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~ C ' T  
"'Factual knowledge" Used by natural lang._~_o~e processing systems can be cor~niently 
represented in the form of semantic networks. Compared to a "linear" representation such as 
that of I ~  Pre~dicate Calculus however, semantic networks present special problems with 
respect to the use of  logical connectives, quantiflers, descriptions, and certain other construc- 
timts? sy~fe/~tt¢ solutions to these problems will be proposed, in the form Of extensions to a 
more or less conventionalnetwork notation. Predicate Calculus tranzlottons of  network 
'propositions will freq~,ntly be given for comparison, to illustrate the close klt t~p of the two 
forms of representation. 

, . I. Iatrd~ellm 

Semantic networks (cr nets) mean different things to different ~ople. They 
are variously thought of as diagrams on paper, as abstractsets of n-tuples 
of some sort, as data structures in computers, or even as information 
structures in brains. My concern here will be with semantic nets as graphical 
analogues of data structures representing "facts" in a computer system for 
understanding natural language. My point of view is that o r s  heuristic 
programmer. For discussions of the place of semantic nets in psycholog~ca! 
the0fies of cognition see, for example, Anderson an6 Bower [2] and Wikon 
.[42, 43]. 

Semantic nets aid both in the formulation and exposition of the computer 
data structures they resemble. Example~ of such graphical aids are found in 
the work of Quillian [23, 24], palme [22], schank [32, 33], Simmons and 
Bruce [37], Anderson and Bower [2], Hendrix et al. [13], Rumelhart et al. 
[27], My~pouios et al. [21] and many other Writers. Semantic nets are also 
used to advantage in the mechanization of other forms of understanding, 
particularly scene understanding, e.g., by Winston [~], Guzman [12] and 
F'~schein and Fischler [10]. 
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The informal and disparate ways in which semantic nets have been used 
preclude their precise definition in a nonrestrictive way. However, they have 
generally shared the following characteristics: 

(1) Particular as well as general concepts are represented as labeled or 
unlabeled nodes of a graph. 

(2) Propositions consist of subgraphs with finks to a predicative concept 
and to a suitable number of conceptual arguments for the predicate. Explicit 
proposition nodes are sometimes introduced as points of attachment for these 
links, and/as units on which propositional operators (e.g., "knows that") 
can operate. Arguments of n-ary predicates may be distinguished by the use 
of link labels, distinct linkage types, or binary decomposition of the predicates. 

(3) Duplication of nodes denoting the same concept is avoided. Thus 
several arcs associated with several distinct propositions may impinge on a 
concept node. Such nodes are usually regarded as corresponding to a unique 
computer storage location, i.e., the entry point for accessing knowledge about 
that.concept. Similarly proposition nodes are regarded as uniq:Je. .. 

In comparison with Predicate Calculus encoding s of factual knowledge, 
semantic nets seem more natural and understandable. This is due to the 
one-to-one correspondence between nodes and the concepts they denote, to 
the clustering about a particular node of propositiom about a particular 
thing, and to the visual immediacy of "interrelationships" between concepts, 
i.e., their connections via sequencesofpropositional finks. By virtue of these 
properties semantic nets lead more readily to "associative" and comparison 
algorithms of the type described by Quillian [23, 24] for finding intersection 
nodes for two related concepts, and by Winston [44] for comparing tw3 
complex scene descriptions. Certain kinds of deductive inference also appear 
to be facilitated by the network representation (Sandewall [30]). 

Having acknowledged some advantages of semantic nets over the Predicate 
Calculus representation, I should like to emphasize that I regard the two 
forms of representation as closely akin.t I will often supply Predicate Calculus 
equivalents of network propositions in order to illustrate their near- 
isomorphism. Furthermore, semantic networks proposed so far have been 
expressively weaker than Predicate Calculus, particularly in their handling of 
quantification and of higher-order statements. In the  following sections I 
will develop a network representation which permits the use of n-ary 
predicates (n = 1, 2, 3 , . . .  ), logical connectives, unrestricted quantification 

1 Formal logical representations are often wrongly maligned for supposedly committing 
the designer to the application of synteatieally "~dmted uniform inference procedures. 
This criticism confuses the/a~ua~, of Iogiz with i~ ca/ad~.. Nothing whatever prevents 
the application of heuristic or plausible inference roles to Predicate Celculfs assertions. 
Indeed, PLANN~-Hkc systems combine, heuristic inference procedures with a restricted 
form of Predicate Calculus in the data base. 
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(including quantification over predicates), lambda abstraction, and modal 
operators such as belief and counterfactual implication. The representation 
easily accommodates propositions of the type encoded by Quillian [23, 24], 
Winston [44], Schank [32] and Rumelhart et al. [27] in their networks. 
Comparison with network representations used by these and other authors 
are made as far as space permits. Section 2 introduces the basic propositional 
notation and includes a necessary digression on the role of"cases" in semantic 
nets. Sections 3--8 progressively extend the power of the notation. All 
extensions are analogues of standard notational devices employed in various 
first-order or higher-or0ter Predicate Calculi. Although no formal semantics 
are given for the network notation, its correspondence to standard logical 
notation indicates how such semantics could be formulated. 

2. Atomic Propositions 

The basic node type in the notation to be developed is the concept node. 
Concept nodes may denote individuals such as John, Canada, a particular 
chair, or a particular teal number; they may denote sets such as a set of 
children, a set of numbers, or a set of properties; or they may denote 
predicative concepts such as (the universal concept) chair~ red, honest, virtue, 
larger than, in front of, between, or gives. Nodes may be labeled with names 
for the concepts they denote, e.g., John, chair, chairl, chair2; ordinary 
attributive terms such as "chair" are reserved for the corresponding universal 
concepts, while numerically suffixed words such as "chairl" are used for 
particular instances of the concepts. 

The smallest unit of information in a semantic net is the atomic proposition. 
An atomic proposition consists of a proposition node, a PRED link to a 
predicative node, and links to a suitable number of concept nodes serving a, • 
argutaents ofthe predicate. The argument links are marked in some systematic 
way, e.g., A, B, C, etc.. to distinguish the first, second, third, etc., arguments. 
Examples are shown in Fig. l(a)-(c), atongwith the.;r Predicate Calculus 
representations. All nodes in Fig. l(a)-(c) are regarded as type nodes in 
Quillian's [23] sense and correspond to unique storage locations. Note that 
the links in a propositior~ are directed from the proposition node to the 
components of the proposition. The only significano ~. of this convention is 
that it ensures nonaml~iguity of the network syntax. In a computer implemen- 
tation the links could be reversed or two-way, depending on computational 
needs. 

The propositional diagrams may be simplified as follows. Any explicit 
proposition node along with its link to the predicative node may be replaced 
by a predicate token, viz., the (nonencircled) name of the predicate. Since 
predicate tokens implicitly establish proposition nodes, distinct tokvns must 
be used in distinct propositions, even if the predicates involved ar~ ttte same. 
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Another permissible simpfification of the diagrams is the omission of link 
markers when the predicate is monadic (i.e., denotes a property) or dyadic 
(i.e., denotes a binary relation); in the dyadic case the first and second 
arguments are then distinguished by omitting the arrowhead on  the link to 
the first argument. The simplified diagrams for the propositions in Fig. 
l(a)--(c) are shown in Fig. l(d)-(f). I will usually opt for the simplified notation 
in the sequel, except in diagramming certain higher-order constructions. 

(Ednonton)f:_f.... ~ P B E D ~  (~dmonto~ ~ity 

t . a )  bEdnonton i s  a c£ty,, (d) 
c£t¥ (Edmonton) 

& ~  @Ib~a~'- pagt-o£. ~ a n a d a )  

(b) -11berta i s  par t  of Canada m (e) 
pa gt-og ( a lbe r t a .  Can ada) 

• ( ~ - ~ -  g : L v . ' ~  

(c) nJohm g£ves the  book t o  nagy w (f) 
g£ve (John• book1 • nat j) 

Fro. 1. Atomic propositions, in full and abbreviated. 

The proposed propositional notation is closely related to various extant 
notations. Fig. l(e) is essentially in the style of Winston [44] except that the 
two argument link~ have not been joined into a single directed arc. However, 
Winston did not introduce proposition nodes; this omission would hamper 
the addition of logical connectives and propositional operators to his 
notation. I regard Fig. l(d) as the proper monadic analogue of the dyadic 
notation. Most exponents of semantic nets artificially convert monadic to 
dyadic predicates by introducing such  predicates as ISA and HAS- 
PROPERTY which can be thought of as applying their second arguments 
to their first arguments. This strikes me as a Procrustean men, are for 
Artificial Intelligence 7 (1976), !63-198 



SF.MANTIC NETWORKS 167 

enforcing the dyadic propositional format, whose theoretical or practical 
benefits are unclear. Another method of paraphrasing monadic predication is 
by means of set membership, e.g., by expressing "Turing is human" as 
"Turing belongs to the class of human beings". This is less objectionable 
because set membership and set inclusion predicates have other worthwhile 
uses that justify their introduction into the formal vocabulary. In particular, 
the usual set terminology would be sorely missed in the representation of 
many quite ordinary propositions, such as: "Several members of the au ~ience 
fell asleep and one walked out." However, while paraphrasing "x has 
property P" as "x is in the set of P's" is acceptable, paraphrasing "property 
P"  as "the set of P's" is in general unacceptable. Observe, for example, the 
contrast in the meanings of the two statements (based on Carnap [5]) "The 
class of human beings is the same as the class of featherles~ bipeds", and 
"The property 'human' is the same as the property 'featherless biped'." The 
lambda abstraction mechanism to be introduced in Section 7 will enable us 
to represent statements of the latter type. 

Diagrams l(a)-(c) closely resemble the propositional graphs of Rumelhart 
et a1.[27]. Less obviously, diagrams (c) and (f) are quite close to Quillian's 
[24] and S~hank's [32] representations respectively. The similarity can be 
brought to light by slightly rearranging their representations. First compare 
Fig. 2(a) (repeated from Fig. l(c)) with Fig, 2(b). The latter is based on 

B aoku 
[* * ]  

book1 
[ ] 

[ ] 

(al (b) 

Fro. 2. Comparison with TIC notation "John gives the book 'o Mary". 

Quillian's notation for his Tea~h~ble Language Comprehender [24]. Argu- 
ment order is indicated by tile o : ~ r  of ~he ~te~sks which are the place- 
holders for the components of the proposition (except for the first argument 
of the predicate, which is taken as the subject about which the proposition is 
made and is finked to the proposition node as a ~hole). The ~ a r e  brackets 
contain place-holders for the superset (gene~'al cate~orT) of the co~esponding 
concept and for any number ofproverties of (propositions about) the concept. 
Quillian tried to do away with x: >~binary predicates by regarding additional 
arguments as modifiers. This accounts for the modifying property "to Mary'" 
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in the diagram. This seems to stretch the notion of a property quite inordina- 
tely and indicates that the restriction to binary predicates is unnatural. 
Extension of the TLC notation to allow for hoary predicates would make it 
nearly isomorphic with the present notation. 

To bring out the relationship of Schank's [32] notation to the present 
notation, we paraphrase "'John gives the book to Mary" as "John transfers 
the book from him~lf to Mat3"', thus replac~tg the 3-place predicate "give" 
by the 4-place predicate "transfer".2 The representations in the present 
notation and in Schank's notation (apart from a slight geometrical rearrange- 
men0 are shown in Fig. 3. It would not be difficult to devise an algorithm 
for translating either notation into the other. The special a ~  of Schank's 
r, otation lies in the significance one may attach to the linkage types and 
labels: agent, object, and recipient in this example, i.e., conceptual "cases" 
of the type advocated by Fillmore [8] and used by &:hank [32], Simmons 
[35], Abelson [1] end others. 

--tgluts I) -% 
book1 

Y John~==>tgan • 

Oo~n-~~~hary 
Is} lb} 

FiG. 3. Comparison with Schank's notation "John transfers the book from John to Mary", 

The notion ofcase derives from. the systematic similarities between the 
roles played b]/~the ~argtiments of many predicates in relation to those 
predicates. For example, action predicates as different as "give" and "tell" 
both involve an agent,, an entity directly acted on (an object in "give", a 
message in ,'tell"), and an indirect object or recipient. Ft'om such similarities 
some researchers influenced by Fillmore have concluded that the cases 
t~,emselves are conceptually primitive relations between the entities participat- 
ing in an action and the action as a whole. This view might lead one to 
redraw Fig. 3(a) as shown in Fig. 4. The central node now denotes a specific 
action or process (a notion that seems a tittle obscure) modified by five 
distinct atomic propositions: transfer(b), agent(John,b), object(bookl, b), 
donor(John,b) and recipient(Mary, b), where b is the action being modified. 
Note that cases are here regarded as genuine relational concepts rather than 
as mnemonic markers for ranking arguments of predicates (hence the lower 
case spelling). Subscribing to this view of cases, Simmons [35, 36] writes 
down propositions such as agent(John,run) as explicit instances of case 

2 None of the predicates appearing illustratively in this paper are proposed as primitives 
in an understandin8 system. 
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relations and argues that the meanings of case relations can be defined by 
specifying their implications. As examples of implications he suggests that 
agent(a,b) implies that a is animate, b is a process, and b has some effect on a. 
The last of these implications is difficult to evaluate without additional 
explication. The first and second merely delimit the domain and range of the 
agent rOation respectively and thus cannot go far towards defining its 
meaning. Moreover, the domain restrictions associated with a particular case 
vary from one predicate to the next. Schank's [33] objective case requires a 
physical object in the context of a PTRANS (physical transfer), an abstract 
relationship such as ownership in the context of an ATRANS (abstract 
transfer), and a proposition in the context of an MTRANS (mental transfer). 

t g a n s f e =  

gec~~ 
Fio. 4. Case relations for "John gives the book to Mary". 

To my mind, a genuine understanding of the structu~l analogies between 
different sorts of actions requires analysis of such actions in terms of more 
elementary events. For example, the proposition "John handed the book to 
Mary" could be. analysed along the following lines. John was in a purposive 
state, the purpose being "the book is in Mary's hand" (or perhaps "the book 
is near Mary"). As an eventual (and intentional) result of John's purposive 
state, the book was in one of John's hands and was moving towards Mary. 
As an eventual result of this state the book was near Mary. The analysis of 
"John gave the book to Mary" would be similar but would contain less 
specific state information. The description of events in terms of successive 
states is developed in more detaii in Cercone and Schubert [6]. Case relations 
can be understood as complex nonprimitive relations derived from such 
causally and teleologically related sequences of states. For e'~anple, the 
notion of an agent seems to depend in part on causal priority of a state of 
the supposed agent in the sequence of states under consideration, in part on 
the extent to which purposive behaviour can be ascribed to the supposed 
agent in general, and in part on the extent to which the particular sequence 
of states which he initiated can be assumed to be intentional on his part. 

Thus I claim that there is a level of semantic representation which is 
semantically "deeper" or more elementary than the level of case-structured 
action propositior,. That is not to say that such action propositions should 
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be banished from semantic nets; on the contrary it seems plausible tt 
several levels of  representation may berequired for full language coml~ 
hension, ranging from "low-resolution" representations relatively close 
linguistic surface structure to "high-resolution" representations that a 
relatively language-free. What I am calling into question is any claim th 
cases are the ~mdamental semantic relations and that Fig. 4 (for example) 
therefore the proper interpretation of Fig. 3(a). Instead I regard case labc 
such as in Fig. 3(a) as mere mnemonic markers, although indicative, 
complex relations predicable of sequences of states a t  a more elementa~ 
level of  analysis.3 To prevent confusion between markers and predica 
names I will consistently use capital letters for the former and lower c~ 
letter for the latter. I will occasionally use suggestive argument markers suc 
as WHO, WHAT in place of the noncommittal markers A, B, . . . .  

Finally, Fig. 5 illustrates yet another way of diagramming the senten, 
"John gives the book to Mary" which is quite unlike any of  those of Figs.l- 
This is based loosely on Anderson and Bower [2]:4 the predicate has bee 

S /  %.17 

Fro. 5. Binary decomposition of "John gives the book to Mary". 

decomposed as a binary tree, i.e., the  predicate is applied to one argmnent a 
a time. The four unlabeled nodes from the  bottom of the Uee to  the roe 
correspond to the binding o f  zero, one, two, and all three arguments of th 
predicate. Links are labeled S (subject)~ P (predicate), R (relation), O (object] 
or with set membership or set inclusion symbols. 

3 Aa important, exception is Schank's imtrun~tal case, which expresses a pnuin 
relation between action prol~sitions. I believe that this" relation can be fur.her analyzed iJ 
terms of intentional states of agents and causal relations between events. 

4 Actually .~t:derson and Bower render this sentence as "John transfers the book, causi~ 
Mary to possess it". However, this trades the problem of aecommodatipg the recipient o 
"give" for that of accommodatin8 the destination of the transfer, which Anderson an, 
Bower neglect. 
Artij~clal httelligen~. 7 (1976), 163-198 
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The first question raised by this notation is whether any semantic signifi- 
cance is to be attached to the link labels. In view of the earlier comments 
about case labels, I take Anderson and Bower's link labels to be mnemonic 
distinguishing marks, possibly indicative of complex relations at some deeper 
level of analysis. Here the indicated relations seem to be dependent not only 
on elementary sequences of states and properties of the concepts involved 
but also on discourse context. The notion of a propositional subject, for 
instance, would appear to depend upon momentary discourse theme or focus 
to some extent. 

A second feature of the notation calling for explanation is the set, theoretic 
form of predication (e.g.,the "membership in give" in Fig. 5). At first glance 
we might take this as expressing membership in a set of n-tuples, by analogy 
with the standard paraphrase of monadic predication in terms of membership 
in a set of l-tuples (individuals). Let us accept this view for the moment and 
turn to another distinctive feature of Anderson and Bower's notation, namely 
the extra nodes corresponcEng to the binding of some but not all arguments 
of a predicate. These nodes serve as arguments of adverbial modifiers and as 
such are perhaps indispensable. However, since they are tied ultimately to 
relations at the bottom of a propositional tree via set membership, they 
presumably denote single n-tuples; I cannot see how to interpret adverbial 
modification of an n-tuple. A possible way of resolving this difficulty may be 
to regard general concepts such as "give" as classes of sets of n-tuples (i.e., 
classes of relations). In that case the adverbial modifiers would operate on 
relations (sets ofn-tuples) rather than single n-tuples, and could be understood 
as selecting subsets of these relations (cf. Reichenbach [26]). 

Unfortunately Anderson and Bower do not justify or explain these features 
of their system very thoroughly. I am inclined to think that at a sufficiently 
detailed level of analysis adverbial modification can be expressed without 
decomposition of predicates. For example, a manner adverb such as 
"quickly" applied to an action or activity could ultimately be expressed by 
a comparative proposition about the time taken for the action or for a 
certain portion of the activity. However, I should point out that the lambda 
abstraction technique to be introduced in Section 7 allows selective binding 
of predicate variables, making it possible in principle to treat modifiers 
(adjectival as well as adverbial) in a manner similar to that of Anderson and 
Bowe;. 

3. Logleal Connectives 

In most varieties of semantic nets very little use is made of logical connectives. 
There is little need for conjunction, since usually all propositions in the net 
are assumed to be asserted, and of course this is equivalent to assertion of 
their conjue, ction. That several researchers ,have chosen to do without 
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disjunction as well is perhaps traceable to the fact that assertion of"p v q" 
is in a sense only half as informative as assertion of any of the binary conjuncts 
which imply it (p & q,-~ p & q, or p & -~q), yet is just as bulky. 

Nevertheless disjunction and other connectives are commonplace in 
ordinary discourse and in any case are needed for truth-functional complet 
hess. Now everyone who uses semantic nets employs some sort of negation 
device and of course negation together with conjunction is truth-functionally 
complete. The problem with most ,3f the negation devices, however, is that 
they are applicable to atomic sentences only (e.g., putting "'not" in front of 
a predicate, or crossing off a subject-predicate link); and negation of atoms 
together with conjunction is not truth-functionally complete. It is quite clear 
what the alternatives are. If we want to restrict negation to atoms, we need 
to introduce an additional logical connective (e.g., disjunction or implication). 
If we want to stay with negation and conjunction, we have to extend the 
negation ,'onvention so that it is applicable to conjuncts. In either case we 
need to create graphical entities which correspond to composite sentences 
composed of arbitrarily many atomic sentences. The obvious solution lies in the 
introduction of explicit nodes for logical compounds of propositions (or open 
sentences), with graphical links to the components. 

The simplest logical operator is the negation operator. Fig. 6 shows its 
use in forming the denial (labeled p2) of the proposition "John loves Mary" 
(labeled pl). The structure of p2 is entirely analogous to the structure of any 

lOP 

(a) (b) 

Fla. 6. "John does not love Mary", in Cull and abbreviated. 

monadic predication, such as that in Fig, l(a). Instead of a PRED rink we 
have an OP (operator) link and instead of a conceptual argument we have a 
propositional operand. Broken finks are used for both *~ links to wake the 
logical compoun~i visually distinguishable. The abbreviated version of p2 is 
also entirely analogous to the abbreviated form of monadic predication, 
with an operator token implicitly establishing the compound proposition node. 

Fig. 7 illustrates disjunctive notation for the proposition "John, Jim, or 
Arti~ial Intelligence 7 (1976), 163--198 
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Joe loves Mary". The compound proposition p4 is formed by application of 
the opentor " v "  to the propositional operands pl, p2 and p3. In general it 
is convenient to assume that the disjunction operator takes one or more 
operands. Note that no distinguishing markers are needed on the links, s_;nce 
disjunction is a commutative and associative operation. 

09anp m~,mln,~ ~m0 ~ o qul m,,Imam, ~ 

! • 

s & 
o 

o 
! 

III & ~  
OPl \ 

I i 

,........' 
%'I T _  _ .  

P R g D  t • t 

i K V . . . . . . . . . . .  x / 

Ir ~ l o v e s  - I  

(a) (b) 

Fio. 7. "John, Jim or Joe loves Mary", in full and abbreviated. 

If desired, other logical connectives can be introduced in exactly the same 
way. For example, ~t generalized implication operator is shown in Fig. 8. 
This allows for a conjunct of arbitrarily many antecedents and a conjunct 
of arbitrarily many comequents. No labels are needed in the abbreviated 
notation if consequent and antecedent links are shown emerging fore and aft 
of the implication symbol respectively. Equivalence is defined analogously 
(symbol 4,,), allowing arbitrary sets of conjuncts to be equivalenced. Examples 
involving these forms of implication and equivalence will be seen later on. 

v ' - .  t C i  ;~ 
a " , v - . ~  S C 

< . . . . . .  - t  ~ . . . . . .  • 

~." ! OP ~ ' . h  
I 

abbgev:i .ated:  

~ ' ~ ' ~  ~ . . . . . ~  ~-~'  
qb qb ¢ ~ .  

Fro. 8. Generalized material implication. 

For a semantic net containing logical compounds, we must revise the usual 
convention of regarding all propositions in the net as asserted. The convention 
I will adopt is that the complete semantic net asserts exactly those propositions 
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which are not constituents of compound propositions (Le., operands of 
connectives or modal operators). Graphically this means that exactly those 
propositions are asserted which are not pointed to. Thus in Fig. 7 the 
compound proposition "John, Jim, or Joe loves Mary', is as~rted whereas the 
constituents "John loves Mary", "Jim loves Mary", and "'Joe loves Mary" 
are not. This raises the question of how to assert a proposition which is also 
a constituent of a compound proposition. First, for logical con~gounds this 
need does not arise. For example, if a constituentp of a disjunctionp v q v r 
is known to be assertable, then that entire disjunction can be replaced by 
the proposition p and the alternatives q v r deleted. The reason is that 
p & (p v q v r)¢,~p. Similar simplifications result if a constituent of any 
logical compound is asserted. For propositional attitudes, causes, intentions 
and the like, however, we may indeed want to assert a constituent independ- 
ently of the compound. In previous work on semantic nets this has been 
accomplished by repeating the constituent, as would be necessary in Predicate 
Calculus. For example, to assert that John believes that Mary is happy and 
that in fact Mary is happy one would write "believes(John,happy(Mary)) & 
happy(Mary)". For networks, however, there is a more elegant method which 
completely avoids multiple occurrences of propositions. It is to use dis- 
junction with a single operand, 

V - - -  --* p ,  

as a way of saying "p holds". Since the "compound" proposition established 
by the token v is not pointed to, it is automatically asse~ed even though p 
mi~f, ht be embedded in any number of compound propositions. Alternatively 
we could use conjunction of a single proposition (with an explicit "&") or 
even double negation to the same effect. Examples are shown in Fig. 9. The 
"beliefs" diagrammed in this figure are examples of"propositional attitudes"; 
they are governed by modal operators about which I will have a little more 
t o  say ir~ Section 8. 

I will conclude this section with some remarks on existing notations. 
Quillian [23] used a "hopping arrow" to conjoin or disjoin sets of propositions. 
However, any such arrow was associated with a particular subject, and as the 
disjunction in Fig. 7 illustrates, disjoined propositions need not have ~t 

~common subject. Indeed they need not share any node ("Someone is in the 
house or Mary forgot to close the gate"). Winston ~ [44] restricted himseIf to 
intplicit conjunction plus negation of atoms, although he obtained some of 
the effect of disjunction by means of a "may-be" operator. Rumelhart et al. 
[27] state that they allow arbitrary compound propositions Jn the internal 
representation, but in their graphical notation they allow only chaining 
together of propositions making up an  "episode". Schank [32, 33] makes 
little attempt to deal graphically with logically connected propositions, as he 
is usually not concerned with displaying more than 2 or 3 related propositions. 
Artificial Intelligence 7 (1976), 163-,198 
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J ~ n ~ - - -  b e l i e  yes  -~happy  

(a) UJohn b e l i e v e s  , . h a t  15a:7 i s  happlv H 

~ b e l £ e v e s - - - ~ h a p & p y ~  

(b) mJohn b a l £ e v e s  t h a t  flaEy £s  happy and  she  ~s e 

~ ~ - ~ b e l £ e v e s - - - ~ h a p p y ~  
A ! 
! 
! 

(c) wJohn b e l i G v e s  t h a t  Bary 4s ha,,py b u t  she  £snOt a 

~ ~ b e l i e  ve s - - ~ - ~ - - - > h a p p j ~  
A 
I 
I 
I 
V 

(d) " J o h n  b e l £ e v e s  t h a t  19ary i s n e t  h a p p j  bu t  she  i s  a 

FIo. 9. Asserting Propositions by means of monadic disjunction. 

He uses negation of atomic propositions and places connectives in the spaces 
between propositional subgraphs ("conceptua'LiT.ations') to indicate; their 
logical relations. Anderson and Bower [2] ~,re aide to introduce c,rbitrary 
monadic and dyadic connectives since they use explicit proposition ,lodes. 
The same difficulty of interpretation obscures their use of such connectives, 
however, as that remarked upon earlier. For example, they repre~nt implica- 
tion by "membership in imply" without further explanation and give only 
one illustration. They paraphrase all other implicative propositions in terms 
of subset relations. These latter examples involve atomic antecedents only, 
and it is not obvious how a sentence like "The customs official detained all 

. . . . . . . .  

bearded men who were wearing beads" would be represented, in which 
"man", "bearded", and "wearing beads" are implicative antecedents. Note 
that the given sentence must be distinguished from both "A number of 
bearded men wearing beads were detained by the customs official" and "All 
of those detained by the customs official were bearded men wearing bea6~". 

4. Qen~ers 

It is important to have logical quantifiers within semantic net notation for 
several reasons: many statements o~" ordinary discourse involve quantifiers 
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("He called every day but the phone was a'~ways busy"); the representation of 
generr./knowledge in declarative form requires quantifiers ("All children like 
sweets"); the definition of complex concepts requires quan,,fiers ("At all 
times when an individual is walking some foot of that individual is touching 
the ground. . .  "); and definite descriptions of sets require quantifiers ("the 
people of Canada"). 

Yet the treatment of quantifters in semantic nets ha.~ generally been rather 
cursory. Often quantifiers are regarded as monadic modifiers of concept 
nodes, indicative of"how many there are" of that item (i.e., set cardinality). 
Universal quantifiers are then attached in the same way, even though the 
logical operator V ("for all") is not at all indicative of cardinality. 

The notation I will propose initially is analogous to quantifier-free normal 
form in Predicate Calculus. Propositions are in prenex form (i.e., quantifiers 
have maximum scope), existentially quantified variables are Skolemized, and 
unlversal quantification is impficit. This first of all requires a distinction 
between existen, ially and universally quantified nodes. A simple method is 
the use of solid lines for existentially quantified concept nodes (as in all 
p~evious figures), and broken lines for universally quantified nodes. Two 
simple propositions involving universal quantification are shown in Fig. 10. 
They are "Everyone likes Mary" and "Every child likes an .ything sweet" and 
require one and two universal quantifiers respectively. 

) Xikes  
I 
I 

I d 4 . . . ~ . . . b  suee t pecson*--sJ~' chil, 

J 

(a) (b} 
l~o. 10. fa) "EverYOne likes Mary" (Vx)[peason(x)=. IJtm(x, Mary)]; (b) "Every child 
likes anything sweet" (VxXM, v)[dfild(x) & sweet(y) =,, likes(x,y)]. 

Graphical Skolemization consists of linking each existentially quantified 
node tO all universally quantified nodes on which it depends (i.e., whose 
universal quantifiers precede the existential quantifier in prenex form). I shall 
use.. dotted lines for these dependency finks for easy distinguishability from 
propositional and logical finks. The arrows are. directed from the universally 
quantiti=d nodes to the dependent existentially quantified nodes, i.e., they 
indicate the direction of decreas/ng quantifier scope. For example, "All dogs 
chase some cat" is represented as shown m Fig. 1 l(a). In Predicate Calculus 
notation this is 

(Vx){dog(x) ~ ~y)[cat(y) & chase(x,y)]} 
or dog(x) = [cat(f (x)) & chase(x,f (x))], 
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Skolemized. Now if we can assume (3y)cat(y), i.e., there is at least one cat 
(or alternatively, that there is at least one dog), then this becomes 

cat( f  (x)) & [dog(x) ffi:. chase(x,f  (x)) ], 
which corresponds to the slightly simpler diagram shown in Fig. 1 l(b). Here 
the "cat" proposition is no longer regarded as a consequent of the 
"dog" proposition. This type of simplification is often appropriate for 
encoding natural language statements, since we do not usually communi- 
cate in terms of propositions which are trivially true by virtue of the non- 
existence of their referents.S The diagram for the proposition "There is a cat 

° 0 • • • 041, e a) e 

o °e  

. . . .  , . c a t  dogq--=:)-  cat 

(a) 

Fro. 11. "All dogs chase some cat". 

(b) 

which all dogs chase" differs from Fig. 11 only in the absence of the 
dependency link between the "cat" and "dog" nodes. As another example 
consider the proposiLion "There is always someone there". Tiffs might be 
diagrammed as in Fig. 12(a), alter adding the assumption that there is at 

p,~son ' . . N  ~ , o , , t  person t /  

(a) (b) 

Flo. 12. "There is always someone there". 

least one moment of time. Note that a time argument has been added to the 
predicate "at".  The representation seems a little unnatural because of the 
need to  restrict the universally quantified n(~le to "moments" and the 
implicative dependence of the main relationship on that restriction. This 
suggests that i t. would be more natural to use a many-sorted logic, with each 
argument of each predicate restricted to a particular subdomain of the 

5 Which is not to say that we do not communicate about nonexistent entities. 
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domain of discourse, and with time forming a distinct sort. Then quantifica- 
tion over a time argument would automatically be restricted to moments of 
time. This is the course I will take, at least nominally, Sortal distinctions 
could be made explicit by using distinct node shapes for distinct sorts, or by 
using a distinct kind of argument marker on argument pointers to entities of 
each distinct sort, e.g., always using OBJi (i - 1 ,2 , . . .  )*.o point to arguments 
of the sort "physical object". In fact the latter technique is used by Rumelhart 
et al. [27]. Rather then committing myself to a particular method here, I shall 
leave sortal distinctions implicit, except in the case of time. T.,'me calls for 
special treatment because of its central importance in structuring events. I 
will use pairs of parentheses instead of circles for moments of time and mark 
pointers to moments of time "T ' .  A name for a moment of time can be 
placed between the parentheses. Broken parentheses indicate universally 
quantified time variables. With these conventions Fig. 12(a) can be redrawn 
as shown in Fig. 12(b). "There is someone who isalways there" would merely 
lack the dependency link of Fig. 12(b). Additional conventions for time will 
be introduced in Section 5. 

Many higher-order constructions are easily expressed with the notation 
already introduced. For example, "John has all of his father's faults, and 
carelessness is one of them" is represented as shown in Fig. 13. Note that 
both the abbreviated and unabbreviated notation for propositions have been 
used here. Three of the proposition nodes are explicit, while "father-of' and 
the two occurrences of "fault" establish three implicit proposition nodes. 

I~|BD 

f a u l t  

FIo. 13. "John has all ef his father's faults, and carelessness is one of them". 

The higher-order predicate is of course "fault", and the universally quantified 
node should be read "for all predicates". Here the impficit restriction of 
quant~cation to appropriate sorts has been extended to apply to types as 
well, i.e., since "fault" is a predicate on predicates, its argument in any 
proposition is implicitly restricted to the type "predicate". 

The proposed method of representing quantification is applicable only to 
propositions in prenex form. Since conversion to prenex form sometimes leads 
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to loss of clarity, I sh~l now introduce a generalization of the notati~.~ which 
allows arbitrary embedding of quantifiers within the scopes of logical 
connectives or other propositional operators. The notation turns out to be 
more than a mere convenience. It will prove essential in Sections 7 and 8 
which deal with lambda abstraction and modal operators. 

To see how the prenex restriction can be removed consider the following 
proposition: 

O/x)(3y.~Vz){(Vs)P(s,x) = (3t)[Q(t,y,z) ~ (Vu)(Vv)Ow)R(u,v,w)]}. 
We can completely specify the scopes of all quantifiers as follows. First, for 
each sequence of adjacent quantifiers, we specify the dependence of the 
existentially quantified variables on the universally quantified vari:,bles as 
before, i.e., y depends on x and ,, depends on u and v. Second, we specify 
which variables have their quantifier scopes nested just inside the scopes of 
which propositional connectives. Thus s and t depend on =:-, and u, v and w 
depend on ~ in this sense. Exactly the same kind of dotted dependency link 
can be used for this second type of scope relationship as for the first, with 
the arrow going from the embedding proposition to the embedded node. The 
representation of the above proposition is shown in Fig. 14. By the transitivity 

. . . . . '  s - P - - - - > "  s ;  

: ( t ) < . . . . . ~ -  : u  ; 
J ,  - .  " x "  / .~'~ . 

• 1 - 1  I ." 11 ". q~ oO Ill 
, ,- . ,  n t .  / c I -  
t • J¢---- Q * . . . .  <=> . . . . .  a ~ v ) 

I° "'--..I . s %  e-.L -w % ,co 
; z ,  '~vl 
" % . . J  , , , . J  

Fro. 14. Indicating quantifier scopes. (Vx)(]yXVz){(Vs)P(s,x) =, (at)[Q(t,y,z)¢~ (VuXVt,) 
(3w)JC(u,e,w)]}. 

of scope inclusion, Ofu), ivy) and (:114,) lie within the scope of ~,, since the 
equivalence proposition is embedded within the implicative proposition. 
Note that all paths in the net which follow broken and dotted lines in the 
dn~ ~tion of the arrows are paths of decreasing scope. For example, the path 
f rom ,~ to ¢~ to u to H, is a path of decreasing scope. The assumption that all 
quantifiers have scope compatible with the indi,~:ed constraints uniquely 
determines all scopes. 

A more meaningful application of  the operator scope conventions is shown 
in Fig. 15. The diagram expresses the proposition "Mary will receive a 
scholarship provided that she passes all of the exams". Time has been 
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ignored for simplicity and the exams :in question are assumed to be some 
predetermined set. "Provided that" has been rendered (correctly, I believe) 
as "if and.. only if". The Predicate Calculus version is given in the figure 
legend, and is seen to be of the logical form [('~)P(x)] ~ [(Vy)Q(.v)]. In prenex 
form this is 

OvX3w)ffx) f fy) [ [e(x)  =,  Q(.v)] [Q(w) e(v)]] 
which is twice as complicated as the original version a.-d quite incomprehen- 
sible when stated in English. Thus the use of the operator scope conventions 
to retain the original form of the proposition seems justified in this instance. 

l (~  ~ rece4ve ~ ~ h o l a ~ s h i p  

( . t  
V',  %elltllSj 

i ° °°°o T 
p a s s e s e - - - - ~ - - - - - "  .- -~e 

k . . . . .  i ,J. 
%.,.J 

Flo. 15. "Mary will receive a scholarship provided that she passes all of the exams", 
[(3x)[scholarship(x) & receives(Mary, x)]] 4,. [(Vy)Imember~,set.of-exams) =~. passes 
(Mary, y)]]. 

The only prior systematic attempts to include quantifiers in semantic nets 
of" which I am aware are those of Simmons and Bruce [37], Palme [22] and 
Anderson and Bower [2]. Simmons and Bruce discussed single quantifiers 
only. Palme's symbolism is based on SandewaIl's [30] analysis of property- 
structures. In that approach quantifiers are attached singly or in pairs to 
predicates, e.g., to symbolize a transformation from a binary relation R on 
individuals to a binary relation on sets 

VR¥ o lambda XY[Ofx)(Yy) member(x,X) & member(y, Y) =~ R(x,y)]. 

However, this doesn't allow for 3 or more quantifiets in a proposition ("Any 
politician can fool some of the people all of the time"). Anderson and B0wer's 
treatment is not entirely satisfactory either. First, quantified implicative 
propositions are difficult to formulate and interpret, because of the peculiar 
way in which connectives and quantifiers are used. For instance, Anderson 
and Bower's network representation of 

(Vx)[dog(x) =~ (~ly)[cat(y) & chase(x,y)]], 
i.e., all dogs chase some cat, contains 3 universal quantifiers plus subsets of 
"chase" and "cat". Thus the correspondence to the Predicate Calculus 
representation is not at all clear. Also there is no apparent method for 
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distinguishing definite and indefinite set descriptions, such as "the set of all 
dogs that chase cats" versus "a set of dogs that chase cats", and hence no 
way of distinguishing implicative statements involving such descriptions 
antecedently. Fufiher difficulties arise from the rule that quantifiers in the 
subject position of the propositional tree have the largest scope. In particular, 
it is awkward to raise a propositional object to the level of maximum scope, 
as Anderson and Bower are well aware. For example, they are forced to 
render "There is a cat that all dogs chase" as "There is a catdistinguished 
by the fact that all dogs chase it", where "distinguished by" is a pseudo- 
predicate introduced to allow objects to be raised to subject position. 
Additional problems are encountered in quantification over time, since in 
Anderson and Bower's notation the "time context" includes an entire 
proposition in its scope. For example, there is no direct way to handle the 
distinction between "There is always someone there" and "There is someone 
who is always there". Finally Anderson and Bower neglect to supply 
quantifier precedence rules when the scope of a quantifier extends over logical 
combinations of propositions, as it certainly may. 

Past claims about *.he equivalence of certain varieties of sema-~ ~!e. net 
notation to second (or higher) order logic have not been backed by adequate 
quantificational apparatus. Statements about predicates alone do not demon- 
strate a second-order capability, as theycan be made in a many-sorted first- 
order logic. 

Finally I should point out that the logical quantifiers are unsuited for 
expressing many natural language quantifiers. I believe that natural language 
quantifiers not readily expressible in terms of the logical quantifiers, such as 
"several", "'many", "most of", "8. few raore than", etc., can be handled 
systematically by the use of (fuzzy) properties of se'. cardinality and relations 
between set cardinalifies, plus et.andard set relations such as set inchlsion. 
An example appears in Section 6. 

Time 

Quine [25] deplores the "tiresome bias" shown by ordinary language in the 
treatment of time and shows how to relegate time to a role on par with that 
played by position, weight, or colour in the description of events. Thus "I t  
will happen west of here" becomes "It  happens after now west of here", 
where "happens" is taken timelessly and "after", like "west of", is regarded 
as a (timeless) relation between portions of space-time (i.e., events or objects). 
This formal adjustment, which renders all predications timeless, is in sharp 
contrast with the approach of McCarthy and Hayes [19] in which all predica- 
tions about physical objects are time-dependent (or rather, situation-dependent, 
where a "situation" is an instantaneous state of the universe; but this notion 
virtually coincides with Quine's conception of a moment of time as an 
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instantancous cross-se~on of the four-dimensional material world). I prefer 
the "biased" treatment of time, since the "unbiased" treatment leads to 
rather cumbersome representations of ordinary events and circumstances. 
For example, the sentence "There is always someone there" becomes "For 
every moment of time t there is a person x (regarded as a spatiotemporal 
object) such that the intersection of x with t is located at the intersection of 
place l with t"  (where "place l"  is the place signified by "there"). The 
corresponding semantic net is shown in Fig. 16, and should be compared 

j ,K - - z . - -  j i 
I B ,,," iS n %...- 

tmgsoa 

Fro. 16. 'Where is always someone there'; based on soa~-like treatment of time. 

with Fig. 12 (see also Fig. 17 below). Notice that the new representation 
directly associates a time with every participant in an event or circumstance, 
rather than associating it with the main relation. Clearly the use of time 
variables in predicates yields more concise and more natural representations.6 

Furthermore, I regard time as the only situational or contextual variable 
that needs to be added to action propositions, unlike Anderson and Bower 
[2] or Rumelhart et al. [27] for example. Whenever a proposition is regarded 
as true only within a particular situational context, that context can be made 
an explicit premise instead of an ~rgument of the predicate. For example, 
"Mary is livelier with her lovers than with her parents" (an example discussed 
by Bartsch and Vennemann [3D can be rephrased as "For all times t and all 
times s, if Mary is with a lover at time t and if Mary is with her parents at 
time s, then Mary is livelier at time t than she is at time s". Anderson and 
Bower [2] and also Schank et a1.[34] add locale to the time as basic dimensions 
of events. But locale is not a property of an event as a whole, but a (frequently 
time-dependent) property of the p~ticipants in an event. For example, in 
"John is watching a circling hawk" i t  is John a~d the hawk who have 
locations, not the event. For those who would take a phenomenalistic view 

e Incidentally, it seems to me that time variables can be taken to denote time ~ a more 
intuitive sense (e.g., Newtonian physical time) than cross-scoff'ore or states of the universe. 
McCarthy and Hayes [19] do in fact regard true time as a function of states ofthe universe. 
As long as this function is one-to-one within any given universe (he it real of hypothetical), 
states of the universe may be replaced by (true) times without risk of ~nbiguity. 
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of John's ~cfiorj, the sentence "the moon is circling the earth" may serve as 
a better illustration. Thus I Ore no special consideration to spatial relation- 
ships in semantic nets, since the relational notation already introduced can 
be used to describe tbc locations of things. 

• e o  ° 
e . •  a m 

person 

Fro. 17. "There is always someone there". 

The following conventions are based on the assit, nment of a central role 
to time by the introduction of time variables into all predicates over pl~ysical 
entities. I will permit any time-dependent predicate P(x, y , . . . ,  t), where t 
i~s the time variable, to be used in 3 modes: the instantaneous mode, the 
interval mode, and the permanent mode. 

I B A .~ 

/ I.~ b e f o z e  ---) (nov1) 

1 ' . ] 
(a} 

L I . .  . .oZ 

(b) 

I~ .  18. "The sun rose". 
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In the instantaneous mode any fixed or variable moment of time is supplied 
as temporal argument. Because of the special importance of time arguments 
I will e, llow times to be placed immfdiately next to predicate tokens. For 
example, Fig. 12(b) can be redrawn as shown in Fig. 17. As befttre, parentheses 
are used to symbolize a moment of time and are broken to indicate universal 
quantification. 

.In the interval mode an interval of time T is supplied as temporal argument 
(in some suitable sense of "interval", such as Bruce's [4]). The de,tuition in 
terms of the instantaneous mode is 

P(x,y, . . . ,T)  ~ (Vt)[member(t,T) ~ P(x,y,  . . . ,t)]. 

Argument marker TI and square brackets are used for time intervals to 
distinguish them from moments of time. In most descriptions of events the 
interval mode appears to be much more convenient than the instantaneous 
mode. An example is given in Fig. 18. Fig. 18Co)is the same as Fig. 18(a) 
except that the time arguments have been placed with their predicate tokens. 
The specific time "howl"  in Fig. 18 is the time of assertion, so t.hat past tense 
is expressed as "before the time of assertion". "Then" is taken as a relation 
between cont.~gnous time intervals, and "before" as a relation between 
moments of intervals of time. For complete sets of time relations see Findler 
and Chert [9], Bruce [4], or Schank et ~1. [34]. 

In the permanent mode no teml:oral argument at all is shown. The illustt:a- 
tions in this paper contain numerous examples. The omission of time argu- 
ments from time-dependent predicates is a notational expedient used by many 
but acknowledged by few. What it means is that the predication is true of the 
individual concerned over an extensive segment of its life span. For example, 
"being a girl" is normally a much more enduring property than "being 
angry", so that the former is usually represented in  the permanent mode 
while the latter is not. Ultimately, however, the time dependence even of 
relatively enduring properties may need to be taken into account. Consider 
the following story: 

One day Johnny caught a tadpole. He called it "Hugo" and kept it in a jar. A year 
later, when Johnny set Hugo free, Hugo was a frcg. 

Question: was Hugo a tadpole or a frog when Johnny c~ ,ght it ? In a semantic 
net in which "tadpole" was predicated o f  Hugo in the permanent mode, this 
question is not decidable; Hugo might already have been a frog whea Johnny 
caught it. Thus we need to record that Hugo was a tadpole at the time Johnny 
caught it. More gradual changes linked to growth and aging show that even 
such terms as "kitten", "cat", "girl", or  "'woman" are properly regarded as 
~ime-dependent. Determining when time-depenclence can be ignored appears 
to be a matter of some subtlety. In drawing semantio nets for expository 
purposes we are of course justified in omitting seemingly unimportant time 
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dependencies. Such omissions may be justified even in the computerized 
counterparts of the semantic nets, especially if it is possible to recover most 
of the missing information through inference. However, the semantic nets 
must be capable in principle of expression the time limitations of all proposi- 
tiom. This is possible with the proposed method of associating a time with 
each predicate over physical entities rather than, say, with "episodes" which 
define more or less complex events. 

It would not- be difficult to formulate the analogues of the instantaneous, 
interval, and permanent modes of predication in an approach based entirely 
on timeless predicates. A time interval would be regarded as a "slice" of the 
four-dimemion: material w3rld perpendicular to the time axis. Its inter- 
section with an individual yields a time-slice of that individual. The analogue 
of the permanent mo,te of predication would involve the application of a 
predicate to a complete four-dimensional individual, on the understanding 
that the predication might be strictly applicable only to a proper time-slice 
of tb~tt individua.. 

6. D m ~ o m  

Ordinary discourse abounds with definite and indefinite descriptions such as 
"the woman who answered the telephone", "John's car", "a big apple", and 
"several children". In previous work on network representations the distinc- 
tion between definite and indefinite descriptions has been ignored. The 
purpose of this section is to propose methods for making this important 
distinction explicit. 

Quine [23] discusses definite and indefinite descriptions of particular things 
and sets of things, and mentions the use of the Peano-Russell conventions to 
form_alize such descriptions. Then he goes on to show how one can get along 
in principle with only the two singular terms (¥x) and (3x), and of course one 
of these is redundant. Essentially the reductions are based on Russell's theory 
of descriptions (Russell [28], Whitehead and Russell [41], Russell [29]). I 
shall rely on analogous reductions in the graphical notation, basing the 
representation of descriptiom on the logical connectives and quantifiers 
already introduced. I should point out immediately that Russell's theory has 
come in for much criticism. It is usually faulted for treating reference as a 
disguised form of assertion, and for arbitrarily filling with falsity the "truth 
value gaps" that occur when presuppositions conveyed by definite descriptions 
are violated (Strawson [39]). As I shall shortly indicate, however, these 
criticisms do not apply to the use of Russell's analysis here proposed. An 
alternative way of dealing with definite descriptions would be to use a 
description operator (e.g., Kalish and Montague [16], Sandewall [31] or 
Moore [20]). The scope of such an operator could be indicated with the 
generalized scope conventions explained in Section 4. An important advantage 
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of Russell's analysis, however, is that it allows ambiguities in modal sentences 
to be explained as quantifier scope ambiguities (Hughes and CressweU [14]; 
see also Section 8 below). 

The sentences "John's car is red" and "John has a red car" are diagrammed 
in Fig. 19. The terms "John's car" and "a red car" are examples of definite, 
and indefmite descriptions respectively. A presupposition conveyed by the 
definite description "John's car" is that John has exactly one car (at least 

r "  . . . .  @ O W l I 8  

:f 

( ~ 4 - - - -  ge4 

owns 
~ Cil/L" 
re4 

..- (a) (bt 

Fro. 19. Definite and indefinite descriptions. (a) "J'o/m'a car is red"; (]xXYy)[owns(John,y)& 
carry) ¢o x ~ y] & red(x). (b) "John owns a red car"; (~x)[owm(John,x) & tag(x) & 
,ed(x)l. 

this is true for certain discourse contexts in which the given sentence might 
occur). This presupposition of unique existence has been made explicit in 
Fig. 19(a), which asserts that there is a thing which is identical with every 
car John owns and is red. The diagram in Fig. 190)) is comparatively simple; 
it states that there is a thing which John owns, which is red, and which is a car. 

i-'0,vlvacJ, ous 

[ T • 
I 

I I 

Fro. 20. Definite descriptions of sets. "The Frenck-speakMo people of Canada are vivacious" 
(3S)|(Vx)|membeg(x,S)¢~[Fren~-spea)~g(x) & resident-of (x, Canada)]] & (Vx) 
[member(x,S) ~ vivacious(x)]]. 
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Definite and indefinite descriptions of sets are illustrated in Figs. 20 and 21 
respectively. The definite description in Fig. 20 is "the French-speaking 
people of Canada", the existence of whose referent is presupposed. Thus the 
net states that there is a set such that a thing is in it i f  and only if it is French- 
speaking and a resident of Canada. The assertion made about this set is 
that all of its members are vivacious. 

e"--;:<:::--- 
I J ! '~ ' I 

- " F  " ' chi2.a c: r ' ,  
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Fro. 21. Indefinite descriptions of sets. "Se~,ra/children are on ;he playground; most o f  
tl~m are playing in the sandbox". 

The net of Fig. 21 states "Several children are on the playground; most of 
them are playing in the sandbox". The indefinite descriptions are "several 
children" and "most of them". In contrast with definite descriptions of sets, 
indefinite descriptions of sets associate implications, rather than equivalence 
conditions, with membership in the set. The predicate " # "  in the diagram 
denotes the number of elements of a set, or rather the single-valued relation 
which holds between a set and the number of its elements. Note that "several" 
is treated as a (fuzzy?!) monadic predicate on numbers, whereas"most of" 
is broken down into a subset relation and a (fuzzy?I) relation on pairs of 
numbers. 

I will now indicate by way of an example how definite descriptions might 
be processed by an understanding system, and how Russell's analysis would 
be employed in a manner which avoids the usual criticisms levelled against it. 
The basic idea is that the, understanding system would first attempt to 
interpret definite descriptions referentially, and failing that, attributively. 
Referential interpretation means that an existing node is selected as the 
semantic correlate of the description, while attributive interpretation means 
that a new node is created as the semantic correlate of the description and the 
properties expressed by the description attributed to it. This terminology is 
based loosely on the distinctions made by Dcnellan [7]. 

Suppose that the language understanding system is told "John's car is red". 
The system would first look for an existing node to use as referent of "John's 
car". We need not be concerned with the details of this search here, noting 
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only that if R succeeds, no new description is p/aced in memory. Only "red" 
is predicated about the node found (prov/ded that this predication is consistent 
with prior knowledge.). If the search fails, however, the system creates a new 
existentially quantified node with the attached proposition that this is the 
one and only car John has, possibly in a sense of "has" determined by 
context. This Russellian existence assertion is placed in memory provided 
that it is consistent with prior knowledge. If all goes well, the net of Fig. 19(a) 
is the final result. But suppose that the existence assertion contradicts prior 
information to the effect that John has no car. Then the attempt to place a 
new node in memory is aborted, and thus no referent for the predication "is 
red" is made available. Seeking a rt.~olution of the difficulty encountered, 
the system might well respond "But I thought John doesn't have a car". 
Thus I see "presupposition failure" as an operational phenomenon, rather 
than as a logical phenomenon calling for complex model-theoretic manoeuver- 
ing (e.g., van Fraassen [40] and Fisk [II]. The question ofthe truth value of 
propos/t/ons with failing presuppositions does not arise, exactly as Strawson 
[39] requires. 

The last kind of definite descriptions, namely definite descriptions of 
relations, is the subject of the next section. 

7. Lamlala Atetraetlea 

Certain definite descriptions of predicative concepts such as "(the property 
which is) John's only virtue" can already be expressed with the available 
notation. The diagram for "John's only virtue is honesty" is shown in Fig. 22. 
Note chat equality is here used as a second-order relation, denoting identity 
of intension of the equated predicates (i.e., identity of their truth sets in all 
possible worlds). 

• . . . . . . . . . . . .  _ - S ( = ~ - .  
I , s "  I 
I ~ I 
I v £ = t u e  I 

' J. ' ! I 
I o 
I .  ! 

• PRSD q, 
• . _ _  g 

~ J  

FIo. 22. "$ohn's only virtue is honesty"; (VP)lP(Jolm) & virtuegP).¢~ P - honest]. 

The notation so far introduced is inadeq~mte, however, for descriptions of 
predicative concepts expressedin terms of predicates of the same (rather than 
higher) type. For example, suppose we wish to say that the property "human" 
is the same as the property "rational animal"; note that the latter property 
is of type I and is expressed in terms of the type i properties "rational" and 
"animal". We cannot diagram this statement on the basis of the formula 
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(Vx)[human(x) ,~  rational(x)& animal(x)], since this merely asserts exten- 
sional identity (i.e., th: set of human beings equals the set of rational animals). 
The desired statement of intensional identity can be made with the aid of 
Church's lambda operator. This operator abstracts a predicate from an open 
sentence by designating certain variables of the sentence as arguments of the 
predicate. Thus we write 

human = lambda x[rational(x) & animal(x)]. 
A more interesting example is provided by the sentence "Loving one's 
neighbours is a virtue", which requires abstraction of the monodic predicate 
"loves one's neighbours" from the dyadic predicate "loves". This is shown 

~'~'-- n~ighi°a'r" °£ - - - ~  

I 

- l o v e s  - 

. . . . . .  ne£ghbou~-o£ ---~ 
virtue | | 

I 

(a )  ( b )  

Fla. 23. "Loving one's neishbours is a virtue"; virtue{lambdax[(,¢y)[neighbour(x,y)=> 
loves(x,y)ll}. 

1~o. 24. Definition of"below" as the inverse of "above"; below -- iambdaxy[above(r,x)]. 

in Fig. 23, using a graphical analogue of lambda abstraction. In Fig. 23(a) 
the graph for the proposition "x loves all of his neighbours" is shown. The 
proposition node for this compound proposition is established by the 
implication token. In Fig. 23C0) the predicate "loving one's neighbours" 
(labeled P) has been abstracted from the proposition of Fig. 23(a). In addition 
the second-order predication "virtue" has been attached to the abstracted 
predicate. Lambda abstraction is accomplished by means of a lambda link 
from the new predicate node to the proposition from which *he predicate is 
abstracted plus argument links from the predicate node to variables (nodes) 
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of the proposition, indicating lambda conversion of the variables to argu- 
ments of the predicate. The lambda link is labeled "lambda" and the 
argument links are labeled A, B , . . .  (or in some other systematic way) as in 
propositions. Note in addition the dotted scope dependency link from the 
abstracted predicate to the :miversally quantified node. This i~ an important 
application of the generalized scope notation introduced towards the end of 
Section 4. It pLaces the universal quantifier within the scope of the lambda 
operator. Without the link the net of Fig. 23(b) would incorrectly state7 

(Vy) virtue0ambda x[neighbour(x,y) ~ loves(x,y)D. 
In general propositions containing lambda abstra,~ ca~mot be convened to 
prenex form, so that the generalized scope notation is a necessity here, rather 
than a mere convenience. The definition of "below" in terms of"above" by 
means of lambda abstraction is shown in Fig. 24. The lambda abstraction 
mechanism provides a general means for defining relations (including 
functions, i.e., single-valued relations)in terms of relations already in the 
system. The newly defined relations can be used in the same way as those 
already in the system. 

8. Modd ~ t o m  ~ R e f a ~  ~ ~  
Finally we need conventions for representing propositions involving model 
operators such as the necessity operator, the belief operator, the causal 
operator, and the counterfactual conditional. Note that it is only the repre- 
sentation, not the manipulation or formal semantics of modal constructions 
that is at issue here. However, it is reassuring that the "possible worlds" 
semantics devised in recent years by modal logidans appears to provide an 
adequate basis for the formal semantical analysis of modal constructions 
(e.g., Snyder [38]). 

As far as I can see, the only notational problem raised by the introduction 
of modal operators is that of distinguishing between "opaque" and "trans- 
parent" environments generated by such operators. A sentential environment 
is opaque if replacement of a term by a referentially equivalent term can 
change the truth value of the sentence, and transparent otherwise. For 
example, the necessity operator generates an" opaque environment in the 
sentence "9 is necessarily greater than 8", as we cannot replace "9" by the 
referentially equivalent term "the number of major planets". 

In general we can regard a term in an opaque environment as locked into 

7 Lambda abstraction was handled inadequately in Schubert [46]. First, the propoeition 
node on which lambda opiates was itself used to denote the abreacted ptedi~te. 
This is more ¢umcLce but tmforttmately leach to scope ambignities if the proposition 
from which the predicate is abstracted is not in prenex form. Second, the scope de- 
penden~ links needed to tie quantifiers into the sc~pe of the lambda operator were 
inadvertently neglected. 
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the scope of the modal operator (necessarily, wants, etc.), as suggested by 
Isard and Longuet-Higgins [15]. Quantifiers in such terms cannot be extracted 
to convert the proposition to prenex form. For example, the proposition 
believes(John, (:ix)ghost(x)) cannot be paraphrased as (Jx)believes(John, 
ghost(x)). In words, "John believes that a ghost exists" cannot be paraphrased 
as "Something exists that John believes to be a ghost". Once again the 
generalized scope conventions are needed, so that quantifiers can be em- 
bedded within the scopes of propositional operators. 

The representations of the nonsynonymous sentences "9 is necessarily 
greater than 8" and "The number of major planets is necessarily greater than 
8" are shown in Fig. 25. The necessity operator O is assumed to take one or 
more operands. In Fig. 250>) the dotted line from the necessity operator to 

• .... : . ;~ - - -  p l a n e t  

(a) (b) 

Flo. 25. (a) "9 is n___,'~.ssari|y ~'eat~ than 8"; E}(9>$). (b) "The number of major planets 
is necessarily greater than 8"; (JS)(Vx)(member(x,S)¢w major-planet(x) & ~(Jy)[ ~ (S,y) & 
y > 8]). 

the node y places the existential quantifier for y within the scope of" the 
operator. Removal of the dotted line to y and of" the broken fine to the token 
@ would ~ve the 0mplausible) tr~wme~t reading of the sentence in which 
"'the number of major planets" is simply taken as a reference to the number 9. 

Counter/actual implication can be treated in much the same manner as 
necessity. In the sentence "If" there were a major planet beyond Pluto, the 
number of major planets would equal 10" the ~rm "the number of major 
planets" is nonreferential. The representation is shown in Fig. 26. I have 
borrowed Lewis' symbol O~. to symbolize counter/actual implication (Lewis 
[17]); however, I am allowing any number of implicitly conjoined antecedents 
and consequents as operands, much as in the generalized form of material 
implication. 

Many English modal sentences, particularly those involving verbs of 
propositional attitude such as "wants" or "believes", admit both a trans- 
parent and an opaque reading. An example is "John wants to marry the 
prettiest ~d" (a vadant taken from Moore [20]), In the transparent reading 
we can replace "the prettiest ~rl" by any term referring to the same individual 
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(c.~, Sally Sunshine), wi~le in the opaque reading we cannot (i.e., :John wants 
to marry the prettiest girl, whoever she might be). The opaque r~ding ofthe 
sentence is shown in Fig. 27. The complexity results mainly from the descrip- 
tion "the prettiest girl", represented as "the most pretty member o f  the set 
of all girls". A ternary second-order relation "most" has been contrived for 

- -  -"v : ' - - '"  

v O]md~--..n= 3-~:-->s £<-.- <~=~-,, bey ~ , 

f y I ~ .  aa:Jm: 
• _ s  p l a n e t  

F[o. 26. "If  there were a major planet beyond Pluto, the number of  major planets would 
equal 10"; ( 3 S ) ( V y ) { [ m e m ~ , S ) < ~  major-planet(y)] & [(3x) major-planet(x) & beyond, 
(x,eluto)] I"]=~ ~qz)[~(S,z) & z = 101L 

VBO 
• i i i i  . 

r a n t s  . ~ m a c r i e s  

"°o Oil 

IilII~T 

• o o s t  ----.4 ,~ 

gst~ I 

'--~,g£~l, 

Fro. 27. "John wants to harry the prettiest girl"; (gS)[(Vx)[mcmber(x,S)co.~rl(x)] & 
WallLq(Johl~(3y)[mostfpretty,S,y) & Inarries(Johnty)~]. 

this purpose which holds for x, P, S if x is the unique member of set S which 
is superlative with respect to property P. An alternative representation which 
avoids the use of "most" at the expense of greater complexity can be found 
in Schubert [46]. The propositional operands of "wants" are regarded as 
implicitly conjoined, i.e., wants(w,y,z,. . .  ) is taken to mean x wants y & 
z & . . . .  The dotted line from "wants" is missing in the transparent read- 
ing. Quite correctly the diagram then reads "There exists an x such that 
x is the prettiest girl and John wants to marry x". 

Propositional attitudes may involve quantification over propositions, as in 
"John knows everything", or in "John knows everything Ma~./knows". The 
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most direct way of representing such proposition~ is by quantification over 
propositional variables, as in Fig. 28. In Fig. 28(a) "John knows everything" 

• - -  o o  o ~ o , , . m %  

(a) b e l i e v e s  ~ % . . 7  

(b) ~bel:Leves---~... belleves 

Fib. 28. (a) "John knows everything". (b) "John knows everything Mary knows". 

has been paraphrased as "John believes all true propositions". If we accept 
these representations, we must carefully distinguish between the universally 
quantified "proposition nodes" in Fig. 28 and the proposition nodes 
previously introduced as points of attachment for the parts of an explicit 
proposition. These previous proposition nodes are not quantifiable. The 
propositions in which they participate "exist" simply by virtue of appearing 
in the semantic net. The universally quantified nodes in Fig. 28, by contrast, 
are concept nodes denoting complete propositions. 

The constructions of Figs. 27 and 28 are not intended to ~anction un- 
restricted use of relations with propositional arguments and quantification 
over propositions. Such lack of restraint could render the network logic 
inconsistent. Rather, we should restrict ourselves to some carefully chosen 
set of propositional operators, including the truth-functional operators and 
some set of modal operators. Also we could avoid the use of propositional 
variables altogether by paraphrasing "for all propositions" as "for all 
predicates P and all x such that P(x)", giving the new version of Fig. 28(a) 
shown in Fig. 29. This would avoid the use of propositions as concepts. On 

| " J  
I ! 

lIED 

! % 

% ..o I 

FIo. 29. "John knows everyl:hing". 

the other .hand Fig. 28 has the advantage of being more concise. Note that 
the replacement of qtumtification over propositions by quantification over 
predicates and variable; can also be carried through for existential quantifica- 
tion. For example, the; sentence "There is a proposition x such that if x is 
true then mankind is d.oome~" can be paraphrased as "There is a predicate P 
such that if P(x) is tr'ae for all x then mankind is doomed". 
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The techniques for representing knowing and believing apply equally to 
other propositional attitudes such as remembering, supposing, intending, 
deciding, avoiding, hoping, imagining, pretendit:g and trying. Nonreferential 
terms within the scopes of such operators (whichever ones are deemed 
useful independently of the others) can be identified by means of scope 
dependency links as in Figs. 25-27. The same applies to the deontic modalities 
such as obligation. It should be obvious, for example, how "John ought to 
marry the prettiest girl" would be represented. 

As a final important modafity causal dependency should be mentioned. 
Causal explanations are rather closely related to counterfactual conditionals, 
as can be seen from the inference "B would not have happened if A had not 
happened", which is often reasonable given that "A caused B". An example 
of an opaque context generated by a causal construction is found in the 
sentence "John asked Mary to dance because she was the only girl left 
without a panner". Substitution of the term "Mary" for its referential 
synonym "the only girl left without a partner" clearly fails. In causal 
constructions as in other modal constructions, therefore, we may need scope 
dependency links. 

Modal operators have played a prominent role in the work of several 
network theorists, including Winston [44], Schank [33], Anderson and Bower 
[2] and others. Winston~s MUST operator, which modifies many relationships 
in learned structural concepts, can probably be identified with the u~ual 
necessity operator. Schank's causal relatior~, instrumental relation, and 
CONC, MTRANS, and MBUILD primitives can all be regarded as modal 
operators, the latter three being epistemic operators. Anderson and Bower 
make frequent use of a causal operator, as do most network theorists. What 
has been lacking in the work of these authors is a recognition of the important 
distinction between opaque and transparent modal contexts. 

9. Concluding Remarks 

I have put forward some views on the proper constngtion and interpretation 
of semantic networks, and suggested systematic methods for expressing 
operations such as logical combination, quantification, and lambda abstrac- 
tion in these networks. 

I hasten to add that I am not urging universal adoption of this notation. 
It is intended merely as a standard of comparison. What makes it suitable 
as such a standard is, I think, its clear correspondence to Predicate Calculus 
notation, which is i**self well understood. Certainly a rather diffegent represen- 
tation might be adopted to meet specific needs in specific applications of 
semantic nets. For example, a representation which more closely reflects 
particular computer data structures might be used. Furthermore these 
computer data structures might themselves take different forms for different 
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fields of knowledge, rather than conforming with some fixed propositional 
s~watax (see Lindsay [18D. Also additional operator~ might be formulated to 
simplify common constructions. For example, to represent simple generaliza- 
tions of the form "All P are Q" (such as "All crows are black") it would be 
useful to have an operator, say " ~ " ,  with the following definition. L e P and 
Q are n-ary predicates then 

(~)"-=>-->(~) iff 

Thus 
(VxDfex2)... ¢¢xn)[p(xl , . . .  ,xn) ~ Q ( x l , . . .  ,xn)]. 

An even more useful generalization operator would be one which expresses 
"All P are necessarily Q", which could be diagrammed as ~ and defmed as 

(~..-.~.>-->(~) iff 

QfCxDffx2)... (Vxn)[e(xl,... ,xn) ~ p . ( x l ,  . . . , x n ) ] .  

This would greatly simplify the encoding of essential meaning relationships 
among concepts, such as 

(i.e., crows are necessarily birds), 

(i.e., if x drinks y then x necessarily ingests y), etc. The operators would 
induce a hierarchy ¢~n concepts which could be exploited for efficient inferenc- 
ing about subset-superset relationships.S The point is that the definitions of 
these operators can be expressed in terms of the basic network notation. 

The reader familiar with Predicate Calculus may have noticed the lack of 
a functional notation for networks analogous to that of Predicate Calculus. 
Such a notation is easily devised (see Cercone [45]). The notation slightly sim- 
plifies the representation of some propositions and complicates that of others. 
In particular, existential quantification of the value of a functionf (x) requires 

0The operator I" i~  differs from Quillian's "subset" relation in two respects. First, 
"inopetty P" is not regarded as synonymous with "the set of P's" for the reason mentioned 
in Section 2. Second, Quillian presumably had in mind the usual (contingent) subset 
relat:~oeb rather than one reinforced by necessity. 
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the introducion of  a proposition of the form (3y)f(x)  = y, whereas no su( 
proposition is needed in the relational notation, which already has a "slol 
for y. 

A variety of issues in the representation of informa! knowledge could ra~ 
additional notational problems. Examples are the handling of  vaguen¢, 
(already mentioned parenthetically in the comments on natural langua! 
quantifiers), events, the lexical meanings of complex concepts, and overa 
knowledge organization. Beyond these relatively static issues lie the mol 
dynamic issues of actual language interpretation and generation, plausib] 
inference, learning, and the interplay between procedural and factual kno~ 
ledge. Clearly any questions about representation raised by these probl¢l 
areas can only be answered in t.'le context of  particular approaches toward 
the solutions of the problems themselves. However, the present representatic 
is a fairly direct extension of several quite successful, superficially disparat 
represeptations, such as Schank's conceptuafizations, Winston's description~ 
or Sandewall's property-structures. Consequentlythe computational processe 
that create and utilize their data struomres can readily be adapted t¢ 
structures based on the present representation. This indicates that tb 
increased expressive power the suggested notation provides should be o 
real value in the design of understanding systems. 

ACKNOWLEDGMENTS 

This work w~as intended to establish a notational basis fcr research on a "state-based' 
conceptual representation by Nick Cercone and myself. A great deal of credit goes t( 
Nick for contributing to the ide~ herein. I am indebted to G. Prideaux, C. O. Morgan ant 
F. J. Pelk:tier for pointing me to some relevant literature, and to the latter two for severa 
very helpful discussions. I am also grateful for J. R. Sampson's and IL V. Wilson'l 
comments on the original manuscript, as well as for the comments of the referees, all oJ 
which hopefully have led to a more readable version. The research was supported by th( 
Nationa! Research Council of C.anada under Operating Grant no. A8818. 

REFERENCES 

1. Abelson, R. 1). The structure of belief systems. Computer Models of Thouoht and Lan~ 
uaoe, R. Schank and K. Colby, eds., Freeman, San Francisco, Calif. (1973), 465-471. 

2. Anderson, J. and Bower, G. Haman Associative Memory. Winston, Washington, D.C. 
(1973). 

3. Bartsch, R. and Vennemann,T. Semantic Structures. Athenaeum Verlag, Frankfurt 0 972). 
4. Brace, B. C. A model for temporal references and its application in a question answering 

program. ArtifRcial Intellloence 3 (1972), 1-26, 
5. Carnap, R. Meanitg' and Necessity. Univ. of Chicago Press, Chicago, Ilk (1947). 
6. C.ercone, N. and Schubert, L. K. A sketch of state-based conceptual representation. 

Department of Confuting Science, TR74-19, University of Alberta, Edmonton, 
Alberta (1974). 

7. Donnellan, K. Reference and definite descriptions. Philosophical R~olew 75 (1966), 
281-304. Reprinted in Semantics, D. D. Steinberg and L. A. Jakobovits, eds., Cam. 
bridge Univ. Press, Cambridge (1971), 100-114. 

Artificial lntelHgence 7 (1976), 163-198 



SEMANTIC Nm'WORKS 197 

8. Fillmore, C. J. The case for case. Universals in Linguistic Theory, E. Bach and R. T. 
HanTLs, eds., Holt, Rinehart and Winston, New York (1968), 1-88. 

9. Findler, N. and Chert, D. On the problcms of time, retrieval of temporal relations, 
causality and coexistence. Advance Papers of Second International Joint Conference 
on Artificial Intelligence, The British Computer Society, London (1971), 531-545. 

10. Firschein, O. and Fischler, M. A. A study in descriptive representation of pictorial data. 
Advance Papers of ~cond International Joint Conference on Artificial Intelligence, 
The British Cordputer Society, London 0971), 258-269. 

1 I. Fisk, M. A modal analogue of free logic. 7~e Logical Way of Doing Things, K. Lambert, 
ed., Yale Univ. Press, New Ha ;en, Conn. (1969), 147-184. 

12. Guzman, A. Analysis of curved line drawings usin3 .':ontext and global information. 
Machine Intelligence 6, B. Meltzer and D. Miehie, eds., American Elsevier, New York 
(1971), 325-375. 

13. Hendrix, G. G., Thompson, C. W. and $1ocum, J. Language processing via canonical 
verbs and semantic models. Advance Papers of Third International Joint Conference on 
Artificla| Intelligence, Stanford Research Institute, Menlo Park, Calif. (1973), 262-269. 

14. Hughes, G. E. and Cresswell, M. J. An Introduction to ModalLogic. Methuen, London 
0968). 

15. hard, S. and Longuet-Higgins, H. C. Question-answering in English. Machine Intel- 
ligence 6, B. Meitzer and D. Michie, eds., .American Elsevier, New York (1971), 243-254. 

16. Kalish, D. and Montague, R. Logic: Techniques of Formal Reasoning. Harcourt, Brace, 
and World, New Yerk (1964). 

17. Lewis, D. Counterfactua/~. Harvard Univ. Press, Cambridge, Mass. (1973). 
18. Lindsay, R. K. In defense of ad hoc systems. Computer Models ofThought and Language, 

R. C. Schank and K. M. Colby, eds., Freeman, San Francisco, Calif. (1973), 372-395. 
19. McCarthy, J. and Hayes, P. Some philosophical problems from the standpoint of 

artificial intelligence. Machine Intelligence 4, B. Meltzer and D. Michie, eds., American 
Elsevier, New York (1969), 463-502. 

20. Moore, R. D-SCRIPT: A computational theory of descriptions. Memo No. 278, 
Artificial Intelligence Laboratory, MIT, Cambridge, Mass.; see also Advance Papers 
of Third International Joint Conference otl Artif~cia! Intelligence, Stanford Research 
Institute, Menlo Park, Calif ~ .973), 223-229. 

21. Mylopoulos, J., Badler, N., ~¢ elli, L. and Roussopoulos, N. I.PAK: A SNOBOL-based 
programming language for ~ .~ificial intelligence applications. Advance Papers of Third 
International Joint Conference on Artificial Intelligence, Stanford Research Institute, 
Menlo Park, Calif. (J973), 691-696. 

22. Palme, J. Making comput~.~s understand natural language. Arti~cial Intelligence and 
Heurivffc l'rogramming, N. V. Findler and B. Meltzer, eds., American Elsevier, New 
York (1971), 199-244. 

23. QuUlian, M. Semantic memory. Semantfc Information Proce.~sing, M. Minsky, ed., 
MIT Press, Cambridge, Mass. (1968), 227-270. 

24. Quillian, M. The teachable language comp.,ehender. Comm. ACM 12 (1969), 459-475, 
25. Quine, W. V. A. Wordand Object. MIT Press, Catmbridge, Mass. (1960). 
26. Reichenbach, H. Elements of Symbolic Logic. ~ree Press, Hew York (1966). 
27. Rumelhart, D., Lindsay, P. and Norman, D. A process model for long term memory. 

Organization of Memory, E. Tulving and W. Donaldson, eds., Academic Press, New 
York (1972), 198-221. 

28. Russell, B. A. W. On denoting. M/rid 14 (1905), 479-493. Reprinted in Readinos in 
Philosophical Analysis, H. Feig ~. and W. Sellars, eds., Appleton-Century-Crofts, New 
York (1949), 103-115. 

Artificial lntelligeece 7 (1976), 163-198 

14 



198 t,. L s c m m ~ ' r  

29. Russell, B. A. W. Descriptions. Chapter XV[ of Introduction to MathematicaIPhllosophy 
B. A. W. Russell, 2ad ed., Allen and Unwin, London (1920). Reprinted in Semantics 
and the Philosophy of Lm~uuge, L. Linsky, ed., Univ. of Illinois Press, Urbane., Ill. 
(1952), 95--108. 

30. SandewaH, E. $. A set-oriented property-structure representation for binary relations. 
Mach/ne/nte//igence 5, B. Meltzer and D. Michic, eds., American Elsevier, New York 
(1970), 237-252. 

31. Sandewall, E. J. Representing natural language information in predicate calculus. 
Machine Intelligence 6, B. Meltzer and D. Michie, eds., American Elsevier, New York 
(1971), 255-~7. 

32. Schank, R. Conceptual dependency: A theory of natural language understanding. 
Cogn. Psych. 3 (1972), 552--631. 

33. Schank, R. The fourteen primitive actions and their inferences. Stanford AI Project, 
Memo AIM-18~, Stanford University, Stanford, Calif. (1973). 

34. Schank, R., Goldman, N., Rieger, C. and Riesbeck, C. Margie: memory, analysis, 
response generation, and inferen~ on English. Advance Papers of Third International 
Joint Conf¢.,-ence on Artificial Intelligence, Stanford Research Institute, Menlo Park, 
Calif. (1973), 255-261. 

35. Simmons, R. F. Some semantic structures for representing English meanings. £zmouage 
Comprehension and the Acquisition of Knowledge, J. B. Carroll and R. O. Freedle, eds., 
Winston, Washington, D.C. (1972). 

36. Simmons, R. Semantic networks: Their computation and use for understanding 
English. Computer Models of Thought and/..anouage, R. Schank and K. Colby, eds., 
Freeman, San Francisco, Calif. (1973), 63--113. 

37. Simmons, R. F. a~d Bruce, B. C. Some relations between predicate calculus and 
semantic net representation of discourse. Advance Papers of Second International 
Joint Conference on Artificial IntelliBence, The British Computer Society, London 
(1971), 524-530. 

38. Snyder, D. P. Modal Logic and Its Applications. Van Nostrand Reinold, New York 
(1971). 

39. Strawson, P. F. On referring. Mind $9 (1950), 320-344. 
40. Van Fraassen, B. C. Singular terms, truth-value gaps, and free logic. J. Phil. 63 (1966), 

481-495. 
41. Whitehead, A. N. and R,Jmeli, B. A. W. IVlncipia Mathematlca, Vol. 1. Cambridge 

Univ. Press, Cambridge (1910). 
42. Wilson, K. V. Memory, organization and question answering. The Psycholugy oj 

Know/ns, J. R. Royce and W. W. Rozeboom, eds., Academic Press, New York (1972) 
43. Wilson, K. V. Formal representation of cognitive processes. Center for the Advance~ 

Study of Theoretical Psychology, University of Alberta, Edmonton, Alberta (1975"). 
44. Winston, P. Learning structural descriptions from examples. PhD Thesis, MIT, MAC. 

TR-76, Cambridge, Mass. (1970). 
45. ~ e ,  N. Representing natural language in extended semantic networks. Departmen~ 

of Computing Science, TR75-11, University of Alberta, Edmonton, Alberta (1975). 
46. Schubert, L. K. Extending the expressive power of semantic nets. Department of Corn 

puting Science, TR74-18, University of Alberta, Edmonton, Alberta (1974). 

Received April 1975; revised version received August 1975 

Artifu:ial Intelligence 7 (1976), 163-198 


