
A binary modality for reasoning about
conjoined situations in a hybrid logic

David Ahn and Lenhart Schubert

Computer Science Department
University of Rochester

(davidahn) |(schubert) @cs. rochester. edu

Abstract

In this paper, we present a hybrid logic with a sound and complete tableau system
for reasoning about situations. We identify our satisfaction relation between states
and formulas with Schubert’s characterization relation between situations and for-
mulas [6] and introduce a binary modality for reasoning about conjoined situations.

1 Describing eventualities

This paper presents a hybrid logic for reasoning about the relation between
sentences and those entities of which we take sentences to hold. We adopt,
in general outline, the theory of situations and their relation to sentences
presented by [6,7], which is motivated by reference to these entities in natural
language. This theory provides two relations between arbitrary formulas and
situations: characterization, a tight, Davidsonian-like coupling; and support,
a looser, Situation-Semantics-like relation. In our hybrid logic, we identify
satisfaction with characterization and provide support as a derived relation.

We take as primitive a relation between atoms of our language and situ-
ations that is exactly the relation between event predicates and events in a
Davidsonian theory [5]. Thus, an atom and a situation stand in this charac-
terization relation just in case the atom is a description of the situation as a
whole. On this view, situations are identified with events, and atoms, with
Davidsonian event predicates. Situations are entities which are classified by
atoms. As an example, the atom sneeze (with the obvious intended interpreta-
tion) would characterize an event of John sneezing but not an episode of John
having a cold, even if that episode includes many events of John sneezing.

There are several ways to extend this characterization relation to arbitrary
formulas. It may be the case that a given situation is characterized indepen-
dently by each of several atoms. In that case, we would like to extend the
characterization relation so that the conjunction of these atoms characterizes

(davidahn)|(schubert)@cs.rochester.edu

the situation. For example, given a situation of John running, each of the
atoms run and move, on their own, characterizes this situation, since every
situation of John running is also a situation of John moving. Thus, we would
like the conjunction of run and move to characterize this situation.

Schubert argues for a related way to extend the characterization relation.
It may be the case that for a given situation, there are multiple formulas, none
of which independently characterizes the situation, but which together manage
to describe it as a whole. For example, a situation of John sneezing (once)
and coughing (once) in direct succession is not characterized by either atomic
formula sneeze or cough alone, but is in some sense, a conjoined situation of a
sneezing subsituation and a coughing subsituation. We would like some way
to represent the relation between these two formulas, on the one hand, and
the situation, on the other, as an extension of the characterization relation.

Another way in which we would like to extend the characterization relation
is to allow a negated formula to characterize a situation. Schubert argues
that negative sentences in natural language can introduce situations which
are referred to by demonstrative pronouns and which stand in causal relations
with other situations. These negative situations are not simply the situations
of which the argument of the negation fails to hold, but rather situations of
which the negation itself holds. What constitutes such a situation is a question
to which we do not have a definitive answer (see [6] and [4] for discussion).
In general, though, we allow our characterization relation to be partial, so
that there are situations and formulas for which neither the formula nor its
negation characterize the situation.

Seligman [8] presents a hybrid logic (with predication and quantification)
in which the nominals refer to situations and the satisfaction relation resembles
in many ways the characterization relation we have described here. His logic
does not, however, allow extend to the second case described above, in which
multiple formulas together characterize a conjoined situation which none of
them characterize independently.

We present in this paper a propositional hybrid logic, HLC**, in which the
satisfaction relation is identified with the characterization relation described
here. To handle of conjoined situations, we introduce a binary modal opera-
tor which relates its arguments to a situation consisting of the subsituations
characterized by the arguments. An HLC** model is a join semi-lattice of
situations based on a partial inclusion ordering. Unlike other situation logics
with an inclusion ordering, our basic relation between formulas and situations
is not persistent with respect to this ordering. It is possible, however, to de-
fine in HLC** a persistent relation along the lines of the support relation of
Schubert or Barwise and Perry [2]. HLC** can be thought of as a modal
reconstruction of the propositional fragment of Schubert’s FOL**, although
unlike Schubert, we allow for situations to be characterized by both boolean
and modal conjunction, thus distinguishing the first two kinds of extension to
primitive characterization discussed above.

2

2 Syntax and semantics

2.1 Syntax

An HLC** language is determined by a set of propositional symbols PROP =
{p, q, p′, q′, . . .} and a set of nominals NOM = {i, j, k, `, `1, . . . , `i, . . .}. Mem-
bers of PROP∪NOM are called atoms. The set of well-formed formulasWFF
of an HLC** language defined over PROP and NOM is given by the following
grammar, where p ∈ PROP and i ∈ NOM:

S ::= p | i | S∗∗i | ¬S | 3S | 2S | S ◦ S | S?S | S ∧ S | S ∨ S

2.2 Semantics

Models for HLC** are like models for other modal logics. There are two
primary differences. The first is that states have an intended interpretation as
situations, and thus, following [6], the set of states is a join semi-lattice based
on a partial inclusion ordering, v. We add a ternary relation on this set, t,
which relates pairs of situations to their suprema. The second difference is
that interpretation is performed by a pair of functions, one that assigns to
each atom the situations that are characterized by the atom, and one that
assigns the situations that are characterized by the negation of the atom.

Definition 2.1 Models, standard models, and frames

A model M for an HLC** language is a pair 〈〈S,v,t〉 , 〈I+, I−〉〉 s.t.:

(i) 〈S,v〉 is a join semi-lattice, and t, a ternary relation on S such that
∀s, t, u ∈ S. t (s, t, u) iff s = sup{t, u}. 〈S,v,t〉 is called the frame
underlying M.

(ii) I+ and I− are interpretation functions with domain PROP∪NOM and
range Pow(S). We call I+ the positive interpretation function and I−

the negative interpretation, or anti-interpetation, function.

I+(or I−) is a standard (anti-)interpretation iff for all i ∈ NOM, I+(i)(or I−(i))
is a singleton subset of S. A model M is a standard model iff:

(i) both I+ and I− are standard,

(ii) for all i ∈ NOM, I+(i) = I−(i),

(iii) I+ and I− do not collide on propositional variables: for all p ∈ PROP,
I+(p) ∩ I−(p) = ∅.

The semantic definition of an HLC** language is given in terms of satis-
faction conditions. The satisfaction relation is mirrored in the language by
the characterization relation ∗∗.

Definition 2.2 Satisfaction conditions for HLC**

Let M be a standard model 〈〈S,v,t〉 , 〈I+, I−〉〉 and s ∈ S. We give both

3

positive satisfaction and anti-satisfaction − conditions:

M, s p iff s ∈ I+(p)

M, s i iff I+(i) = {s}

M, s ¬φ iffM, s − φ

M, s 3φ iff ∃s′.s′ v s andM, s′ φ

M, s 2φ iff ∀s′. if s′ v s, then M, s′ φ

M, s φ ◦ ψ iff ∃t, u. t (s, t, u) andM, t φ andM, u ψ

M, s φ?ψ iff ∀t, u. if t (s, t, u), then (M, t φ orM, u ψ)

M, s φ ∧ ψ iffM, s φ andM, s ψ

M, s φ ∨ ψ iffM, s φ orM, s ψ

M, s φ∗∗i iffM, t φ,where I+(i) = {t}

In the anti-satisfaction (−) conditions, the atomic conditions and the condi-
tion for the characterization operator are different. Otherwise, the conditions
for 2 and 3; ◦ and ?; and ∧ and ∨ are exchanged, with − exchanged every-
where for .

M, s − p iff s ∈ I−(p)

M, s − i iff s 6∈ I−(i)

M, s − φ∗∗i iffM, t 6 φ,where I−(i) = {t}

Definition 2.3 Satisfiability and validity

If for some standard model M and some state s, M, s φ, φ is satisfied
in M at s. Satisfiability and unsatisfiability are defined in the obvious way.
If φ is satisfied at all states in a standard model M, φ is globally satisfied in
M (M φ). If for a frame F and for every standard model M based on F ,
M φ, φ is valid on F (F φ). If φ is valid on all frames, φ is valid (φ).

Note that we do not constrain our interpretation functions to guarantee
persistence with respect to the inclusion ordering. We can define a relation
between sentences and nominals that is persistent with respect to the inclusion
ordering: φ ∗ i (read φ supports i) iff (3φ)∗∗i.

We briefly note some of the algebraic properties of the connectives of our
logic. First, 3 and 2; ◦ and ?; and ∧ and ∨ are duals with respect to negation
and thus satisfy DeMorgan’s laws. Also, double negation can be eliminated.
We will therefore assume for the remainder of this paper that negation has
been driven in and double negation has been eliminated where possible. For
example, we will take the tableau rule for ∨ to apply directly to formulas of
the form (¬(φ ∧ ψ))∗∗i, resulting in two outputs, (¬φ)∗∗i and (¬ψ)∗∗i.

4

Because both the satisfaction and the anti-satisfaction conditions for char-
acterization are defined in terms of positive satisfaction, however, negation
cannot be driven across characterization.

The boolean connectives, ∧ and ∨, are commutative, associative and idem-
potent. The modal connectives, ◦ and ?, are commutative and associative, like
the underlying join operation on which they are based. ? is also idempotent,
but ◦ is not fully idempotent. If a state satisfies φ, then it also satisfies φ ◦ φ,
but a state may satisfy φ ◦ φ and yet not satisfy φ.

3 Proof theory

For our proof theory for HLC**, we present an unsigned tableau system [9]
that is based largely on Blackburn’s system for hybrid logic [3], although there
are, of course, more rules to handle the additional binary modal operators.

Normally, given a sound and complete tableau system, we would prove
φ by contradiction. In HLC**, however, the unsatisfiability of ¬φ does not
guarantee the validity of φ. Because there are separate interpretation functions
and satisfaction conditions for negative and positive statements, it is possible
to have a single state which satisfies neither φ nor ¬φ. What the validity of
φ in an HLC** language does guarantee is that for any choice of i, there is
no state that satisfies ¬(φ∗∗i). In fact, the following lemma holds (we omit
proofs of this and other lemmas for brevity; see [1] for full proofs):

Lemma 3.1 An HLC** formula φ is valid if and only if for every nominal i,
¬(φ∗∗i) is unsatisfiable.

In order to prove φ we build a tableau starting with ¬(φ∗∗i), where i is
a nominal that does not occur in φ. If the tableau closes, then φ is valid;
otherwise, it is not.

Since our tableau proofs always begin with a statement of the form ¬(φ∗∗i),
it turns out that it is sufficient for completeness for our tableau rules to deal
only with formulas of the form φ∗∗i or ¬(φ∗∗i), which we call characterization
statements. As Blackburn [3] points out, a tableau system in which all the
formulas are characterization statements essentially internalizes the labels of
a labelled deduction system.

3.1 Tableau rules

The tableau rules are given in Figures (1)–(7) at the end of this paper. In these
rules, φ and ψ represent arbitrary formulas, i, i′, j, j′, k, k′ represent arbitrary
nominals, and `, `1, `2 must be new nominals that do not occur in any formula
on the branch to which the outputs are being added. The intended meaning
of these rules should be clear: the formulas above the line are the inputs, and
the formulas below the line are outputs. Branching rules have vertical lines
which separate the outputs into alternative sets of outputs.

5

Figures (1)–(4) give rules for simplifying embedded formulas in characteri-
zation statements. Recall that we assume that negation is driven in across all
connectives except the characterization operator, across which negation can-
not be driven in. Thus, we need two rules for each of the unary modalities,
binary modalities, and booleans. Note that rule [◦] in Figure (3) does not
apply when both φ and ψ are nominals ([Join1] and [Join2] apply instead).

Rules to regulate the frame are given in Figures (5)–(7) Note that the rule
[Lattice] in Figure (7) yields an undecidable system. We could generalize our
models from join semi-lattices to posets and constrain the ternary relation
t so that if t(i, j, k), then i = sup{j, k}. Then, the [Lattice] rule would be
unnecessary for completeness with respect to the intended models.

3.2 Tableau construction

We now present a tableau construction algorithm (again based on [3]) for
building a tableau from a (possibly infinite) set of formulas. This algorithm
is sufficient to define derivability, provability, and consistency.

Definition 3.2 Systematic construction

Let PROP and NOM be countable sets. Let PAR be countable set that is
disjoint from each of PROP and NOM. Elements of PAR will be used as new
nominals, as needed. Assume that each of these sets is enumerated. Let Φ be
a set of formulas in an HLC** language over PROP and NOM. Let i be the
first nominal in the enumeration of PAR. Let Φi = {φ∗∗i|φ ∈ Φ}. Enumerate
Φi following the enumeration of Φ. Construction proceeds as follows:

Step 1: Let the first characterization statement in Φi be the root node of a tree.
This tree, which we call T1, is clearly finite.

Step n+ 1: Let Tn be the finite tree constructed at step n. Apply all rules that are
applicable to formulas or tuples of formulas in Tn. Since Tn has only finitely
many nodes, there are only finitely many possible rule applications. The
following constraints must be obeyed in applying the rules:

(i) Apply [∗∗Ref], [3Ref], and [Lattice] once for each distinct nominal (or pair
of nominals) on each branch of Tn.

(ii) When a non-branching rule is applied, the output formulas are added to
the end of each branch containing the input formula(s).

(iii) When a branching rule is applied, each branch containing the input fo-
rumla(s) is split into as many branches as the rule has output alternatives.
Each set of output alternatives is added to its own branch.

(iv) When a rule that introduces a new nominal or nominals is applied, the
next unused nominal(s) in PAR are used.

After all the rules have been applied, add the n+ 1-th element of Φi to the
end of every branch. The resulting tree Tn+1 is clearly finite.

T , the tree obtained as the limit of this sequence, is a completed tableau.

For any branch B of a tableau, B is closed iff it contains either:

6

• both ¬(φ∗∗i) and φ∗∗i, for arbitrary formula φ and arbitrary nominal i; or

• both (¬α)∗∗i and α∗∗i, for arbitrary atom α and arbitrary nominal i.

A branch B is open iff it is not closed. A tableau is closed iff all of its branches
are closed. A completed tableau is open iff at least one of its branches is open.

Definition 3.3 Derivability and provability

A contradiction is derivable from a set of formulas Φ iff the application of
the systematic tableau construction to Φ yields a closed tableau. A formula
φ is provable iff there is a finite closed tableau whose root node is ¬(φ∗∗i), for
i a nominal that does not occur in φ.

Definition 3.4 Consistency

A formula φ is consistent iff for some nominal i that does not occur in
φ, ¬(φ ∗∗i) is not provable. A finite set of formulas Φ = {φ1, . . . , φn} is
consistent iff for some nominal i that does not occur in any formula in Φ,
¬((φ1∗∗i)∧ . . .∧ (φn∗∗i)) is not provable. A set of formulas Φ is consistent iff
every finite subset of Φ is consistent.

4 Soundness and completeness

4.1 Soundness

We first define an appropriate notion of satisfiability for a tableau branch.

Definition 4.1 Satisfiability by label

Let Σ be a set of characterization statements andM = 〈〈S,v,t〉 , 〈I+, I−〉〉
be a standard model. Then, Σ is satisfied by label in M iff for all σ ∈ Σ:

(i) if σ is of the form φ∗∗i, then M, s φ, where I+(i) = {s},
(ii) if σ is of the form ¬(φ∗∗i), then M, s 6 φ, where I+(i) = {s}.
We say that Σ is satisfiable by label iff there is a standard model in which Σ
is satisfiable.

Theorem 4.2 (Soundness) Let Σ be a set of characterization statements
that is satisfiable by label. Then, for each rule R, at least one of the sets
obtainable by expanding Σ by R is satisfiable by label.

4.2 Completeness

Our proof of completenes follows Blackburn’s, with complications due to the
binary modalities and to the construction of more complicated models.

Definition 4.3 Hintikka set

A Hintikka set H is a set of characterization statements that satisfy:

(i) Satisfiability conditions: these conditions ensure satisfiability at the atomic
level in a standard model (α is an atom; i and j are nominals).

7

(a) If α∗∗i ∈ H, then ¬(α∗∗i) 6∈ H.
(b) If (¬α)∗∗i ∈ H, then ¬((¬α)∗∗i) 6∈ H.
(c) If α∗∗i ∈ H, then (¬α)∗∗i 6∈ H.
(d) If (3j)∗∗i ∈ H, then ¬((3j)∗∗i) 6∈ H.

(ii) Closure conditions: H must be closed under application of the tableau
rules. For branching rules, for every input formula (or tuple of input for-
mulas) in H, only one output alternative set need be in H. For existential
rules, the new nominals need not actually be new to H.

Definition 4.4 Let H be a Hintikka set. Define Nom(H) to be the set:

{i|i is a nominal that occurs in some formula in H}.

Define the binary relation ∼H on Nom(H) by i ∼H j iff i ∗∗j ∈ H. ∼H

is obviously an equivalence relation. Define |i| as the equivalence class of i
under ∼H .

Lemma 4.5 Let H be Hintikka set, and let i, j ∈ Nom(H). Then, i ∼H j iff
for every formula φ, φ∗∗i ∈ H iff φ∗∗j ∈ H.

Definition 4.6 Induced model

Let H be a Hintikka set. Define a standard model induced by H as H =〈〈
SH ,vH ,tH

〉
,
〈
IH+, IH−〉〉

, where:

(i) SH = {|i||i ∈ Nom(H)},
(ii) |i| vH |j| iff(3i)∗∗j ∈ H,

(iii) tH(|i|, |j|, |k|) iff(j ◦ k)∗∗i ∈ H,

(iv) For any propositional atom p that occurs in H, IH+(p) = {|i||p∗∗i ∈ H
and IH−(p) = {|i||(¬p)∗∗i ∈ H}. For any other propositional atom
q, IH+(q) = IH−(q) = ∅. For any nominal j ∈ Nom(H), IH+(j) =
IH−(j) = {|i||j∗∗i ∈ H}. For other nominals k, IH+(k) = IH−(k) = {∅}.

Lemma 4.7 Let H be a Hintikka set. Then any standard model induced by
H, H =

〈〈
SH ,vH ,tH

〉
,
〈
IH+, IH−〉〉

, is, in fact, a standard model.

Lemma 4.8 (Hintikka’s Lemma) Every Hintikka set is satisfiable by label
(in a standard model induced by the set).

Lemma 4.9 Every open branch on a completed tableau is a Hintikka set.

As a consequence of (4.8) and (4.9), the completed tableau constructed
from an unsatisfiable set of formulas must be closed.

Theorem 4.10 (Completeness) Every consistent set Φ is satisfiable.

Proof. Let Φ be an arbitrary consistent set of formulas. Assume that Φ is
unsatisfiable. Then, the tableau T constructed from Φ must be closed. Prune
each branch of T at the point at which it closes. This pruned tree is finite (by
König’s Lemma) and is thus contained in Tn for some n. Now, consider the

8

set of formulas Φn = {φ1, . . . , φn}, the first n formulas in the enumeration
of Φ. Since Φn is a finite subset of Φ, Φn is consistent. Thus, for any new
nominal i, ¬((φ1 ∗∗i) ∧ . . . ∧ (φn ∗∗i)) is not provable. But, in fact, we will
demonstrate that ¬((φ1∗∗i) ∧ . . . ∧ (φn∗∗i)) is provable. Form a tableau with
¬((¬((φ1∗∗i)∧ . . .∧ (φn∗∗i)))∗∗j), where j is a new nominal, as the root. Apply
the [¬(∨)] rule n − 1 times, yielding ¬((¬(φ1∗∗i))∗∗j), . . . ,¬((¬(φn∗∗i))∗∗j)
along the initial branch of the tableau. Now, apply the [¬(¬∗∗)] rule to each of
these formulas, yielding φ1∗∗i, . . . , φn∗∗i along the initial branch of the tableau.
Now, we can apply the sequence of rule applications used to generate the closed
tableau Tn to this tableau, yielding a closed tableau.

2

5 Conclusion

Recasting expressive situation logics in a modal framework in which the inclu-
sion ordering on situation provides interrelated unary and binary modalities
provides several benefits. In addition to capturing the characterization re-
lation we would like to model, the diamond modality allows us to represent
a support relation, and the box modality provides a simple way of express-
ing homoegeneity, or inward persistence, which is an important property of
eventualities that typically distinguishes atelic eventualities from telic ones.

References

[1] Ahn, D. and L. Schubert, A hybrid logic reconstruction of an expressive situation
logic, Technical report, University of Rochester Computer Science Dept. (2003).

[2] Barwise, J. and J. Perry, “Situations and Attitudes,” MIT Press, 1983.

[3] Blackburn, P., Internalizing labelled deduction, Journal of Logic and
Computation 10 (2000), pp. 137–168.

[4] Cooper, R., Austinian propositions, Davidsonian events and perception
complements, in: Tbilisi Symposium on Language, Logic and Computation, CSLI,
1998 .

[5] Davidson, D., The logical form of action sentences, in: Essays on Actions and
Events, Oxford University Press, 1967 .

[6] Schubert, L., The situations we talk about, in: J. Minker, editor, Logic-Based
Artificial Intelligence, Kluwer Academic Publishers, 2000 .

[7] Schubert, L. and C. H. Hwang, Episodic Logic meets Little Red Riding Hood, in:
Natural Language Processing and Knowledge Representation, MIT Press, 2000 .

[8] Seligman, J., The logic of correct description, in: M. de Rijke, editor, Advances
in Intensional Logic, Kluwer, 1997 .

[9] Smullyan, R., “First-Order Logic,” Springer-Verlag, 1968.

9

(φ∗∗j)∗∗i

φ∗∗j
[∗∗]

¬((φ∗∗j)∗∗i)

¬(φ∗∗j)
[¬(∗∗)]

(¬(φ∗∗j))∗∗i

¬(φ∗∗j)
[(¬∗∗)]

¬((¬(φ∗∗j))∗∗i)

φ∗∗j
[¬(¬∗∗)]

Fig. 1. Characterization rules

(3φ)∗∗i

(3`)∗∗i φ∗∗`
[3]

¬((3φ)∗∗i) (3j)∗∗i

¬(φ∗∗j)
[¬(3)]

(2φ)∗∗i (3j)∗∗i

φ∗∗j
[2]

¬((2φ)∗∗i)

(3`)∗∗i

¬(φ∗∗`)

[¬(2)]

Fig. 2. Unary modality rules

(φ ◦ ψ)∗∗i [φ and ψ not both nominals]

(`1 ◦ `2)∗∗i

φ∗∗`1

ψ∗∗`2

[◦]
¬((φ ◦ ψ)∗∗i) (3j)∗∗i (3k)∗∗i

¬(φ∗∗j) ¬(ψ∗∗j) ¬((j ◦ k)∗∗i)

¬(φ∗∗k) ¬(ψ∗∗k)

[¬(◦)]

(φ?ψ)∗∗i (j ◦ k)∗∗i

φ∗∗j ψ∗∗k
[?]

¬((φ?ψ)∗∗i)

(`1 ◦ `2)∗∗i

¬(φ∗∗`1)

¬(ψ∗∗`2)

[¬(?)]

Fig. 3. Binary modality rules

(φ ∧ ψ)∗∗i

φ∗∗i

ψ∗∗i

[∧]
¬((φ ∧ ψ)∗∗i)

¬(φ∗∗i) ¬(ψ∗∗i)
[¬(∧)]

(φ ∨ ψ)∗∗i)

φ∗∗i ψ∗∗i
[∨]

¬((φ ∨ ψ)∗∗i)

¬(φ∗∗i)

¬(ψ∗∗i)

[¬(∨)]

Fig. 4. Boolean rules

[i on branch]

i∗∗i
[∗∗ Ref]

j∗∗i

i∗∗j
[∗∗ Sym]

¬((¬j)∗∗i)

j∗∗i
[∗∗ Double − negation]

j∗∗i φ∗∗j

φ∗∗i
[∗∗ Nom]

(3j)∗∗i k∗∗j

(3k)∗∗i
[∗∗ /3Bridge]

(j ◦ k)∗∗i j′∗∗j k′∗∗k

(j′ ◦ k′)∗∗i
[∗∗ / ◦ Bridge]

Fig. 5. Equality rules

[i on branch]

(3i)∗∗i
[3Ref]

(3j)∗∗i (3k)∗∗j

(3k)∗∗i
[3Trans]

(3j)∗∗i (3i)∗∗j

i∗∗j
[3Antisym]

Fig. 6. Part-of rules

(i ◦ j)∗∗k

(3i)∗∗k

(3j)∗∗k

[Join1]
(i ◦ j)∗∗k (3i)∗∗k′ (3j)∗∗k′

(3k)∗∗k′
[Join2]

i, j on branch

(i ◦ j)∗∗`
[Lattice]

¬((i ◦ j)∗∗k) (3i)∗∗k (3j)∗∗k

(i ◦ j)∗∗`

¬(k∗∗`)

[¬Join]

Fig. 7. Join rules

