary can correctly identify
the value of a sensitive attribute with high probability; i.e., given a δ > 0, there is a
positive disclosure if β(q,s,T⋆) > 1− δ and there exists t ∈ T such that t[Q] = q and
t[S] = s.

Definition 3.2 Negative disclosure. Publishing the table T ⋆ that was de-
rived from T results in a negative disclosure if the adversary can correctly eliminate
some possible values of the sensitive attribute (with high probability); i.e., given an
ǫ > 0, there is a negative disclosure if β(q,s,T⋆) < ǫ and there exists a t ∈ T such
that t[Q] = q but t[S] 6= s.
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The homogeneity attack in Section 1.1 where Alice determined that Bob has
cancer is an example of a positive disclosure. Similarly, in the example from Sec-
tion 1.1, even without background knowledge Alice can deduce that Umeko does
not have cancer. This is an example of a negative disclosure.

Note that not all positive disclosures are disastrous. If the prior belief was that
α(q,s) > 1 − δ, the adversary would not have learned anything new. Similarly,
negative disclosures are not always bad: discovering that Bob does not have Ebola
might not be very serious because the prior belief of this event was small. Hence,
the ideal definition of privacy can be based on the following principle:

Principle 1 Uninformative Principle. The published table should provide
the adversary with little additional information beyond the background knowledge.
In other words, there should not be a large difference between the prior and posterior
beliefs.

The uninformative principle can be instantiated in several ways, for example with
the (ρ1, ρ2)-privacy breach definition [Evfimievski et al. 2003].

Definition 3.3 (ρ1, ρ2)-privacy. Given a table T ∗ and two constants ρ1 and
ρ2, we say that a (ρ1, ρ2)-privacy breach has occurred when either α(q,s) < ρ1 ∧
β(q,s,T⋆) > ρ2 or when α(q,s) > 1 − ρ1 ∧ β(q,s,T⋆) < 1 − ρ2. If a (ρ1, ρ2)-privacy
breach has not occurred, then table T ∗ satisfies (ρ1, ρ2)-privacy.

An alternative privacy definition based on the uninformative principle would bound
the maximum difference between α(q,s) and β(q,s,T⋆) using any of the functions
commonly used to measure the difference between probability distributions. Any
privacy definition that is based on the uninformative principle, and instantiated
either by a (ρ1, ρ2)-privacy breach definition or by bounding the difference between
α(q,s) and β(q,s,T⋆) is a Bayes-optimal privacy definition. The specific choice of
definition depends on the application.

Note that any Bayes-optimal privacy definition captures diversity in addition to
background knowledge. To see how it captures diversity, suppose that all the tuples
whose nonsensitive attribute Q have been generalized to q⋆ have the same value s
for their sensitive attribute. Then n(q⋆,s′) = 0 for all s′ 6= s and hence the value
of the observed belief β(q,s,T⋆) becomes 1 in Equation 1. This will be flagged as a
breach whenever the prior belief is not close to 1.

3.3 Limitations of the Bayes-Optimal Privacy

For the purposes of our discussion, we are more interested in the properties of Bayes-
optimal privacy rather than its exact instantiation. In particular, Bayes-optimal
privacy has several drawbacks that make it hard to use in practice.

Insufficient Knowledge. The data publisher is unlikely to know the full dis-
tribution f of sensitive and nonsensitive attributes over the general population Ω
from which T is a sample.

The Adversary’s Knowledge is Unknown. It is also unlikely that the ad-
versary has knowledge of the complete joint distribution between the non-sensitive
and sensitive attributes. However, the data publisher does not know how much
the adversary knows. For example, in the background knowledge attack in Sec-
tion 1.1, Alice knew that Japanese have a low incidence of heart disease, but the
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data publisher did not know that Alice knew this piece of information.
Instance-Level Knowledge. The theoretical definition does not protect against

knowledge that cannot be modeled probabilistically. For example, suppose Bob’s
son tells Alice that Bob does not have diabetes. The theoretical definition of privacy
will not be able to protect against such adversaries.

Multiple Adversaries. There will likely be multiple adversaries with different
levels of knowledge, each of which is consistent with the full joint distribution.
Suppose Bob has a disease that is (a) very likely among people in the age group
[30-50], but (b) is very rare for people of that age group who are doctors. An
adversary who only knows the interaction of age and illness will think that it is
very likely for Bob to have that disease. However, an adversary who also knows
that Bob is a doctor is more likely to think that Bob does not have that disease.
Thus, although additional knowledge can yield better inferences on average, there
are specific instances where it does not. Thus the data publisher must take into
account all possible levels of background knowledge.

In the next section, we present a privacy definition that eliminates these draw-
backs.

4. ℓ-DIVERSITY: A PRACTICAL PRIVACY DEFINITION

In this section we discuss how to overcome the difficulties outlined at the end of
the previous section. We derive the ℓ-diversity principle (Section 4.1), show how to
instantiate it with specific definitions of privacy (Section 4.2), outline how to handle
multiple sensitive attributes (Section 4.3), and discuss how ℓ-diversity addresses the
issues raised in the previous section (Section 4.4).

4.1 The ℓ-Diversity Principle

In this subsection we will derive the principle of ℓ-diversity in two ways. First,
we will derive it in an ideal theoretical setting where it can be shown that the
adversary’s background knowledge will not lead to a privacy breach. Then we
will re-derive the ℓ-diversity principle from a more practical starting point and
show that even under less-than-ideal circumstances, ℓ-diversity can still defend
against background knowledge that is unknown to the data publisher. Although
the arguments in this subsection can be made precise, we will keep our discussion
at an intuitive level for the sake of clarity.

Let us re-examine the expression for computing the adversary’s observed belief
(Theorem 3.1):

β(q,s,T⋆) =
n(q⋆,s)

f(s|q)
f(s|q⋆)

∑

s′∈S n(q⋆,s′)
f(s′|q)
f(s′|q⋆)

(4)

For the moment, let us consider an ideal setting where if two objects have “simi-
lar” nonsensitive attributes then their sensitive attributes have similar probabilistic
behavior. More formally, given a similarity measure d(·, ·) then ∀ǫ > 0, ∃δ such
that if d(q1, q2) < δ then maxs |f(s|q1) − f(s|q2)| < ǫ. This similarity assumption
is implicit in all k-Nearest Neighbor classifiers.

Now let us define a q⋆-block to be the set of tuples in T ⋆ whose nonsensitive
attribute values generalize to q⋆. If all tuples in a q⋆-block are “similar” based
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on their nonsensitive attributes, then f(s|q) ≈ f(s|q⋆) for those q that appear
in the q⋆-block, and because of (approximate) cancellations, Equation 4 could be
approximated arbitrarily well by Equation 5:

L(q, s, T ⋆) =
n(q⋆,s)

∑

s′∈S n(q⋆,s′)
(5)

Thus given enough data and a good partitioning, background knowledge cancels
out and has no effect on the inferences that can be made from the table! The
only inferences that can be made are those that depend solely on the n(q∗,s′) – the
frequencies of each s′ ∈ S for each q∗-block. Therefore to prevent privacy breaches,
we need to ensure for every q∗-block that the ℓ most frequent values of S have
roughly the same frequencies. This guarantees that P (s|q∗) ≤ 1/(ℓ + ǫ) for some
small ǫ > 0 and for all s ∈ S and ensures that Alice will be uncertain about Bob’s
true medical condition. This is the essence of ℓ-diversity.

All of those arguments relied on the following three assumptions: tuples with
similar non-sensitive attributes values have similar sensitive attributes values, there
is a good partitioning of the data, and there is a large amount of data so that many
“similar” tuples fall into each partition. Let us re-examine privacy breaches when
these assumptions do not hold.

Recall that Theorem 3.1 allows us to calculate the observed belief of the adversary.
Consider the case of positive disclosures; i.e., Alice wants to determine that Bob
has t[S] = s with very high probability. From Theorem 3.1, this can happen only
when:

∃s, ∀s′ 6= s, n(q⋆,s′)
f(s′|q)
f(s′|q⋆) ≪ n(q⋆,s)

f(s|q)
f(s|q⋆) (6)

The condition in Equation (6) could occur due to a combination of two factors:
(i) a lack of diversity in the sensitive attributes in the q⋆-block, and/or (ii) strong
background knowledge. Let us discuss these in turn.

Lack of Diversity. Lack of diversity in the sensitive attribute manifests itself
as follows:

∀s′ 6= s, n(q⋆,s′) ≪ n(q⋆,s) (7)

In this case, almost all tuples have the same value s for the sensitive attribute
S, and thus β(q,s,T⋆) ≈ 1. Note that this condition can be easily checked since it
only involves counting the values of S in the published table T ⋆. We can ensure
diversity by requiring that all the possible values s′ ∈ domain(S) occur in the q⋆-
block with roughly equal proportions. This, however, is likely to cause significant
loss of information: if domain(S) is large then the q⋆-blocks will necessarily be large
and so the data will be partitioned into a small number of q⋆-blocks. Another way
to ensure diversity and to guard against Equation 7 is to require that a q⋆-block
has at least ℓ ≥ 2 different sensitive values such that the ℓ most frequent values
(in the q⋆-block) have roughly the same frequency. We say that such a q⋆-block is
well-represented by ℓ sensitive values.

Strong Background Knowledge. The other factor that could lead to a pos-
itive disclosure (Equation 6) is strong background knowledge. Even though a q⋆-
block may have ℓ “well-represented” sensitive values, Alice may still be able to use
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her background knowledge to eliminate sensitive values when the following is true:

∃s′, f(s′|q)
f(s′|q⋆) ≈ 0 (8)

This equation states that Bob with quasi-identifier t[Q] = q is much less likely to
have sensitive value s′ than any other individual in the q⋆-block. For example, Alice
may know that Bob never travels, and thus he is extremely unlikely to have Ebola.
It is not possible for a data publisher to reveal some information about the data
while still guarding against attacks employing arbitrary amounts of background
knowledge (since the revealed information may be precisely what the adversary
needs to recreate the entire table). However, the data publisher can still guard
against many attacks even without having access to Alice’s background knowledge.
In our model, Alice might know the distribution f(q, s) over the sensitive and non-
sensitive attributes, in addition to the conditional distribution f(s|q). The most
damaging type of such information has the form f(s|q) ≈ 0, e.g., “men do not
have breast cancer”, or the form of Equation 8, e.g., “Japanese have a very low
incidence of heart disease”. Note that a priori information of the form f(s|q) = 1
is not as harmful since this positive disclosure is independent of the published table
T ⋆. Alice can also eliminate sensitive values with instance-level knowledge such as
“Bob does not have diabetes”.

In spite of such background knowledge, if there are ℓ “well represented” sensitive
values in a q⋆-block, then Alice needs ℓ−1 damaging pieces of background knowledge
to eliminate ℓ − 1 possible sensitive values and infer a positive disclosure! Thus,
by setting the parameter ℓ, the data publisher can determine how much protection
is provided against background knowledge — even if this background knowledge is
unknown to the publisher.

Note that Alice may know ℓ pieces of instance-level background knowledge of
the form “individual Xi does not have disease Y ” (for i = 1 . . . ℓ), where each Xi

is a different individual. However, we have been talking only about eliminating
sensitive values for a single individual. It has been shown [Martin et al. 2006] that
for a specific individual Bob, the worst case disclosure occurs when Xi = Bob in
all the ℓ pieces of information Alice possesses.

Moreover, when inferring information about Bob, knowing the exact sensitive
values of some other individuals in the table is less damaging than statements of
the form “Bob does not have cancer”. This is because knowing the sensitive value
for some other individual only eliminates from consideration one tuple that may
have corresponded to Bob while the latter statement eliminates at least one tuple.

Putting these two arguments together, we arrive at the following principle.

Principle 2 ℓ-Diversity Principle. A q⋆-block is ℓ-diverse if contains at least
ℓ “well-represented” values for the sensitive attribute S. A table is ℓ-diverse if every
q⋆-block is ℓ-diverse.

Returning to our example, consider the inpatient records shown in Figure 1.
We present a 3-diverse version of the table in Figure 4. Comparing it with the
4-anonymous table in Figure 2 we see that the attacks against the 4-anonymous
table are prevented by the 3-diverse table. For example, Alice cannot infer from the
3-diverse table that Bob (a 31 year old American from zip code 13053) has cancer.
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Non-Sensitive Sensitive

Zip Code Age Nationality Condition

1 1305* ≤ 40 ∗ Heart Disease
4 1305* ≤ 40 ∗ Viral Infection
9 1305* ≤ 40 ∗ Cancer
10 1305* ≤ 40 ∗ Cancer

5 1485* > 40 ∗ Cancer
6 1485* > 40 ∗ Heart Disease
7 1485* > 40 ∗ Viral Infection
8 1485* > 40 ∗ Viral Infection

2 1306* ≤ 40 ∗ Heart Disease
3 1306* ≤ 40 ∗ Viral Infection
11 1306* ≤ 40 ∗ Cancer
12 1306* ≤ 40 ∗ Cancer

Fig. 4. 3-Diverse Inpatient Microdata

Even though Umeko (a 21 year old Japanese from zip code 13068) is extremely
unlikely to have heart disease, Alice is still unsure whether Umeko has a viral
infection or cancer.

The ℓ-diversity principle advocates ensuring ℓ “well represented” values for the
sensitive attribute in every q⋆-block, but does not clearly state what “well repre-
sented” means. Note that we called it a “principle” instead of a definition — we
will use it to give two concrete instantiations of the ℓ-diversity principle and discuss
their relative trade-offs.

4.2 ℓ-Diversity: Instantiations

In this section we will give two instantiations of the ℓ-diversity principle: entropy
ℓ-diversity and recursive ℓ-diversity. After presenting the basic definitions, we’ll
extend them to cases where some positive disclosure is allowed.

The first instantiation of the ℓ-diversity principle, and the simplest one to de-
scribe, uses the information-theoretic notion of entropy:

Definition 4.1 Entropy ℓ-Diversity [Ohrn and Ohno-Machado 1999].
A table is Entropy ℓ-Diverse if for every q⋆-block

−
∑

s∈S

p(q⋆,s) log(p(q⋆,s′)) ≥ log(ℓ)

where p(q⋆,s) =
n(q⋆,s)

P

s′∈S

n(q⋆,s′)
is the fraction of tuples in the q⋆-block with sensitive

attribute value equal to s.

As a consequence of this condition, every q⋆-block has at least ℓ distinct values for
the sensitive attribute. Using this definition, Figure 4 is actually 2.8-diverse.

Entropy ℓ-diversity was first proposed by Ohrn et al. [Ohrn and Ohno-Machado
1999] as a way of defending against the homogeneity problem (without considering
the role of background knowledge). Note that entropy ℓ-diversity captures the no-
tion of well-represented groups due to the fact that entropy increases as frequencies
become more uniform. We can also capture the role of background knowledge more
explicitly with an alternate definition.
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Let s1, . . . , sm be the possible values of the sensitive attribute S in a q⋆-block.
Assume that we sort the counts n(q⋆,s1), . . . , n(q⋆,sm) in descending order and
name the elements of the resulting sequence r1, . . . , rm. One way to think about
ℓ-diversity is the following: the adversary needs to eliminate at least ℓ− 1 possible
values of S in order to infer a positive disclosure. This means that, for example,
in a 2-diverse table, none of the sensitive values should appear too frequently. We
say that a q⋆-block is (c, 2)-diverse if r1 < c(r2 + · · ·+ rm) for some user-specified
constant c. For ℓ > 2, we say that a q⋆-block satisfies recursive (c, ℓ)-diversity
if we can eliminate one possible sensitive value in the q⋆-block and still have a
(c, ℓ−1)-diverse block. This recursive definition can be succinctly stated as follows:

Definition 4.2 Recursive (c, ℓ)-Diversity. In a given q⋆-block, let ri denote
the number of times the ith most frequent sensitive value appears in that q⋆-block.
Given a constant c, the q⋆-block satisfies recursive (c, ℓ)-diversity if r1 < c(rℓ +
rℓ+1 + · · · + rm). A table T ⋆ satisfies recursive (c, ℓ)-diversity if every q⋆-block
satisfies recursive ℓ-diversity. We say that 1-diversity is always satisfied.

Now, both entropy and recursive ℓ-diversity may be too restrictive. To see why,
let us first look at entropy ℓ-diversity. Since −x log(x) is a concave function, it can
be shown that if we split a q⋆-block into two sub-blocks q⋆a and q⋆b then entropy(q⋆) ≥
min(entropy(q⋆a), entropy(q⋆b )). This implies that in order for entropy ℓ-diversity to
be possible, the entropy of the entire table must be at least log(ℓ). This might not
be the case, especially if one value of the sensitive attribute is very common – for
example, if 90% of the patients have “heart problems” as the value for the “Medical
Condition” attribute.

This is also a problem with recursive ℓ-diversity. It is easy to see that if 90% of the
patients have “heart problems” as the value for the “Medical Condition” attribute
then there will be at least one q∗-block where “heart problems” will have frequency
of at least 90%. Therefore if we choose c < 9 in Definition 4.2, no generalization of
the base table will satisfy recursive (c, ℓ)-diversity.

One the other hand, some positive disclosures may be acceptable. For example,
a clinic might be allowed to disclose that a patient has a “heart problem” because
it is well known that most patients who visit the clinic have heart problems. It
may also be allowed to disclose that “Medical Condition” = “Healthy” if this is not
considered an invasion of privacy.

At this point one may be tempted to remove tuples with nonsensitive “Medical
Condition” values, publish them unaltered, and then create an ℓ-diverse version of
the remaining dataset. In some cases this is acceptable. However, there are three
important issues why the above suggestion may not be acceptable: the anonymity
of the unaltered tuples, the privacy of the remaining tuples, and the utility of the
resulting published data.

First, publishing unaltered tuples gives an adversary the ability to link them to
external data and identify the corresponding individuals. This may be considered
a privacy breach [Chawla et al. 2005], since it is reasonable for individuals to object
to being identified as respondents in a survey. To avoid this one could publish a
k-anonymous version of tuples with nonsensitive “Medical Condition” values and a
ℓ-diverse version of the rest of the table.

Second, separating individuals with nonsensitive medical conditions from the rest
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can impact the individuals with sensitive medical conditions. As an extreme case,
suppose “Medical Condition” can only take two values: “Healthy” and “Sick”.
There is no way to achieve 2-diversity on the table of patients that are sick; if Alice
knows Bob is in the table and Bob is not listed as a healthy patient, he must then
be sick. More generally, separating records with sensitive values from records with
nonsensitive values reduces the possible choices for the security parameter ℓ.

A third issue with partitioning the data into two tables is related to the utility
of the data for a researcher. Since each of the tables is smaller than the whole
dataset, to satisfy k-anonymity and ℓ-diversity the tables might have to be gener-
alized more than if a single table had been anonymized. For instance, consider a
table reporting the “Gender” and “Medical Condition” of 2,000 individuals, where
the attribute “Medical Condition” can take three values: “Healthy”, “Cancer”, and
“Hepatitis”. In this table there are 1,000 males and 1,000 females. 700 of the 1,000
males are “Healthy” and the other 300 have “Hepatitis”. 700 of the 1,000 females
are “Healthy” while the other 300 have “Cancer”. If the disclosure of “Medical
Condition” = “Healthy” is not considered an invasion of privacy, then this table
satisfies 2-diversity (and thus requires no further generalizations). In contrast, if we
were to publish the “Healthy” patients separately, we would need to suppress the
gender information of the unhealthy individuals in order to achieve 2-diversity on
the table containing the unhealthy patients. Additionally, if the data is separated
then the two resulting tables are likely to have different schemas. For example,
one table may be generalized so that “Age” appears as an interval of length 5 (i.e.
[30-34]) and only the first 4 digits of “Zip Code” are given, while the second table
may give the full “Zip Code” but may generalize “Age” to intervals of length 10.
Learning from such data is not as straightforward as learning from a single table.

Thus an alternate approach is needed to handle the case when some of the values
in the domain of the sensitive attribute need not be kept private. To capture this
notion that some positive disclosure is acceptable, let Y be the set of those sensitive
values for which positive disclosure is allowed. We call Y a don’t-care set. Note
that we are not worried about those values being too frequent. Let sy be the most
frequent sensitive value in the q⋆-block that is not in Y and let ry be the associated
frequency. Then the q⋆-block satisfies ℓ-diversity if we can eliminate the ℓ − 2
most frequent values of S not including ry without making sy too frequent in the
resulting set. Thus, if we remove the sensitive values with counts r1, . . . , ry−1, then
the result is (ℓ− y + 1)-diverse. This brings us to the following definition.

Definition 4.3. (Positive Disclosure-Recursive (c, ℓ)-Diversity). Let Y ⊂
S be a don’t-care set. In a given q⋆-block, let the most frequent sensitive value not
in Y be the yth most frequent sensitive value. Let ri denote the frequency of the ith

most frequent sensitive value in the q⋆-block. Such a q⋆-block satisfies pd-recursive
(c, ℓ)-diversity when one of the following holds:

— when y ≤ ℓ− 1 and ry < c
m
∑

j=ℓ

rj

— when y > ℓ− 1 and ry < c
y−1
∑

j=ℓ−1

rj + c
m
∑

j=y+1

rj

We denote the summations on the right hand side of the both conditions by tailq⋆(sy).
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Now, note that if ry = 0 then the q⋆-block only has sensitive values that can be
disclosed and so both conditions in Definition 4.3 are trivially satisfied. Second,
note that if c > 1 then the second condition clearly reduces to just the condition
y > ℓ−1 because ry ≤ rℓ−1. The second condition states that even though the ℓ−1
most frequent values can be disclosed, we still do not want ry to be too frequent if
ℓ− 2 of them have been eliminated (i.e., we want the result to be 2-diverse).

To see this definition in action, suppose there are two values for “Medical Condi-
tion”, healthy and not healthy. If healthy is a don’t-care value, then (c, 2)-diversity
states that the number of sick patients in a q∗-block is less than c times the number
of healthy patients or, equivalently, at most c

c+1 patients in a q∗-block are sick.
Thus if c = 0.03 then at most 3% of the patients in any q∗-block are not healthy,
and if c = 1 then at most half the patients in any q∗-block are not healthy.

Entropy ℓ-diversity can also be extended to handle don’t-care sets. The descrip-
tion of entropy ℓ-diversity with don’t-care sets is a bit more involved, so before we
present it, we shall briefly touch upon the subject of negative disclosure.

Until now we have treated negative disclosure as relatively unimportant compared
to positive disclosure. However, negative disclosure may also be important. If W
is the set of values for the sensitive attribute for which negative disclosure is not
allowed then, given a user-specified constant c2 < 100, we require that each s ∈ W
appear in at least c2-percent of the tuples in every q⋆-block, resulting in the following
definition. This is incorporated into ℓ-diversity definitions in a straightforward way:

Definition 4.4. (NPD-Recursive (c1, c2, ℓ)-Diversity). Let W be the set
of sensitive values for which negative disclosure is not allowed. A table satisfies
negative/positive disclosure-recursive (c1, c2, ℓ)-diversity (npd-recursive (c1, c2, ℓ)-
diversity) if it satisfies pd-recursive (c1, ℓ)-diversity and if every s ∈ W occurs in
at least c2 percent of the tuples in every q⋆-block.

We now conclude this subsection with a definition of entropy ℓ-diversity that uses
don’t-care sets. The extension of entropy ℓ-diversity is more complicated than for
recursive ℓ-diversity, but the motivation is similar. Let S be a sensitive attribute.
Suppose we have a q∗-block qA where the values of S are s1, s2, . . . , sn with corre-
sponding counts p1, . . . , pn (note that unlike before, we don’t require the counts to
be sorted; thus pi is shorthand for n(qA,si)). Furthermore, suppose s1 belongs to the
don’t-care set so that we can safely disclose the value of S when it equals s1. If in
this hypothetical q∗-block, 90% of the tuples have sensitive value s1, then this block
has a low entropy. Now consider a q∗-block qB with sensitive values s1, s2, . . . , sn
with counts p′1, p2, p3, . . . , pn (where p′1 > p1). The block qB is just like qA except
that there are more tuples with the don’t-care value s1.

Intuitively, since s1 is a don’t-care value, qB cannot pose more of a disclosure
risk that qA. Thus if we were free to adjust the value p1, we should expect that
disclosure risk does not decrease when we decrease p1 and disclosure risk does not
increase when we increase p1. Treating p1 as a variable, let’s lower it from its initial
setting in qA to the unique value p∗ that would maximize the entropy of the q∗-
block. The original disclosure risk of qA cannot be any higher than the disclosure
risk at the optimum value p∗. We will compute the entropy at this optimum value
p∗ and set the disclosure risk of qA to be this value. In the more general case (with
more than one don’t-care value), we determine what is the maximum entropy we
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would get if we lowered the counts corresponding to don’t-care values from their
initial values. We call this maximum entropy value the adjusted entropy and it will
serve as the disclosure risk of the q∗-block: if the adjusted entropy is larger than
log ℓ then the block is considered ℓ-diverse.

Before we formalize this, we should note that this type of argument will also
yield our original definition for recursive ℓ-diversity in the presence of don’t-care
sets. One can easily check that if p′′ is the count of the most frequent sensitive
value (not in the don’t care set) and φ1, . . . , φr are the counts of don’t-care values
that appear more frequently, the recursive ℓ-diversity procedure for don’t-care sets
lowers the values φ1, . . . , φr to set them equal to p′′, and then checks if the resulting
block satisfies ordinary recursive ℓ-diversity.

To formalize the notion of adjusted entropy, we need the following notation. For
nonnegative values x1, . . . , xn such that

∑

xi = 1, denote the entropy as:

H(x1, . . . , xn) = −
m
∑

i=1

xi log xi

with the understanding that 0 log 0 = 0. For arbitrary nonnegative numbers
x1, . . . , xn, denote the normalized entropy as:

Ĥ(x1, . . . , xn) = −
n
∑

i=1

xi
n
∑

j=1

xj

log









xi
n
∑

j=1

xj









(9)

First, we define adjusted entropy, and then show how to compute it.

Definition 4.5 Adjusted Entropy. Let S be a sensitive attribute with don’t-
care values y1, . . . , yr and sensitive values s1, . . . , sm. Let qA be a q∗-block where
the don’t-care values yi have counts φi and the sensitive values sj have counts pj.
The adjusted entropy of qA is defined as:

sup
0≤xi≤φi; i=1,...,r

Ĥ(x1, . . . , xr, p1, . . . , pm) (10)

The maximizing values of the xi in Definition 4.5 are closely related to the function

M(c1, . . . , ck) =

(

k
∑

i=1

ci log ci

)

/

k
∑

i=1

ci

which we call the log-entropic mean of c1, . . . , ck (because it is the weighted average
of their logarithms).3 We show that there exists a unique vector (c1, c2, . . . , cr) that
maximizes Equation 10 and we can characterize it with the following theorem:

Theorem 4.1. There is a unique vector (c1, c2, . . . , cr) such that the assignment
xi = ci maximizes Equation 10. Furthermore, let θ = max({φi | ci = φi} ∪ {0}).
If φj ≤ θ then cj = φj . If φj > θ then log cj is the log-entropic mean of the set
{p1, . . . , pm} ∪ {φi | φi = ci}, and θ is the minimum value for which this condition
can be satisfied.

3Note that the log-entropic mean is the logarithm of a weighted geometric mean of the ci, which
itself belongs to a general class of means called the entropic means [Ben-Tal et al. 1989].
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Algorithm 1 : AdjustedEntropy(φ1, . . . , φr, p1, . . . , pm)

Require: φi ≥ 0, pj ≥ 0
1: for all i = 1, . . . , r do
2: xi ← φi
3: end for
4: fixed← {p1, . . . , pm}
5: changeable← {x1, . . . , xr}
6: m←M(fixed)
7: while log(min(changeable)) < m do
8: i = argminj:xj∈changeable xj
9: fixed = fixed∪{xi}

10: changeable = changeable\{xi}
11: m←M(fixed)
12: end while
13: for all xi ∈ changeable do
14: xi ← em

15: end for
16: return Ĥ(x1, . . . , xr , p1, . . . , pm)

The proof of this theorem is rather technical and can be found in Appendix A. This
theorem tells us that some coordinates will achieve their upper bound φi (i.e., they
will not be lowered from their initial values). We call these the fixed coordinates.
The rest of the coordinates, called the changeable coordinates, will be adjusted down
until their logarithms equal the log-entropic mean of the fixed coordinates and the
counts of the sensitive values (in particular, it means that if cj is the value of an
unchangeable coordinate, then logφj must be larger than that log-entropic mean).
The theorem also tells us that there is a cutoff value θ such that all coordinates
with with upper bound > θ will be changeable and the rest will be fixed. Finally,
the theorem also tells us that we should choose the minimum cutoff value for which
this is possible.

The computation of adjusted entropy is shown in Algorithm 1. We illustrate the
algorithm with a sample run-through. Suppose there are four don’t-care values y1,
y2, y3, and y4 with counts 11, 10, 3, and 2, respectively; and suppose there are two
sensitive values s1 and s2 with counts 3 and 4, respectively. Initially we compute
the log-entropic mean of s1 and s2, which is 1.263. Now, y4 has the smallest count
among don’t-care values and log y4 = 0.693 which is less than the log-entropic
mean. We conclude that y4 is a fixed value, and we compute the log-entropic mean
of {y4, s1, s2}, which is 1.136. Now, y3 has the next smallest count among don’t-
care values. The value log y3 is 1.099, which is less than the new log-entropic mean.
Thus y3 is also fixed and we compute the log-entropic mean of {y4, y3, s1, s2} which
is 1.127. The next value we consider is y2. Now log y2 = 2.30 which is greater than
the log-entropic mean. Thus y2 and y1 are the changeable values and the cutoff θ
described by Theorem 4.1 must be 3 (the value of y3). Thus the adjusted entropy
should be the normalized entropy of {e1.127, e1.127, y3, y4, s1, s2}.

Clearly the definition of adjusted entropy is consistent with entropy ℓ-diversity
when there are no don’t-care values. Thus to verify correctness of the algorithm,
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we just need to prove Theorem 4.1. The interested reader may find the proof in
Appendix A.

4.3 Multiple Sensitive Attributes

Multiple sensitive attributes present some additional challenges. Suppose S and V
are two sensitive attributes, and consider the q⋆-block with the following tuples:
{(q⋆, s1, v1), (q⋆, s1, v2), (q⋆, s2, v3), (q⋆, s3, v3)}. This q⋆-block is 3-diverse (actually
recursive (2,3)-diverse) with respect to S (ignoring V ) and 3-diverse with respect
to V (ignoring S). However, if we know that Bob is in this block and his value for
S is not s1 then his value for attribute V cannot be v1 or v2, and therefore must
be v3. One piece of information destroyed his privacy. Thus we see that a q∗-block
that is ℓ-diverse in each sensitive attribute separately may still violate the principle
of ℓ-diversity.

Intuitively, the problem occurred because within the q∗-block, V was not well-
represented for each value of S. Had we treated S as part of the quasi-identifier
when checking for diversity in V (and vice versa), we would have ensured that the
ℓ-diversity principle held for the entire table. Formally,

Definition 4.6 Multi-Attribute ℓ-Diversity. Let T be a table with non-
sensitive attributes Q1, . . . , Qm1 and sensitive attributes S1, . . . , Sm2 . We say that
T is ℓ-diverse if for all i = 1 . . .m2, the table T is ℓ-diverse when Si is treated as the
sole sensitive attribute and {Q1, . . . , Qm1 , S1, . . . , Si−1, Si+1, . . . , Sm2} is treated as
the quasi-identifier.

As the number of sensitive attributes grows, it is not hard to see that we will
necessarily need larger and larger q∗-blocks to ensure diversity. This problem may
be ameliorated through tuple suppression, generalization on the sensitive attributes,
and publishing marginals (rather than the full table) containing different sensitive
attributes. This is a subject for future work.

4.4 Discussion

Recall that we started our journey into Section 4 motivated by the weaknesses of
Bayes-optimal privacy. Let us now revisit these issues one by one.

— ℓ-Diversity no longer requires knowledge of the full distribution of the sensitive
and nonsensitive attributes.

— ℓ-Diversity does not even require the data publisher to have as much infor-
mation as the adversary. The parameter ℓ protects against more knowledgeable
adversaries; the larger the value of ℓ, the more information is needed to rule out
possible values of the sensitive attribute.

— Instance-level knowledge (Bob’s son tells Alice that Bob does not have di-
abetes) is automatically covered. It is treated as just another way of ruling out
possible values of the sensitive attribute.

— Different adversaries can have different background knowledge leading to dif-
ferent inferences. ℓ-Diversity simultaneously protects against all of them without
the need for checking which inferences can be made with which levels of background
knowledge.
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Overall, we believe that ℓ-diversity is practical, easy to understand, and addresses
the shortcomings of k-anonymity with respect to the background knowledge and
homogeneity attacks. Let us now see whether we can give efficient algorithms to
implement ℓ-diversity. We will see that, unlike Bayes-optimal privacy, ℓ-diversity
possesses a property called monotonicity. We define this concept in Section 5, and
we show how this property can be used to efficiently generate ℓ-diverse tables.

5. IMPLEMENTING PRIVACY-PRESERVING DATA PUBLISHING

In this section we discuss how to build algorithms for privacy-preserving data pub-
lishing using domain generalization. Let us first review the search space for privacy-
preserving data publishing using domain generalization [Bayardo and Agrawal 2005;
LeFevre et al. 2005]. For ease of explanation, we will combine all the nonsensitive
attributes into a single multi-dimensional attribute Q. For attribute Q, there is a
user-defined generalization lattice. Formally, we define a generalization lattice to
be a set of domains partially ordered by a generalization relation ≺G (as described
in Section 2). The bottom element of this lattice is domain(Q) and the top element
is the domain where each dimension of Q is generalized to a single value. Given a
base table T , each domain D⋆

Q in the lattice defines an anonymized table T ⋆ which
is constructed by replacing each tuple t ∈ T by the tuple t⋆, such that the value
t⋆[Q] ∈ D⋆

Q is the generalization of the value t[Q] ∈ domain(Q). An algorithm for
data publishing should find a point on the lattice such that the corresponding gen-
eralized table T ⋆ preserves privacy and retains as much utility as possible. In the
literature, the utility of a generalized table is usually defined as a distance metric
on the lattice – the closer the lattice point is to the bottom, the larger the utility
of the corresponding table T ⋆. Hence, finding a a suitable anonymized table T ⋆ is
essentially a lattice search problem. There has been work on search strategies for
k-anonymous tables that explore the lattice top-down [Bayardo and Agrawal 2005]
or bottom-up [LeFevre et al. 2005].

In general, searching the entire lattice is computationally intractable. However,
lattice searches can be made efficient if there is a stopping condition of the form: if
T ⋆ preserves privacy then every generalization of T ⋆ also preserves privacy [LeFevre
et al. 2005; Samarati and Sweeney 1998]. This is called the monotonicity property,
and it has been used extensively in frequent itemset mining algorithms [Agrawal
and Srikant 1994]. k-Anonymity satisfies the monotonicity property, and it is this
property which guarantees the correctness of all efficient algorithms [Bayardo and
Agrawal 2005; LeFevre et al. 2005]. Thus, if we show that ℓ-diversity also possesses
the monotonicity property, then we can re-use these efficient lattice search algo-
rithms to find the ℓ-diverse table with optimal utility. The same cannot be said
of Bayes-optimal privacy; the following theorem gives a computational reason why
Bayes-optimal privacy does not lend itself to efficient algorithmic implementations.

Theorem 5.1. Bayes-optimal privacy does not satisfy the monotonicity prop-
erty.

Proof. We shall prove this theorem for the ρ1−ρ2 version of the Bayes-optimal
privacy definition (see Definition 3.3 and [Evfimievski et al. 2003]); the proof can
easily be extended to other instantiations. We set ρ1 = 0.31 and ρ2 = 0.58 and we
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will create an example where the prior belief a(q,s) < ρ1 but the observed belief is
β(q,s,T⋆) > ρ2.

First consider Figure 5 which shows a base table T with two values for Q and
two values for S.

q1 q2

s1 f(q1, s1) = .15 f(q2, s1) = .25
n(q1,s1) = 1 n(q2,s1) = 35

s2 f(q1, s2) = .35 f(q2, s2) = .25
n(q1,s2) = 1 n(q2,s2) = 15

Fig. 5. Table T

Based on this information, we can compute the prior and observed beliefs for
table T :

— α(q1,s1) = .3, β(q1,s1,T ) = .5

— α(q1,s2) = .7, β(q1,s2,T ) = .5

— α(q2,s1) = .5, β(q2,s1,T ) = .7

— α(q2,s2) = .5, β(q2,s2,T ) = .3

Clearly, publishing T does not breach privacy. However, suppose we generalized T
by generalizing both q1 and q2 to q⋆, as in Figure 6:

q⋆

s1 f(q⋆, s1) = .4
n(q⋆,s1) = 36

s2 f(q⋆, s2) = .6
n(q⋆,s2) = 16

Fig. 6. Table T ⋆

If Bob has nonsensitive value q1, then as before, α(q1,s1) = .3 < ρ1. However,

β(q1,s1,T⋆) =
36 .15

.4

36 .15
.4 + 16 .35

.6

>
13.5

13.5 + 9.34
> .59 > ρ2

Thus while publishing T would not cause a privacy breach, publishing T ⋆ would.
This counterexample proves that Bayes-optimal privacy is not monotonic.

This seemingly counterintuitive result has a simple explanation. Note that there
are many more tuples t with t[Q] = q2 than there are with t[Q] = q1. This causes
the probabilistic behavior of the q⋆-block in T ⋆ to be heavily influenced by the
tuples with t[Q] = s2 and so it “pulls” the value of β(q1,s1,T⋆) = β(q2,s1,T⋆) closer to
β(q2,s1,T ) (this can be verified with Equation 1 for observed belief). Since the prior
belief α(q1,s1) doesn’t change and since α(q1,s1) and α(q2,s1) are very different, we
get a privacy breach from publishing T ⋆ but not from publishing T .
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Theorem 5.2 Monotonicity of entropy ℓ-diversity. Entropy ℓ-diversity
satisfies the monotonicity property: if a table T ⋆ satisfies entropy ℓ-diversity, then
any generalization T ⋆⋆ of T ⋆ also satisfies entropy ℓ-diversity.

Theorem 5.2 follows from the fact that entropy is a concave function. Thus if the
q⋆-blocks q⋆1 , . . . , q

⋆
d from table T ⋆ are merged to form the q⋆-block q⋆⋆ of table T ⋆⋆,

then the entropy(q⋆⋆) ≥ mini(entropy(q⋆i )).

Theorem 5.3 Monotonicity of npd recursive ℓ-diversity. The npd re-
cursive (c1, c2, ℓ)-diversity criterion satisfies the monotonicity property: if a table
T ⋆ satisfies npd recursive (c1, c2, ℓ)-diversity, then any generalization T ⋆⋆ of T ⋆ also
satisfies npd recursive (c1, c2, ℓ)-diversity.

Proof. We shall prove this for the case where T ∗∗ is derived from T ∗ by merging
two q⋆-blocks; the general case follows by induction. Let q⋆a and q⋆b be the q⋆-blocks
of T ⋆ that are merged to form the q⋆-block q⋆⋆ of table T ⋆⋆. The frequencies of the
sensitive values in q⋆⋆ is the sum of the corresponding frequencies in q⋆a and q⋆b .

First, let us consider negative disclosures. If every sensitive value s ∈ W occurs
in at least c2 percent of the tuples in q⋆a and q⋆b , then surely s should also occur in
at least a c2 percent of the tuples in the q⋆⋆.

Next let us consider positive disclosures. Let Y be the set of sensitive values for
which positive disclosure is allowed. Let sy be the most frequent sensitive value
in q⋆⋆ that does not appear in Y . Let sya

and syb
be the most frequent sensitive

values in q⋆a and q⋆b , respectively, which are not in Y . Clearly if ry, rya
and ryb

are
the respective counts, then

ry ≤ rya
+ ryb

We also know that the q⋆-blocks q⋆a and q⋆b -block are (c1, ℓ)-diverse (by hypothesis).
Hence

rya
≤ c1 tailq⋆

a
(sya

)

ryb
≤ c1 tailq⋆

b
(syb

)

We are done if we prove that ry ≤ c1 tailq⋆(sy). Since sya
is at least as frequent as

sy in q⋆a (and similarly for syb
) then by the definition of tailq⋆ , we have

tailq⋆
a
(sy) ≥ tailq⋆

a
(sya

)

tailq⋆
b
(sy) ≥ tailq⋆

b
(syb

)

tailq⋆⋆(sy) = tailq⋆
a
(sy) + tailq⋆

b
(sy)

Hence

ry ≤ rya
+ ryb

≤ c1(tailq⋆
a
(sya

) + tailq⋆
b
(syb

))

≤ c1(tailq⋆
a
(sy) + tailq⋆

b
(sy))

= c1 tailq⋆⋆(sy)

and so the q⋆-block q⋆⋆ is npd (c1, c2, ℓ)-diverse.
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We can also show that entropy ℓ-diversity with don’t-care sets satisfies the
monotonicity property and is therefore amenable to efficient algorithms. We will
first need the following two results which will let us conclude that Ĥ(~x + ~y) ≥
min(Ĥ(~x), Ĥ(~y)).

Lemma 5.1. Let a1, . . . , an be nonnegative numbers that add up to 1. Let b1,
. . . , bn be nonnegative numbers that add up to 1. Then for any t ∈ [0, 1],

Ĥ(ta1 + (1 − t)b1, . . . , tan + (1− t)bn) = −
n
∑

i=1

[tai + (1 − t)bi] log[tai + (1 − t)bi]

≥ −t
n
∑

i=1

−ai log ai − (1− t)
n
∑

i=1

bi log bi

= tĤ(a1, . . . , an) + (1 − t)Ĥ(b1, . . . , bn)

≥ min
(

Ĥ(a1, . . . , an), Ĥ(b1, . . . , bn)
)

with the understanding that 0 log 0 = 0.

Proof. This follows immediately from the fact that −x logx is concave.

Corollary 5.1. Let a1, . . . , an be nonnegative numbers (at least one of which
is nonzero) and let b1, . . . , bn be nonnegative numbers (at least one of which is
nonzero). Then

Ĥ(a1 + b1, a2 + b2, . . . , an + bn) ≥ min
(

Ĥ(a1, . . . , an), Ĥ(b1, . . . , bn)
)

Proof. Let A =
n
∑

i=1

ai and B =
n
∑

i=1

bi. Then by definition, Ĥ(a1, . . . , an) =

H(a1/A, . . . , an/A), and Ĥ(b1, . . . , bn) = Ĥ(b1/B, . . . , bn/B), and Ĥ(a1+b1, . . . , an+
bn) = Ĥ((a1+b1)/(A+B), . . . , (an+bn)/(A+B)). Furthermore, let t = A/(A+B).
Then (ai + bi)/(A+B) = t(ai/A) + (1− t)(bi/B). Applying Lemma 5.1 we get

Ĥ(a1 + b1, . . . , an + bn) = Ĥ((a1 + b1)/(A+B), . . . , (an + bn)/(A+B))

≥ min
(

Ĥ(a1/A, . . . , an/A), Ĥ(b1/B, . . . , bn/B)
)

= min
(

Ĥ(a1, . . . , an), Ĥ(b1, . . . , bn)
)

Theorem 5.4. (Monotonicity of Entropy ℓ-diversity with don’t-care sets)
Entropy ℓ-diversity with don’t-care sets satisfies the monotone property: given a
don’t-care set Y , if a table T ⋆ satisfies entropy ℓ-diversity then any generalization
T ⋆⋆ of T ⋆ also satisfies entropy ℓ-diversity.

Proof. The proof of monotonicity is an easy consequence of the following result:
if q1 and q2 are q⋆-blocks, and if q3 is the q⋆-block formed by merging q1 and q2
then the adjusted entropy of q3 is greater than or equal to the minimum of the
adjusted entropies of q1 and q2. Therefore, this is what we aim to prove.
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Attribute Domain Generalizations Ht.
size type

1 Age 74 ranges-5,10,20 4
2 Gender 2 Suppression 1
3 Race 5 Suppression 1
4 Marital Status 7 Taxonomy tree 2
5 Education 16 Taxonomy tree 3
6 Native Country 41 Taxonomy tree 2
7 Work Class 7 Taxonomy tree 2
8 Salary class 2 Sensitive att.
9 Occupation 14 Sensitive att.

Fig. 7. Description of Adults Database

Let q1 and q2 be q⋆ blocks. Let s1, . . . , sn be the sensitive values that appear in
q1 and q2 and let a1, . . . , an be their counts in q1 and b1, . . . , bn be their counts in
q2. Let a⋆i be the values used to compute the adjusted entropy for q1 and b⋆i be
the values used to compute adjusted entropy for q2. Note that for all i, ai ≥ a⋆i
and bi ≥ b⋆i . Furthermore ai > a⋆i or bi > b⋆i only if si is a don’t-care value (by
construction). When we merge q1 and q2 the new counts are (ai+bi). By Corollary
5.1:

Ĥ(a⋆1 + b⋆1, a
⋆
2 + b⋆2, . . . , a

⋆
n + b⋆n) ≥ min

(

Ĥ(a⋆1, . . . , a
⋆
n), Ĥ(b⋆1, . . . , b

⋆
n)
)

Now ai + bi ≥ a⋆i + b⋆i and ai + bi > a⋆i + b⋆i only if si is a don’t care value.
Since the adjusted entropy is the maximum entropy we can achieve by lowering the
counts associated with the don’t-care values, this means that the adjusted entropy
for the group with counts ai + bi is at least Ĥ(a⋆1 + b⋆1, a

⋆
2 + b⋆2, . . . , a

⋆
n + b⋆n). Thus

the adjusted entropy of the merged group is larger than or equal to the minimum
adjusted entropy of q1 and q2.

Thus to create an algorithm for ℓ-diversity, we can take an algorithm for k-
anonymity that performs a lattice search and we make the following change: every
time a table T ⋆ is tested for k-anonymity, we check for ℓ-diversity instead. Since
ℓ-diversity is a property that is local to each q⋆-block and since all ℓ-diversity tests
are solely based on the counts of the sensitive values, this test can be performed
very efficiently.

We emphasize that this is only one way of generating ℓ-diverse tables and it
is motivated by the structural similarities between k-anonymity and ℓ-diversity.
Alternatively, one can post-process a k-anonymous table and suppress groups that
are not ℓ-diverse or suppress tuples in groups until all groups are ℓ-diverse; one can
directly modify a k-anonymity algorithm that uses suppression into an ℓ-diversity
algorithm; or one can devise a completely new algorithm.

6. EXPERIMENTS

In our experiments, we used an implementation of Incognito, as described in [LeFevre
et al. 2005], for generating k-anonymous tables. We modified this implementation
so that it produces ℓ-diverse tables as well. Incognito is implemented in Java and
uses the database manager IBM DB2 v8.1 to store its data. All experiments were
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Attribute Domain Generalizations Ht.
size type

1 Zipcode 31953 Round each digit 5
2 Order date 320 Taxonomy tree 3
3 Gender 2 Suppression 1
4 Style 1509 Suppression 1
5 Price 346 Round each digit 4
6 Quantity 1 Suppression 1
7 Shipment 2 Suppression 1
8 Cost 147 Sensitive att.

Fig. 8. Description of Lands End Database

k Affected Avg. Gps. Avg. Tuples

/Total tables Affected Affected

2 8/8 7.38 558.00
5 11/12 3.58 381.58
10 10/12 1.75 300.42
15 7/8 2.12 317.25
20 8/10 1.20 228.20
30 7/10 0.90 215.40
50 5/5 1.00 202.80

Fig. 9. Effect of Homogeneity Attack on the Adults Database

k Affected Avg. Gps. Avg. Tuples
/Total tables Affected Affected

2 2/3 12.3 2537.6
5 2/3 12.3 2537.6
10 2/2 18.5 3806.5
15 2/2 18.5 3806.5

20 1/2 2.5 1750
30 1/2 2.5 1750
50 1/3 0.6 1156

Fig. 10. Effect of Homogeneity Attack on the Lands End Database

run under Linux (Fedora Core 3) on a machine with a 3 GHz Intel Pentium 4
processor and 1 GB RAM.

We ran our experiments on the Adult Database from the UCI Machine Learn-
ing Repository [Repository ] and the Lands End Database. The Adult Database
contains 45,222 tuples from US Census data and the Lands End Database contains
4,591,581 tuples of point-of-sale information. We removed tuples with missing val-
ues and adopted the same domain generalizations as [LeFevre et al. 2005]. Figures
7 and 8 provide a brief description of the data including the attributes we used,
the number of distinct values for each attribute, the type of generalization that was
used (for non-sensitive attributes), and the height of the generalization hierarchy
for each attribute.
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k Affected Avg. Gps. Avg. Tuples
/Total tables Affected Affected

2 8/8 20.50 13574.5
5 12/12 12.67 13328.3
10 12/12 7.83 10796.5
15 8/8 8.88 12009.4
20 10/10 7.10 11041.0
30 10/10 5.50 11177.0
50 5/5 5.80 8002.0

Fig. 11. Effect of 95% Homogeneity Attack on the Adults Database

k Affected Avg. Gps. Avg. Tuples
/Total tables Affected Affected

2 2/3 13.0 2825.33
5 2/3 13.0 2825.33
10 2/2 19.5 4238.00
15 2/2 19.5 4238.00
20 1/2 3.0 2119.00
30 1/2 3.0 2119.00
50 1/3 1.0 1412.66

Fig. 12. Effect of 95% Homogeneity Attack on the Lands End Database

Homogeneity Attack. In Figures 9, 10, 11, and 12, we illustrate the homogene-
ity attacks on k-anonymized datasets using the Lands End and Adult databases.
For the Lands End Database, we treated {Zipcode, Order Date, Gender, Style,
Price} as the quasi-identifier. We partitioned the Cost attribute into 147 buck-
ets by rounding to the nearest 100 and used this as the sensitive attribute. For
the Adults Database, we used {Age, Gender, Race, Marital Status, Education}
as the quasi-identifier and Salary Class as the sensitive attribute. For values of
k = 2, 5, 10, 15, 20, 30, 50, we then generated all k-anonymous tables that were min-
imal with respect to the generalization lattice (i.e. no table at a lower level of
generalization was k-anonymous).

Figures 9 and 10 show an analysis of groups in k-anonymous tables that are
completely homogeneous in the Adults and Lands End databases, respectively,
while Figures 11 and 12 show a corresponding analysis of groups in k-anonymous
tables that are “nearly” homogeneous (i.e., the most frequent sensitive value s in
a group appears in at least 95% of the tuples in the group). Both cases should be
avoided since an adversary would believe, with near certainty, that an individual
in a homogeneous or nearly homogeneous group has the sensitive value s that
appears most frequently. Note that the minority (i.e., ≤ 5%) of the individuals in
nearly homogeneous groups whose sensitive values are not s are also affected even
though the best inference about them (that they have s) is wrong. As a concrete
example, consider the case when s = AIDS. An individual that values privacy
would not want to be associated with s with near certainty regardless of whether
the true value is s. In the four tables shown in Figures 9, 10, 11, and 12, the
first column indicates the value of k. The second column shows the number of
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Fig. 13. Adults Database

minimal k-anonymous tables that have groups that are completely homogeneous
(Figures 9 and 10) or 95% homogenous (Figures 11 and 12). The third column
shows the average number of such groups per minimal k-anonymous table. The
fourth column shows the average number of tuples per minimal k-anonymous table
that were affected by the two homogeneity attacks. As we can see from Figures
9, 10, 11 and 12, the homogeneity attack is a real concern, affecting a very large
fraction of both datasets. Even for relatively large values of k (such as 30 and 50),
many tables still had nearly homogeneous groups.

Note that the average number of affected groups, average number of affected
tuples, etc., are not strictly decreasing functions of k. In particular, tables with
small values of affected tuples are sometimes close to each other in the lattice of
k-anonymous tables and may be generalized to the same table when k increases
(thus reducing the total number of “safe” tables).

Performance. In our next set of experiments, we compare the running times of
entropy ℓ-diversity and k-anonymity. The results are shown in Figures 13 and 14.
For the Adult Database, we used Occupation as the sensitive attribute, and for
Lands End we used Cost. We varied the quasi-identifier size from 3 attributes
up to 8 attributes; a quasi-identifier of size j consisted of the first j attributes of
its dataset as listed in Figures 7 and 8. We measured the time taken to return
all 6-anonymous tables and compared it to the time taken to return all 6-diverse
tables. In both datasets, the running times for k-anonymity and ℓ-diversity were
similar. Sometimes the running time for ℓ-diversity was faster, which happened
when the algorithm pruned parts of the generalization lattice earlier than it did for
k-anonymity.

Utility. The next set of experiments compare the utility of anonymized tables
which are k-anonymous, entropy ℓ-diverse, or recursive (3, ℓ)-diverse. We use the
Adults Database in all the experiments with sensitive attribute Occupation. For
the purposes of comparison, we set k = ℓ and experimented with the following
values of ℓ (and hence k): 2, 4, 6, 8, 10. The sensitive attribute Occupation
takes only 14 values. Hence, there is no table which can be more than 14-diverse
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Fig. 14. Lands End Database

for any reasonable definition of diversity. Since some of the values appeared very
infrequently, we found that there is no generalization of the Adults Database that is
recursive (3, ℓ)-diverse for ℓ = 12. We also found that the marginal distribution of
the sensitive attribute is entropy 10.57-diverse. This means that no generalization
of the Adults Database can be more than entropy 10.57-diverse unless the entire
data set is suppressed.

The utility of a dataset is difficult to quantify. As a result, we used four different
metrics to gauge the utility of the generalized tables – generalization height, average
group size, discernibility, and KL-divergence. The first metric, generalization height
[LeFevre et al. 2005; Samarati 2001], is the height of an anonymized table in the
generalization lattice; intuitively, it is the number of generalization steps that were
performed. The second metric is the average size of the q∗-blocks generated by the
anonymization algorithm. The third metric is the discernibility metric [Bayardo
and Agrawal 2005]. The discernibility metric measures the number of tuples that
are indistinguishable from each other. Each tuple in a q∗ block Bi incurs a cost
|Bi| and each tuple that is completely suppressed incurs a cost |D| (where D is the
original dataset). Since we did not perform any tuple suppression, the discernibility
metric is equivalent to the sum of the squares of the sizes of the q∗-blocks.

Neither generalization height, nor average group size, nor discernibility take the
data distribution into account. For this reason we also use the KL-divergence, which
is described next. In many data mining tasks, we would like to use the published
table to estimate the joint distribution of the attributes. Now, given a table T
with categorical attributes A1, . . . , Am, we can view the data as an i.i.d. sample
from an m-dimensional distribution F . We can estimate this F with the empirical
distribution F̂ , where F̂ (x1, . . . , xm) is the fraction of tuples t in the table such that
t.A1 = x1, . . . , t.Am = xm. When a generalized version of the table is published,
the estimate changes to F̂ ⋆ by taking into account the generalizations used to
construct the anonymized table T ⋆ (and making the uniformity assumption for all
generalized tuples sharing the same attribute values). If the tuple t = (x1, . . . , xm)
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Fig. 15. Adults Database. Q = {age, gender, race}

is generalized to t⋆ = (x⋆1, . . . , x
⋆
m), then F̂ ⋆(x1, . . . , xm) is given by

F̂ ⋆(x1, . . . , xm) =
|{t⋆ ∈ T ⋆}|
|T ⋆| × area(t⋆)

where, area(x⋆1, . . . , x
⋆
m) =

m
∏

i=1

|{xi ∈ Ai | xi is generalized to x⋆i }|

To quantify the difference between the two distributions F̂ and F̂ ∗, we use the
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Fig. 16. Adults Database. Q = {age, gender, race, marital status}

Kullback-Leibler divergence (KL-divergence) which is defined as

∑

x∈A1×...×Am

F̂ (x) log
F̂ (x)

F̂ ⋆(x)

where 0 log 0 is defined to be 0. The KL-divergence is non-negative and is 0 only
when the two estimates are identical.

In Figures 15, 16, 17, and 18, we show the minimum generalization height, average
group size, and discernibility of k-anonymous, entropy ℓ-diverse, and recursive (3, ℓ)-
diverse tables for ℓ = k = 2, 4, 6, 8, 10, while Figures 19 and 20 show our results for
KL-divergence. For each graphs in Figures 15, 16, 17, 18, and 19, we performed
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Fig. 17. Adults Database. Q = {age, gender, race, marital status, education}

the anonymizations on a 5% subsample of the original data, while Figure 20 shows
results for anonymization of the entire data set.

Before explaining why it was necessary to subsample the data, we should first note
that in general, the graphs show that ensuring diversity in the sensitive attribute
does not require many more generalization steps than for k-anonymity (note that an
ℓ-diverse table is automatically ℓ-anonymous); the minimum generalization heights
for identical values of k and ℓ were usually identical. Nevertheless, we found that
generalization height was not an ideal utility metric because tables with small
generalization heights can still have very large group sizes. For example, using
full-domain generalization on the Adult Database with the quasi-identifier {Age,
Gender, Race, Marital Status, Education}, we found minimal (with respect to the
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Fig. 18. Adults Database. Q = {age, gender, race, marital status, education,
work class, native country}

generalization lattice) 4-anonymous tables that had average group sizes larger than
1,000 tuples. The large groups were caused by data skew. For example, there were
only 114 tuples with age between 81 and 90, while there were 12,291 tuples with
age between 31 and 40. So if age groups of length 5 (i.e. [1-5], [6-10], [11-15], etc)
were generalized to age groups of length 10 (i.e. [1-10], [11-20], etc), we would end
up with very large q∗-blocks.4

4Generalization hierarchies that are aware of data skew may yield higher quality anonymizations.
This is a promising avenue for future work because some recent algorithms [Bayardo and Agrawal
2005] can handle certain dynamic generalization hierarchies.
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Thus, to better understand the loss of utility due to domain generalization, we
chose to study a subsample of the Adults Database with a lesser data skew in the
Age attribute. It turned out that a 5% Bernoulli subsample of the Adult Database
suited our requirements – most of the Age values appeared in around 20 tuples each,
while only a few values appeared in less than 10 tuples each. The second and third
graphs in each of Figures 15, 16, 17, and 18 show the minimum average group size
and the discernibility metric cost, respectively, of k-anonymous and ℓ-diverse tables
for k, ℓ = 2, 4, 6, 8, 10. Smaller values for utility metrics represent higher utility. We
found that the best t-anonymous and t-diverse tables often (but not always) had
comparable utility. It is interesting to note that recursive (3, ℓ)-diversity permits
tables which have better utility than entropy ℓ-diversity. Recursive (c, ℓ)-diversity
is generally less restrictive than entropy ℓ-diversity, because the extra parameter,
c, allows us to control how much skew is acceptable in a q∗-block. Since there is
still some residual skew even in our 5% subsample, the entropy definition performs
worse than the recursive definition.

In Figures 19 and 20 we compare k-anonymous and ℓ-diverse tables using the
KL-divergence utility metric. Figure 19 shows our results for a 5% subsample
of the table and Figure 20 shows our results on the whole Adults Database. In
each of the graphs, we wish to publish a table from which the joint distribution
Q × S can be estimated. In all the cases S = Occupation. Q is the multi-
dimensional attribute {Age,Gender,Race}, {Age,Gender,Marital Status,Race}
and {Age,Education,Gender,Marital Status,Race}, respectively.

Each of the graphs shows a base-line (the bar named “Base”) that corresponds
to the KL-divergence for the table where all the attributes in Q were completely
suppressed (thus the resulting table had only one attribute – the sensitive attribute).
This table represents the least useful anonymized table that can be published. The
rest of the bars correspond to the KL-divergence to the best k-anonymous, entropy
ℓ-diverse, and recursive (3, ℓ)-diverse tables, respectively for k = ℓ = 2, 4, 6, 8, 10.

In the experiments run on the full Adults Dataset, we see that the KL-divergence
to the best ℓ-diverse table (entropy or recursive) is very close to the KL-divergence
to the best k-anonymous table, for k = ℓ = 2, 4, 6. As expected, for larger values
of ℓ, the utility of ℓ-diverse tables is lower. The best tables for the entropy and
recursive variants of the definition often have similar utility. When a sample of
Adults Database table was used, some of the sensitive values with small counts were
eliminated. Hence, for ℓ = 8, 10, the best tables were very close to the baseline.
For ℓ = 6, the recursive definition performs better than the entropy definition since
recursive (3, ℓ)-diversity allows for more skew in the sensitive attribute.

7. RELATED WORK

There has a been a lot of research on individual data privacy in both the computer
science and the statistics literature. While a comprehensive treatment is outside the
scope of this paper, we provide an overview of the area by discussing representative
work. Most of the work can be broadly classified depending on whether or not the
data collector is trusted. We first discuss the trusted data collector scenario, of
which our work is an example, in Section 7.1. We then discuss the untrusted data
collector scenario in Section 7.2.
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Fig. 19. Comparing KL-Divergence to k-Anonymous and ℓ-Diverse versions of a
sample of the Adults Database. From left to right, Q = {Age, Gender, Race}, {Age,
Gender, Marital Status, Race} and {Age, Education, Gender, Marital Status, Race}
respectively.

7.1 Trusted Data Collector

In many scenarios, the individuals providing the data trust the data collector not
to breach their privacy. Examples of such data collectors are the Census Bureau,
hospitals, health insurance providers, etc. However, these data collectors want to
share data with third parties for enhancing research. It is required that such sharing
does not breach the privacy of the individuals. Methods used by the data collectors
can be broadly classified into four classes (each of which is discussed below):
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Fig. 20. Comparing KL-Divergence to k-Anonymous and ℓ-Diverse versions of the
Adults Database. From left to right, Q = {Age, Gender, Race}, {Age, Gender,
Marital Status, Race} and {Age, Education, Gender, Marital Status, Race} respec-
tively.

— Publish public-use microdata (e.g., the approach taken in this paper).

— Allow third parties to query the data, and only allow queries which do not
lead to disclosures (like in statistical databases).

— Share data only with authorized third parties.

— Do not share data but provide support for collaborative computations which
disclose no information beyond the final answer.
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7.1.1 Publishing Public-use Microdata. This paper proposes new privacy defini-
tions for the model of publishing public-use microdata. The Census Bureau provides
data as public-use microdata (PUMS). They use a variety of sanitization techniques
to ensure privacy and utility in the dataset. Hence, there is a huge amount of re-
search on data sanitization in the statistics community. Here again, there are many
techniques which provide some utility guarantees but do not give theoretical guar-
antees for privacy.

Census data literature focuses on identifying and protecting the privacy of sen-
sitive entries in contingency tables – tables of counts which represent the complete
cross-classification of the data ([Fellegi 1972; Cox 1980; 1982; 1987; Dobra and Fein-
berg 2003; 2000; Slavkovic and Feinberg 2004]). A nonzero table entry is considered
sensitive if it is smaller than a fixed threshold which is usually chosen in an ad-hoc
manner. Two main approaches have been proposed for protecting the privacy of
sensitive cells: data swapping and data suppression. The data swapping approach
involves moving data entries from one cell in the contingency table to another so
that the table remains consistent with a set of published marginals [Dalenius and
Reiss 1982; Diaconis and Sturmfels 1998; Duncan and Feinberg 1997]. In the data
suppression approach [Cox 1980; 1995], cells with low counts are simply deleted.
Due to data dependencies caused by marginal totals that may have been previously
published, additional related cell counts may also need to be suppressed. An al-
ternate approach is to determine a safety range or protection interval for each cell
[Dobra 2002], and to publish only those marginals which ensure that the feasibility
intervals (i.e. upper and lower bounds on the values a cell may take) contain the
protection intervals for all cell entries.

Computer science research has also tried to solve the privacy preserving data
publishing problem. Sweeney [Sweeney 2002] showed that publishing data sets for
which the identifying attributes (keys) have been removed is not safe and may result
in privacy breaches. In fact, the paper shows a real life privacy breach using health
insurance records and voter registration data. To better protect the data, [Sweeney
2002] advocates the use of a technique called k-anonymity [Samarati and Sweeney
1998] which ensures that every individual is hidden in a group of size at least k
with respect to the non-sensitive attributes. The problem of k-anonymization is
NP-hard [Meyerson and Williams 2004]; approximation algorithms for producing
k-anonymous tables have been proposed [Aggarwal et al. 2004].

Prior to this, there had been a lot of study in creating efficient algorithms for
k-anonymity by using generalization and tuple suppression techniques. Samarati
et al. [Samarati and Sweeney 1998] proposed a technique, using binary search,
for ensuring k-anonymity through full-domain generalization techniques. Bayardo
et al. [Bayardo and Agrawal 2005] modeled k-anonymization as an optimization
problem between privacy and utility, and proposed an algorithm similar to a fre-
quent itemset mining algorithm. LeFevre et al. [LeFevre et al. 2005] extended the
approach of full-domain generalization and proposed an algorithm for returning all
valid k-anonymous tables. It also used techniques very similar to frequent itemset
mining. Zhong et al. [Zhong et al. 2005] showed how to compute a k-anonymous
table without the requirement of a trusted data collector. Ohrn et al. [Ohrn and
Ohno-Machado 1999] used boolean reasoning to study the effect of locally sup-
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pressing attributes on a per-tuple basis. They introduced a notion called relative
anonymization to counter the effects of homogeneity in the sensitive attribute. One
of the instantiations of relative anonymization corresponds to the definition which
we named entropy ℓ-diversity. In a preliminary version of this paper, Machanava-
jjhala et al. [Machanavajjhala et al. 2006] first introduced ℓ-diversity which, unlike
k-anonymity, was aware of the distribution of values of the sensitive attributes and
of the effects of background knowledge.

Condensation based approach to ensure k-anonymity [Aggarwal and Yu 2004]
treat the data as points in a high-dimensional space and the technique tries to
condense k nearby points into a single point.

Chawla et al. [Chawla et al. 2005] proposes a formal definition of privacy for
published data based on the notion of blending in a crowd. Here privacy of an
individual is said to be protected if an adversary cannot isolate a record having at-
tributes similar (according to a suitably chosen distance metric) to those of a given
individual without being sufficiently close (according to the distance metric) to sev-
eral other individuals; these other individuals are the crowd. The authors propose
several perturbation and histogram-based techniques for data sanitization prior to
publication. The formalization of the notion of privacy presents a theoretical frame-
work for studying the privacy-utility trade-offs of the proposed data sanitization
techniques. However, due to the heavy reliance on an inter-tuple distance mea-
sure of privacy, the proposed definition of privacy fails to capture scenarios where
identification of even a single sensitive attribute may constitute a privacy breach.
Also note that this privacy definition does not guarantee diversity of the sensitive
attributes.

Miklau et al. [Miklau and Suciu 2004] characterize the set of views that can be
published while keeping some query answer secret. Privacy here is defined in the
information-theoretic sense of perfect privacy. They show that to ensure perfect
privacy, the views that are published should not be related to the data used to
compute the secret query. This shows that perfect privacy is too strict as most
useful views, like those involving aggregation, are disallowed.

Finally there has been some work on publishing XML documents and ensuring
access control on these documents [Miklau and Suciu 2003; Yang and Li 2004].
Miklau et al. [Miklau and Suciu 2003] use cryptographic techniques to ensure that
only authorized users can access the published document. Yang et al. [Yang and
Li 2004] propose publishing partial documents which hide sensitive data. The chal-
lenge here is that the adversary might have background knowledge which induces
dependencies between branches, and this needs to be taken into account while de-
ciding which partial document to publish.

7.1.2 Statistical Databases. The third scenario in the trusted data collector
model is hosting a query answering service. This is addressed by the statistical
database literature. In this model, the database answers only aggregate queries
(COUNT, SUM, AVG, MIN, MAX) over a specified subset of the tuples in the
database. The goal of a statistical database is to answer the queries in such a
way that there are no positive or negative disclosures. Techniques for statistical
database query answering can be broadly classified into three categories – query
restriction, query auditing, data and output perturbation. Though the literature
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proposes a large number of techniques for ensuring privacy, only a few of the tech-
niques are provably private against attacks except in restricted cases. Adam et al.
[Adam and Wortmann 1989] provide a very good literature survey.

The techniques in the query restriction category specify the set of queries that
should not be answered to ensure that privacy is not breached. None of the an-
swers to legal queries are perturbed. All of these techniques focus on the case
where a query specifies an aggregate function and a set of tuples C over which the
aggregation is done. The query set size control technique [Fellegi 1972; Schlorer
1975] specifies that only those queries which access at least |C| ≥ k and at most
|C| ≤ L − k tuples should be answered. Here k is a parameter and L is the size
of the database. However, it was shown that snooping tools called trackers [Den-
ning et al. 1979] can be used to learn values of sensitive attributes. The query set
overlap control technique [Dobkin et al. 1979] disallows queries which have a large
intersection with the previous queries.

Query auditing in statistical databases has been studied in detail. The query
monitoring approach [Dobkin et al. 1979; Chin 1986] is an online version of the
problem where the (t+1)th query is answered or not depending on the first t queries
asked. The decision is based only on the queries and not on the answers to those
queries. Pure SUM queries and pure MAX queries can be audited efficiently but the
mixed SUM/MAX problem is NP-hard. In the offline auditing problem [Chin and
Ozsoyoglu 1981; Chin 1986], the queries are presented all at once and the problem
is to choose the maximum number of queries that can be answered. Kleinberg et al.
[Kleinberg et al. 2000] considers auditing SUM queries over boolean attributes and
shows that it is co-NP hard to decide whether a set of queries uniquely determines
one of the data elements. More recently, Kenthapadi et al. [Kenthapadi et al.
2005] studied the problem of simulatable auditing. This is a variant of the query
monitoring approach where the decision to disallow a query can depend on the
answers to the previous queries as well. The main challenge in this model is that
if a query answer is denied, information could be disclosed. Hence, the solutions
proposed are such that any decision (to allow or deny a query) that is made by the
database can also be simulated by the adversary.

Data perturbation techniques maintain a perturbed version of the database and
answer queries on the perturbed data. However, most of these techniques suffer
from the problem of bias [Matloff 1986]; i.e., the expected value of the query an-
swers computed using the perturbed data is different from the actual query answers
computed using the original data. Fixed data perturbation techniques [Traub et al.
1984] perturb the data by adding zero-mean random noise to every data item. Such
techniques have the worst problems with bias. The randomized response scheme
proposed in [Warner 1965] avoids this bias problem for COUNT queries on cate-
gorical attributes. Yet another technique is to replace the data with synthetic data
drawn from the same empirical distribution.

Output perturbation techniques evaluate the query on the original data but return
a perturbed version of the answer. Techniques here include returning answers over
a sample of the database [Denning 1980], rounding the answers to a multiple of a
prespecified base b [Dalenius 1981], and adding random noise to the outputs [Beck
1980]. More recently, Dinur et al. [Dinur and Nissim 2003] proved that in order
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to protect against an adversary who is allowed to ask arbitrarily many queries to
a database, the random noise added to the answers should be at least Ω(

√
n), n

being the number of tuples in the database. On the positive side, they also showed a
technique that provably protects against a bounded adversary who is allowed to ask
only T (n) ≥ polylog(n) queries by using additive perturbation of the magnitude
Õ(
√

T (n)). Building on this result, Blum et al. [Blum et al. 2005] proposed a
framework for practical privacy called the SuLQ framework, where the number of
queries an adversary is allowed to ask is sub-linear in the number of tuples in the
database.

7.1.3 Sharing with Authorized Parties. Hippocratic databases [Agrawal et al.
2002] are a proposed design principle for building database systems which regu-
late the sharing of private data with third parties. Such a solution requires both
the individuals who provide data and the databases that collect it to specify pri-
vacy policies describing the purposes for which the data can be used and the
recipients who can see parts of the data. The policies are specified using a policy
specification language like APPEL [M. Langheinrich 2001], which satisfies the P3P
standard [M. Marchiori 2002]. A Hippocratic database also needs other functional-
ity, like support for maintaining audit trails [Agrawal et al. 2004], query rewriting
for disclosure limitation [LeFevre et al. 2004], and support for data retention.

Snodgrass et al. [Snodgrass et al. 2004] proposes schemes for auditing the oper-
ations of a database such that any tampering with the audit logs can be detected.
Such a solution can guard against the database’s manipulation of the audit logs,
thus giving assurance of eventual post-breach detection.

7.1.4 Private Collaborative Computation. Private collaborative computation has
been very well studied in the form of secure multiparty computation [Goldreich et al.
1987; Ben-Or et al. 1988; Chaum et al. 1988]. The problem of secure multiparty
computation deals with n parties computing a common function on private inputs.
Such a protocol should not disclose to the participants any information other than
what is disclosed by the answer itself. Most of the early work focused on building
solutions for general functions by expressing a function as a boolean circuit. How-
ever, general solutions are perceived to be communication inefficient (of the order
of the square of the number of parties involved for each gate in the boolean circuit
being evaluated).

Thus there has been a lot of research proposing solutions to secure multiparty
computations for specific functions. Du [Du 2001] proposes various specific (secure)
two-party computations problems. The commodity server model [Beaver 1997;
1998] has been used for privately computing the scalar product of two vectors [Du
and Zhan 2002]. In the commodity server model, the two (or more) parties involved
in the multiparty computation protocol employ the services of an untrusted third
party to provide some randomness [Beaver 1997] or to help with some computation
[Du and Zhan 2002]. It is assumed that this untrusted third party does not collude
with the players involved in the multiparty computation. Most of these techniques
employ randomization to guarantee privacy.

Agrawal et al. [Agrawal et al. 2003] employ commutative encryption techniques
for information sharing across private database. Their techniques can be used to
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calculate the intersection and equijoin of two databases while disclosing only the
sizes of each database. Clifton et al. [Clifton et al. 2002] describes methods to im-
plement basic operations like secure sum, secure set union, secure set intersection,
and secure scalar product using both encryption and additive randomization in the
secure multiparty computation setting. These primitives are used in various appli-
cation scenarios to build multiparty protocols for private association rule mining in
horizontally partitioned data [Kantarcioglu and Clifton 2002], private association
rule mining in vertically partitioned data [Vaidya and Clifton 2002], and private
EM clustering.

One drawback which permeates the above literature is that there is no clear
characterization of how much information is disclosed by the output of the protocol
about the sensitive inputs.

7.2 Untrusted Data Collector

In the case where the data collector is not trusted, and the private information of
the individuals should be kept secret from the data collector. Though this is not
the model dealt with in this paper, definitions of privacy can be common across the
trusted and the untrusted data collector model. The individuals provide random-
ized versions of their data to the data collector who then uses it for data mining.
Warner [Warner 1971] proposed one of the first techniques for randomizing categor-
ical answers to survey questionnaires. Recent work in the privacy preserving data
mining literature also fits this model. Agrawal et al. [Agrawal and Srikant 2000]
propose randomization techniques that can be employed by individuals to mask
their sensitive information while allowing the data collector to build good decision
trees on the data. This work, however, does not give theoretical guarantees for
privacy. Subsequent work propose metrics for quantifying the information lost and
the privacy guaranteed by privacy-preserving data mining techniques. One privacy
metric [Agrawal and Aggarwal 2001] is based on the conditional differential entropy
between the original and perturbed data. However, this privacy metric measures
average-case behavior, so that a perturbed distribution can leave a lot of uncertainty
about the original values in most of the domain, leave very little uncertainty in a
small part of the domain (therefore causing a privacy breach), and yet still be con-
sidered satisfactory based on its conditional differential entropy. Evfimievski et al.
[Evfimievski et al. 2003; Evfimievsky et al. 2002] propose randomization techniques
for privacy-preserving association rule mining and give theoretical guarantees for
privacy. They define a privacy breach to be the event that the posterior probability
(of certain properties of the data) given the randomized data is far from the prior
probability. These techniques deal with categorical attributes only. Extensions to
continuous data that allow the data collector to run OLAP-style queries on the
data have also been proposed ([Agrawal et al. 2004]).

On the negative side, [Kargupta et al. 2003] shows that randomizing the data,
especially by adding zero mean random variables, does not necessarily preserve pri-
vacy. The techniques provided in the paper exploit spectral properties of random
matrices to remove the noise and recover the original data. Thus the data collec-
tor could breach privacy. [Huang et al. 2004] show that the correlation between
attributes is the key factor behind the attacks proposed in [Kargupta et al. 2003].
The paper goes on to propose two techniques based on Principle Component Anal-
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ysis (PCA) and the Bayes Estimate (BE) to reconstruct the original data from the
randomized data. On a positive note, the paper shows that randomization schemes
where the correlations in the noise are “similar” to the correlations in the data can
protect against these attacks.

8. CONCLUSIONS AND FUTURE WORK

In this paper we have shown theoretically and experimentally that a k-anonymized
dataset permits strong attacks due to lack of diversity in the sensitive attributes.
We have introduced ℓ-diversity, a framework that gives stronger privacy guarantees.
We have also demonstrated that ℓ-diversity and k-anonymity have enough similarity
in their structure that k-anonymity algorithms can be modified to work with ℓ-
diversity.

There are several avenues for future work. First, we want to extend our initial
ideas for handling multiple sensitive attributes, and we want to develop methods for
continuous sensitive attributes. Second, although privacy and utility are duals of
each other, privacy has received much more attention than the utility of a published
table. As a result, the concept of utility is not well-understood.
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A. CORRECTNESS OF ENTROPY ℓ-DIVERSITY WITH DON’T-CARE SETS

In this section we will prove Theorem 4.1. Recall that we defined normalized entropy
as:

Ĥ(x1, . . . , xn) = −
n
∑

i=1

xi
n
∑

j=1

xj

log









xi
n
∑

j=1

xj









(11)

First, we note that as a function of x1, . . . , xn, the normalized entropy Ĥ(x1, . . . , xn)
is concave. However, if we fix some of the variables, then Ĥ is neither concave nor
convex in the other variables. As an example, consider f(x) = Ĥ(x, 100). We
see that f(400) = .5004, f(800) = .3488, and f(600) = .4101. Thus f(600) =
f(1

2 · 400 + 1
2 · 800) ≤ 1

2f(400) + 1
2f(800) showing that the normalized entropy is

not concave. However, f(75) = .6829, f(125) = .6870, and f(100) = .6931 Thus
f(100) = f(1

2 · 75 + 1
2 · 125) ≥ 1

2f(75) + 1
2f(125) and so it is not convex either.

Therefore we cannot use convexity arguments to prove uniqueness in Theorem 4.1.

We begin by looking at the first-order partial derivatives of Ĥ and finding the
general unconstrained maximum of Ĥ(x1, . . . , xr, p1, . . . , pm) where the pi are con-
stants. Define f(x1, . . . , xr) ≡ Ĥ(x1, . . . , xr, p1, . . . , pm). Then

f(x1, . . . , xr) = −
r
∑

i=1

xi
r
∑

j=1

xj +
m
∑

j=1

pj

log









xi
r
∑

j=1

xj +
m
∑

j=1

pj









−
m
∑

i=1

pi
r
∑

j=1

xj +
m
∑

j=1

pj

log









pi
r
∑

j=1

xj +
m
∑

j=1

pj









and simple manipulation shows that
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Using the fact that the first derivative of x log x is 1 + log x:

∂f
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= − 1 + log xs
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j=1

pj

)2 +

m
∑

i=1

pi log pi

(

r
∑

j=1

xj +
m
∑

j=1

pj

)2

= −

(

r
∑

i=1

xi +
m
∑

i=1

pi

)

log xs

(

r
∑

j=1

xj +
m
∑

j=1

pj

)2 +
xs log xs

(

r
∑

j=1

xj +
m
∑

j=1

pj

)2

+

∑

i6=s

xi log xi

(

r
∑

j=1

xj +
m
∑

j=1

pj

)2 +

m
∑

i=1

pi log pi

(

r
∑

j=1

xj +
m
∑

j=1

pj

)2

=

∑

i6=s

(xi log xi − xi log xs) +
m
∑

i=1

(pi log pi − pi log xs)

(

r
∑

j=1

xj +
m
∑

j=1

pj

)2 (12)

and so we see that ∂f/∂xs = 0 when

log xs =

∑

i6=s

xi log xi +
m
∑

i=1

pi log pi

∑

j 6=s

xj +
m
∑

j=1

pj

(13)

We will denote the value of the right hand side of Equation 13 by c∗. From Equation
12 it is easy to see that ∂f/∂xs < 0 when log(xs) > c∗ (when xs > ec∗) and
∂f/∂xs > 0 when log(xs) < c∗ (when xs < ec∗). Combining this with the fact
that f is continuous at xs = 0 (to rule out a maximum at xs = 0), we get that
given p1, . . . , pm and for fixed x1, . . . , xs−1, xs+1, . . . , xr, there is a unique value of
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xs that maximizes Ĥ. This brings us to the first theorem:

Theorem A.1. Let p1, . . . , pm be constants and let x1, . . . , xs−1, xs+1, . . . , xr be
fixed. Then Ĥ(p1, . . . , pm, x1, . . . , xr) (when treated as a function of xs) is maxi-
mized when

log xs = c∗ =

∑

i6=s

xi log xi +
m
∑

i=1

pi log pi

∑

j 6=s

xj +
m
∑

j=1

pj

Furthermore, the maximum is unique and H is decreasing for xs > ec∗ and increas-
ing for xs < ec∗.

Corollary A.1. Let p1, . . . , pm be constants and let x1, . . . , xs−1, xs+1, . . . , xr
be fixed. Let φs > 0. Then Ĥ(p1, . . . , pm, x1, . . . , xr) (when treated as a function of
xs) is maximized subject to the constraint xs ≤ φs when

log xs = min









logφs,

∑

i6=s

xi log xi +
m
∑

i=1

pi log pi

∑

j 6=s

xj +
m
∑

j=1

pj









= min(logφ,M(x1, . . . , xs−1, xs+1, . . . , xr, p1, . . . , pm))

Proof. If xs cannot obtain the optimal value specified in Theorem A.1, it must
be because φs < ec∗. Since ∂Ĥ/∂xs > 0 for xs < ec∗, the maximum constrained
value must occur at xs = φs.

Our next step is to find the unconstrained maximum of Ĥ over x1, . . . , xr. A
necessary condition for the maximum is that all first partial derivatives are 0. From
Equation 13 we have:





∑

j 6=s

xj +

m
∑

j=1

pj



 log xs =
∑

i6=s

xi log xi +

m
∑

i=1

pi log pi





r
∑

j=1

xj +

m
∑

j=1

pj



 log xs =

r
∑

i=1

xi log xi +

m
∑

i=1

pi log pi

and since the right hand side is independent of s, and since the equality is true for
any s, it follows that for s 6= t:





r
∑

j=1

xj +

m
∑

j=1

pj



 log xs =





r
∑

j=1

xj +

m
∑

j=1

pj



 log xt (14)

xs = xt (15)

Thus there is only one critical point and at the critical point x1 = x2 = · · · = xr.
To find out what this value is, we go back to Equation 13 and replace the xi by
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their common value x:

log x =

(r − 1)x log x+
m
∑

i=1

pi log pi

(r − 1)x+
m
∑

j=1

pj

(r − 1)x log x+

m
∑

j=1

pj log x = (r − 1)x log x+

m
∑

i=1

pi log pi

x =

m
∑

i=1

pi log pi

m
∑

j=1

pj

and we see that this is the log-entropic mean of the pi.

Theorem A.2. f(x1, . . . , xr) ≡ H(p1, . . . , pm, x1, . . . , xr) achieves its unique

maximum when log x1 = log x2 = · · · = log xr =

m
P

i=1

pi log pi

m
P

j=1

pj

= c∗.

Proof. We have already shown that this is the unique point where all first
partial derivatives are 0 at this point. We still have to show that it is that it is a
global maximum. First note that a maximum cannot occur when any of the xs are
0 (this follows directly from Theorem A.1).

Now suppose the point (ec∗, . . . , ec∗) is not a unique global maximum. Then there
exist positive numbers ξ1, ξ2, . . . , ξr (not all equal to c∗) such that f(ξ1, ξ2, . . . , ξr) ≥
f(ec∗, . . . , ec∗). Let L = min{p1, . . . , pm, ξ1, . . . , ξr} and let U = max{p1, . . . , pm,
ξ1, . . . , ξr}. Consider the compact hypercube C = {(z1, . . . , zr) : ∀i ∈ {1, . . . , r},
U ≥ zi ≥ L}. C is compact, f is continuous, and f achieves its maximum on C.
Hence, there exists a point (θ1, . . . , θr) ∈ C such that f(θ1, . . . , θr) = sup

z∈C
f(z) ≥

f(ξ1, . . . , ξr) ≥ f(ec∗, . . . , ec∗) and that not all θi are equal to c∗.
Now, the θi cannot satisfy Equation 13 (with the xi replaced by the θi) for

all i because otherwise we will have a second point where all the partial deriva-
tives are 0 (a contradiction). Without loss of generality, suppose θ1 does not
satisfy Equation 13. By Theorem A.1, there exists a θ∗ such that log θ∗ is a
weighted average of the log pi and log θj so that min(p1, . . . , pm, θ1, . . . , θr) ≤ θ∗ ≤
max(p1, . . . , pm, θ1, . . . , θr). This implies that (θ∗, θ2, . . . , θr) ∈ C. Furthermore,
by Theorem A.1, f(θ∗, θ2, . . . , θr) > f(θ1, . . . , θr), which contradicts the fact that
f(θ1, . . . , θr) is maximal on C. Therefore there do not exist any nonnegative real
numbers ξ1, ξ2, . . . , ξr be nonnegative real numbers (not all equal to c∗) such that
f(ξ1, ξ2, . . . , ξr) ≥ f(ec∗, . . . , ec∗).

Now that we know what the unconstrained maximum looks like, we are ready to
characterize the constrained maximum. We will need the following simple results
about weighted averages:
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Lemma A.1. Let c1, . . . , cn be nonnegative numbers and let w1, . . . , wn be non-
negative numbers such that wici > 0 for some i. Let d and v be any positive
numbers.

(1 ) if d equals the weighted average of the ci (i.e., d = (
∑

i ciwi)/(
∑

i wi)) then
including d in that weighted average does not change its value (i.e., d = (vd+
∑

i ciwi)/(v +
∑

iwi) = (
∑

i ciwi)/(
∑

i wi))

(2 ) if d > (
∑

i ciwi)/(
∑

iwi)
then d > (vd+

∑

i ciwi)/(v +
∑

i wi) > (
∑

i ciwi)/(
∑

iwi)

(3 ) if d < (
∑

i ciwi)/(
∑

iwi)
then d < (vd+

∑

i ciwi)/(v +
∑

i wi) < (
∑

i ciwi)/(
∑

iwi)

(4 ) if d > d′ and d > (
∑

i ciwi)/(
∑

i wi)
then d > (vd′ +

∑

i ciwi)/(v +
∑

iwi)

(5 ) if d > (vd+
∑

i ciwi)/(v +
∑

i wi)
then d > (

∑

i ciwi)/(
∑

iwi)

Proof. First we show (i).

vd+
∑

i ciwi
v +

∑

i wi
=

vd+ d
∑

i wi
v +

∑

i wi
=
d (v +

∑

i wi)

v +
∑

iwi
= d =

∑

i ciwi
∑

iwi

To prove (ii), let d∗ = (
∑

i ciwi)/(
∑

i wi) then

d =
vd+ d

∑

i wi
v +

∑

i wi
>
vd+

∑

i ciwi
v +

∑

i wi
>
vd∗ +

∑

i ciwi
v +

∑

iwi
=

∑

i ciwi
∑

iwi

and (iii) is proven the same way. (iv) is an easy consequence of (ii). To prove (v),
multiply by (v +

∑

iwi) and cancel dv from both sides.

Now we can prove the correctness of Algorithm 1 by proving Theorem 4.1, which
we now restate.

Theorem A.3. Let p1, . . . , pm, φ1, . . . , φr be positive numbers. Then the follow-
ing are true:

(1 ) There is a unique vector (c1, c2, . . . , cr) such that the assignment xi = ci max-
imizes Ĥ(x1, . . . , xr, p1, . . . , pm) subject to the constraints 0 ≤ xi ≤ φi.

(2 ) Let θ = max({φi | ci = φi} ∪ {0}). If φj ≤ θ then cj = φj . If φj > θ then
log cj is the log-entropic mean of the set {p1, . . . , pm} ∪ {φi | φi = ci}, and θ is
the minimum value for which this condition can be satisfied.

Proof. First we must show that a maximum exists, and this follows from the
fact that Ĥ is continuous and that the set {(x1, . . . , xr) | ∀i, 0 ≤ xi ≤ φi} is compact.
Note that uniqueness of the maximum follows from the minimality condition for θ
in (ii). Therefore if we prove (ii) then (i) follows.

Let (ξ1, . . . , ξr) be a point at which the maximum occurs. As a result of Corollary
A.1, for s = 1, . . . , r we must have

log ξs = min(logφ,M(ξ1, . . . , ξs−1, ξs+1, . . . , ξr, p1, . . . , pm)) (16)
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Now let W = {i : ξi < φi} and V = {i : ξi = φi}. We claim that:

∀s ∈ W, log ξs =

∑

i6=s

ξi log ξi +
m
∑

i=1

pi log pi

∑

j 6=s

ξj +
m
∑

j=1

pj

=

∑

i∈V

ξi log ξi +
m
∑

i=1

pi log pi

∑

j∈V

ξj +
m
∑

j=1

pj

(17)

The first equality follows from Equation 16 and the second follows from Theorem
A.2 for the unconstrained maximum of Ĥ as a function of xs for s ∈ W .

Now we are ready to prove that there exists a cutoff value θ ∈ {φ1, . . . , φr, 0}
such that φj ≤ θ implies that j ∈ V (i.e. xj = φj) and φj > θ implies j ∈ W
(i.e. xj is the log-entropic mean of the pi and the xs for s ∈ V ). If either V or
W is empty then this is trivially true. Otherwise, assume by way of contradiction
that there is no cutoff so that we can find an s, t such that φs > φt but t ∈W and
s ∈ V . This implies that

log ξs = logφs > log φt > log ξt = M(ξ1, . . . , ξt−1, ξt+1, . . . , ξr, p1, . . . , pm))

and by Lemma A.1, parts (iv) and then (v), we have:

log ξs > M(ξ1, . . . , ξr, p1, . . . , pm))

and

log ξs > M(ξ1, . . . , ξs−1, ξs+1, . . . , ξr, p1, . . . , pm))

However, this violates the condition on optimality described in Equation 16, which
is a contradiction, and so there exists a cutoff θ.

All that remains to be shown is that for the optimal solution, θ is the minimum
value ∈ {φ1, . . . , φr} such that φj > θ implies j ∈ W (i.e. xj is the log-entropic
mean of the pi and the xs for s ∈ V ). Suppose it is not minimal. Then there exists
a θ′ ∈ {φ1, . . . , φr, 0} with θ′ < θ, a set V ′ = {i | φi ≤ θ′} and a vector (ω1, . . . , ωr)
such that when i ∈ V ′ then ωi = φi and when i /∈ V ′ then ωi is the log-entropic
mean of the pi and the ωs for s ∈ V ′. Now clearly V ′ ⊂ V so whenever ωi = φi then
ξi = φi. However, if we fix xi = φi for i ∈ V ′ then the unconstrained maximum of
Ĥ over the variables {xi | i /∈ V ′} occurs precisely when xi = ωi, by Theorem A.2,
because ωi equals the log-entropic mean of the pi and the ωs for s ∈ V ′ . Since the
variables xs for s ∈ V ′ will be fixed for any choice of cutoff θ (remember that by
definition θ ≥ θ′), and the unconstrained maximum over the rest of the variables is
unique and achievable, the vector (ω1, . . . , ωr) that is determined by the minimal
cutoff θ′ is indeed the unique constrained maximum we are looking for.
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