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Abstract

Most work on self-motivated agents has focused on ac-
quiring utility-optimizing mappings from states to ac-
tions. But such mappings do not allow for explicit, rea-
soned anticipation and planned achievement of future
states and rewards, based on symbolic knowledge about
the environment and about the consequences of the
agent’s own behavior. In essence, such agents can only
behave reflexively, rather than reflectively. Conversely,
planning and reasoning have been viewed within AI as
geared towards satisfaction of explicitly specified user
goals, without consideration of the long-range utility
of the planner/reasoner’s choices. We take a step here
towards endowing a self-motivated, utility-optimizing
agent with reasoning and planning abilities, and show
that such an agent benefits both from its knowledge
about itself and its environment, and from exploiting
opportunities as it goes. Our simulated simple agent
can cope with unanticipated environmental events and
can communicate with the user or with other agents.

Introduction
There is rather broad agreement in AI that general
human-like intelligent behavior, apart from lower-level
activities like perception and reflexes, is guided by plan-
ning and reasoning. However, planning and reasoning
have traditionally been understood as aimed at the ful-
fillment of specified user goals, rather than as inter-
nally motivated by consideration of the long-range util-
ity of the planner/reasoner’s choices. Conversely, re-
search on self-motivated agents has focused almost ex-
clusively on acquiring utility-optimizing mappings from
states to actions, without reasoned anticipation and
planned attainment of future states and rewards based
on symbolic knowledge about the environment and con-
sequences of the agent’s own behavior. These observa-
tions have motivated our work on explicit self-awareness
(Sch05) and more thoughtful self-motivation in agents.

Here we present a self-aware and self-motivated agent
that thinks ahead, plans and reasons deliberately, and
acts reflectively, both by drawing on knowledge about
itself and its environment and by seizing opportunities
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to optimize its utility. As an initial step towards a full
conversation agent, our simple agent can communicate
with the user or with other agents in addition to cop-
ing with unforeseen environmental events while acting
opportunistically.

In the following sections, we discuss the notions
of explicit self-awareness (Sch05) and thoughtful self-
motivation, as well as how they are realized in our sys-
tem. Then we outline our system and describe how
our agent benefits from self-awareness, thoughtful self-
motivation, and opportunistic choices. We conclude
with a summary and a discussion of future work.

Explicit Self-Awareness
Explicit self-awareness was characterized by Schubert
(Sch05) as being both human-like and explicit. Specif-
ically, it is human-like in that an explicitly self-aware
agent must have a well-elaborated human-like model
of the world, including a model of itself and its rela-
tionships to the world. The self-model encompasses its
beliefs, desires, intentions, knowledge, abilities, auto-
biography, the current situation, etc.; in addition, the
agent must be capable of goal- and utility-directed rea-
soning and planning.

In addition to prescribing the aforementioned human-
like capabilities, explicit self-awareness is explicit in
three respects. First, an agent’s representation of self-
knowledge must be amenable to self-observation and
use by the agent (and for engineering reasons, brows-
able and comprehensible to the designer). Second, ex-
plicit self-awareness must be conveyable by the agent,
through language or other modalities. Third, the
agent’s self-knowledge must be amenable to inferences
in conjunction with world knowledge.

Schubert (Sch05) enumerated reasons motivating the
need for explicit self-awareness. First, given its boot-
strapping potential with respect to meta-control, error
recovery, autoepistemic reasoning, and learning of skills
or facts, explicit self-awareness would help expand the
frontiers of AI. Moreover, an explicitly self-aware agent
can interact with human users in a transparent, nat-
ural, and engaging manner by having a shared con-
text. Lastly, operational, explicitly self-aware agents
can serve as exemplars of entities whose internal ba-



sis for self-awareness can be analyzed by consciousness
theorists wishing to better understand self-awareness.

For additional discussions of explicit self-awareness,
see (MS05; MS07; MS08) and (Liu08). The last elabo-
rates on the contrast with other (weaker) notions of self-
awareness as exhibited by self-monitoring agents (e.g.,
the metacognitive loop of Anderson and Perlis (AP05)),
self-explaining agents (e.g., SHRDLU by Winograd
(Win71)), global workspace systems (e.g., the oppor-
tunistic planning model by Hayes-Roth and Hayes-Roth
(HRHR79)), and adaptive and robust goal-directed sys-
tems (e.g., an antibody system combatting viral intru-
sions). These conceptions of self-awareness either do
not assume a self-model, or do not assume integration
the self-model into general reasoning mechanisms.

Our conception of self-awareness has much in com-
mon with that of McCarthy, who proposes a formaliza-
tion in terms of a mental situation calculus (McC95).
He postulates that a machine must declaratively repre-
sent its mental states in order to introspect – observe
and reason about its mental states, including beliefs,
desires, intentions, knowledge, abilities, and conscious-
ness. Schubert’s proposal (Sch05) further specifies the
knowledge representation and reasoning requirements
for explicit self-awareness. In addition to a basic log-
ical framework, these requirements include logical for-
mulations of events, situations, attitudes, autoepistemic
inferences, generic knowledge, and various metasyntac-
tic devices such as axiom schemas, knowledge catego-
rization, knowing or deriving a value, and experience
summarization.

Our agent, dubbed ME for Motivated Explorer, to
some extent meets the requirements for explicit self-
awareness. ME knows specific facts about itself and
the current situation, expressed as ground predications,
as well as possessing general knowledge in the form of
Horn-like clauses (but also allowing for reified propo-
sitions and questions). In effect, ME has a self-model
that relates it to its simulated world and potentially
the user. ME’s knowledge of the current situation
is initialized with its initial location, its possessions,
geographical knowledge about the world, the current
state facts about itself, and its propositional attitudes.
For example, facts (book book5), (owns ME book5),
(knows ME (that (likes Grunt book5))), and
(knows ME (whether (readable book5))) in ME’s
knowledge base specify that ME owns the book book5,
knows whether book5 is readable, and knows that entity
Grunt likes book5.

ME operates according to a plan of actions to be
carried out, which ME dynamically modifies, evalu-
ates for expected cumulative utility, and partially exe-
cutes. Specifically, ME thinks ahead into the future and
chooses to execute a seemingly best action. Such an ac-
tion is one that constitutes the first action in some plan
(with a limited horizon) that is judged to be executable
from the current state, and in addition is anticipated
to yield the highest cumulative utility among all such
plans. Both the contemplated actions and the states

they are expected to lead to can contribute positively
or negatively to the anticipated utility of a plan. As
actions are performed, ME’s knowledge base, as well as
the world state, will evolve accordingly. For instance,
when ME obtains a book, the effect will be that ME
has the book; this fact will enter ME’s knowledge base,
and as a result it will know that it has the book.

ME is introspective in three key respects. First, ME
has knowledge of what operators it can invoke and what
goals it can readily achieve in a given state. Second,
ME can introspect about what it knows and doesn’t
know, and can handle propositional attitudes. Third,
when ME performs an action, this is recorded in ME’s
history list of all actions and exogenous events that have
occurred thus far in the world. ME’s history list and
knowledge base are both open to introspection, enabling
ME to engage in more interesting question-answering
with the human user and with other agents.

In a limited way, ME also meets the reasoning and
communication requirements for explicitly self-aware
agents. Apart from its ability to plan, it can also rea-
son. In any given state, it performs bounded forward
inference based on all of its current factual knowledge
and all of its general quantified knowledge. One current
limitation is that ME is excessively “skeptical”, in the
sense that it presumes to be false any ground predica-
tion that it cannot establish. Conversely, ME depends
on a “commonsense inertia” assumption that whatever
was true in the past and has not observably become
false remains true.

Thoughtful Self-Motivation
A dynamic world poses three main types of challenges
to a planning agent; namely, unexpected changes can
arise in the form of unexpected action failures, unex-
pected threats, and unexpected serendipitous opportu-
nities. In essence, these unexpected eventualities are
due to the agent’s incomplete or partial knowledge of
the world. Thus the agent is necessarily confronted with
the qualification and ramifications problems, that is, it
simply does not know all the conditions for an action
to succeed or all the possible consequences of an action,
and so may experience unexpected outcomes. This is
aggravated by the possibility of unpredictable exoge-
nous events such as rain and fire. In the face of such
indeterminacy, it is important that the agent act op-
portunistically in order to recover from (unexpected)
failures, avoid (unexpected) threats, and pursue (unex-
pected) favorable opportunities in an appropriate and
timely manner.

ME’s opportunistic behavior is the byproduct of its
constant, step-by-step striving towards maximum cu-
mulative utility. For instance, suppose ME chooses to
walk from home to school as that seems to be a best
action to take. While walking from home to school, it
may encounter a fire that makes the road unnavigable,
at which point ME, undeterred, will do another look-
ahead into the future to select a best next action to
take. Or, while walking from home to school, ME may



see an unclaimed ten-dollar bill along the way, at which
point it may pocket it if it finds doing so sufficiently
pleasing (i.e., if doing so turns out to be the first step
of the (cumulatively) most promising course of action).

ME is self-motivated in the sense that it has its own
metrics of rewards (and penalties), and is driven by
the “desire” to maximize cumulative rewards, rather
than by some particular symbolic goal assigned to it,
and to be pursued at all costs. Nonetheless, it pursues
goals, to the extent that those goals promise high re-
turns. ME’s self-motivation is thoughtful, because of its
grounding in reasoned look-ahead and evaluation. (De-
tails concerning the look-ahead scheme are given in the
following section.) Such deliberate self-motivation dif-
fers importantly from the impulsive self-motivation in-
herent in behavioral robots and reinforcement-learning
agents, as most commonly understood. Broadly, such
an agent functions in accord with a (preprogrammed
or learned) policy that maps states of the world to the
actions the agent should take in those states in order
to maximize some overall reward criterion. However,
neither the policy, nor the search for it, is guided by
reasoning about future actions and situations, but in-
stead both depend on the current state alone, and any
past experience associated with it. In fact, reasoning
typically is not an option, because states are typically
not represented by symbolic descriptions, or in any case
are not amenable to application of general planning and
inference methods. The notions of beliefs, desires, and
intentions are realized in only very elementary ways in
such agents, if at all.

ME’s self-motivation does not necessarily imply self-
ishness. While it may find certain self-involved states
and actions rewarding (e.g., eating) or displeasing (e.g.,
being tired), and this will definitely affect its behav-
ior, ME can also experience vicarious satisfaction, for
example by answering the human user’s questions, or,
say, helping another agent in its world in some way.
Notably, the anticipatory satisfaction in the look-ahead
can also be used to implement curiosity, by making the
acquisition of new knowledge, or going to as yet unvis-
ited places, intrinsically satisfying for ME.

System Implementation
The knowledge, planning and behavior (both physical
and dialog) of ME are programmed in LISP in a sim-
ulated world consisting of locations, connecting roads,
and both animate entities (agents) and inanimate enti-
ties (objects) positioned at various locations. Some ob-
jects in the world may be consumable or portable and
potentially useful to ME, while others might be harmful
or mere obstacles. ME navigates the world interacting
with the human user (in dialog) and with other entities
in the world. All agents except ME are stationary and
might be asked questions by ME and may supply things
or information that ME wants upon request.

Creation of a world is enabled through commands
for creating a road network, defining object types with
various properties, and for placing instances of object

types, with additional properties, at various locations
in the network. Miscellaneous general knowledge can
also be added. The additional properties of an instan-
tiated entity include its associated objects (such as pos-
sessions or parts), and initial state facts about it, such
as location or edibility, and for agents, propositional
attitudes (beliefs, wants). ME’s initial knowledge base
contains the geographical knowledge about the world,
general quantified conditional facts (with a conjunctive
antecedent and a positive predication as consequent),
and ME keeps a history list of all actions and exoge-
nous events that have occurred so far in the simulated
world. Examples of general knowledge might be prop-
erties of certain types of entities (e.g., that a sasquatch
is an animate agent), or that certain conditions imply
others (e.g., being asleep implies not being awake).

ME does not in general know the current facts,
possessions, or propositional attitudes associated with
other entities. However, all non-occluded, local facts
about an entity become known to ME when ME is at
the location of the entity. Occluded facts are deter-
mined by certain predicates (such as hungry, knows,
or contains) being marked as occluded; as mentioned
above, a fact with an occluded predicate is known ini-
tially only to the subject of the predication, if that
subject is animate. For example, hungry might be an
occluded predicate, but the subject 〈term〉 of a fact
(hungry 〈term〉) is assumed to know that it is hun-
gry whenever this is true. Moreover, ME may discover
occluded knowledge via appropriate actions. For in-
stance, the action open applied to a box followed by
read-message may cause ME to know the contents of
the message if the box has a message in it.

ME’s action types have a list of parameters, a set of
preconditions, a set of effects, and an associated value.
One of the more unusual features is that both precon-
ditions and effects allow for procedural evaluation or
simplification, once all parameters are bound. In this
way quantitative preconditions and effects can be han-
dled quite effectively, as can side-effects such as ME
producing a printed answer. As an example, consider
the following operator sleep with formal fatigue and
hunger level parameters ?f and ?h, respectively:
(setq sleep

(make-op :name ’sleep :pars ’(?f ?h)
:preconds ’((is_at ME home)

(is_tired_to_degree ME ?t)
(>= ?f 0.5)
(is_hungry_to_degree ME ?h)
(> ?f ?h)
(not (there_is_a_fire)))

:effects ’((is_tired_to_degree ME 0)
(not (is_tired_to_degree

ME ?f))
(is_hungry_to_degree ME

(+ ?h 2)))
:time-required ’(* 4 ?f)
:value ’(* 2 ?f)))

From ME’s perspective, if it is at home, is more tired
than hungry, is at least of fatigue level 0.5, and there is
no fire, then it can sleep for a duration given by (∗ 4 ?f)



and, as a result, it will relieve its fatigue at the expense
of increasing its hunger level by 2. Performing an in-
stantiated sleep action will afford ME a net increase of
(∗ 2 ?f) in its cumulative utility.

Instantiating an operator requires replacing its for-
mal parameters with actual values through unifying
the preconditions with facts in ME’s current knowledge
base, and such an instantiated action is considered ap-
plicable in the current state. At all times, ME main-
tains a plan comprised of a sequence of instantiated ac-
tions. Planning is accomplished by forward search from
a given state, followed by propagating backward the an-
ticipated rewards and costs of the various actions and
states reached, to obtain a seemingly best sequence of
actions. The forward search is constrained by a search
beam, which specifies the allowable number of branches
and the allowable operators for each search depth. In-
formed by this projective forward search, ME will then
execute the first action of the seemingly best plan, and
update its knowledge accordingly (in effect, observing
non-occluded facts, including ones that have become
false, in its local environment).

The simulated world is a dynamic one in which ex-
ogenous events such as fire and rain can spontaneously
begin and end with some probability at each time step;
therefore, unexpected changes can arise in the form of
unexpected action failures, unexpected threats, and un-
expected serendipitous opportunities. For example, a
fire may start and disrupt ME’s travel, or ME may
scratch a lottery coupon and find that it has won one
million dollars. Since the world is only partially known
and partially predictable from ME’s perspective, and
since actions (such as traveling) can take multiple time
steps, with the possibility of interference by exogenous
events, we need to model “actual” actions in ME’s
world separately from ME’s (STRIPS-like) conception
of those actions.

The following is the stepwise version sleep.actual of
the sleep operator:

(setq sleep.actual
(make-op.actual :name ’sleep.actual

:pars ’(?f ?h)
:startconds ’((is_at ME home)

(is_tired_to_degree ME ?t)
(>= ?f 0.5)
(is_hungry_to_degree ME ?h)
(> ?f ?h))

:stopconds ’((there_is_a_fire)
(is_tired_to_degree ME 0))

:deletes ’((is_tired_to_degree ME ?#1)
(is_hungry_to_degree ME ?#2))

:adds ’((is_tired_to_degree ME
(- ?f (* 0.5

(elapsed_time?))))
(is_hungry_to_degree ME

(+ ?h (* 0.5
(elapsed_time?)))))))

The start conditions as given by startconds are the
same except for removal of the (there is a fire) for-
mula. Notably, the actual action will continue for an-

other time step if and only if neither of its stop condi-
tions as given by stopconds is true in the current state.
If at least one of them is true in the current state, then
the action will immediately terminate. Otherwise, the
current state and ME’s knowledge base will be updated
with ME’s lower fatigue level and higher hunger level.

ME currently has various operators at its disposal,
enabling it to answer the user’s yes/no questions and
wh- questions, to walk, sleep, eat, drink, ask other
agents whether something is true, play, read, withdraw
money from a bank, buy something from a store, and
work and save money. Moreover, via operator (listen!),
the user can signal to ME that a question or assertion
(in symbolic form, not in English at this point) is about
to be sent, and ME will ”hear” and save that assertion
or question, and potentially respond. Since answering
questions has been assigned a high utility, ME will pre-
fer to answer questions and verbalize its responses (as
English sentences printed on the screen). Alternatively,
for diagnostic reasons, the user is also provided with the
ability to peer into ME’s knowledge base and obtain
the answer to a question immediately, without having
to ask ME a question.

Preliminary Results
To empirically demonstrate the benefits of explicit self-
awareness and of opportunistic (but still thoughtful)
behavior in a self-motivated agent, we have created sce-
narios allowing some initial ablation tests. Here we de-
scribe some as yet incomplete attempts to investigate
ME’s performance (in terms of cumulative utility) with
and without self-knowledge, and with and without op-
portunistic tendencies.

In all scenarios, there are four locations home,
grove1, plaza1, and company1, with road path1 of
length 2 connecting home and grove1, path2 of length
3 connecting home and plaza1, and path3 of length
2 connecting grove1 and company1 in the simulated
world. Agent ME’s knowledge base is initialized to re-
flect that it is at home, is not tired, has a thirst level of
4, has a hunger level of 2, and knows that applejuice1
is potable and at home. Object pizza1 is edible and
at plaza1. Object applejuice1 is potable and at home.
Agent guru knows whether applejuice1 is potable and
whether pizza1 is edible.

In addition, ME has a variety of operators at its dis-
posal, enabling it to answer the user’s yes/no questions
and wh-questions, walk, sleep, eat, drink, ask other
agents whether something is true, play, read, buy some-
thing from a store, and work and save money. Also
there are two types of exogenous events, namely fire
and rain. Provided there is no rain, a spontaneous fire
has a 5% chance of starting; once it has started, it has
a 50% chance of stopping, and it also goes out as soon
as there is rain. Spontaneous rain has a 33% chance
of starting; once it has started, it has a 25% chance of
stopping.

In normal operation, ME will gain rewards from
the actions it performs (e.g., roaming, eating, or an-



swering user queries) and the states it reaches (e.g.,
not being hungry, thirsty, or tired). One rather
trivial way to ablate self-awareness is to eliminate
all first-person knowledge such as (is at ME home),
(is hungry to degree ME 2), etc., without altering op-
erator definitions. In such a case, ME can no longer con-
firm the preconditions of its own actions, since these all
involve facts about ME; thus, it is immobilized. But
a more meaningful test of the effect of ablating first-
person knowledge should replace ME’s conceptions of
its operators with ones that make no mention of the
agent executing them, yet are still executable, perhaps
with no effect or adverse effects in actuality, when ac-
tual preconditions unknown to ME are neglected. We
would then expect relatively haphazard, unrewarding
behavior, but this remains to be implemented.

A more interesting test of the advantages of
self-awareness would be one focused on first-
person metaknowledge, e.g., knowledge of type
(knows ME (whether (edible pizza1))). Intuitively,
given that ME can entertain such knowledge, and
there are ways of finding out whether, for instance,
(edible pizza1), ME should be able to plan and
act more successfully than if its self-knowledge were
entirely at the object- (non-meta-) level. In fact,
this is why our scenarios include the above kind of
meta-precondition in the definition of the eat oper-
ator, and why they include a guru who can advise
ME on object edibility. Our experimentation so far
successfully shows that ME does indeed ask the guru
about the edibility of available items, and is thereby
is enabled to eat, and hence to thrive. However,
ablating meta-level self-knowledge, much as in the
case of object-level self-knowledge, should be done by
replacing ME’s conceptions of its operators with ones
that do not involve the ablated predications (in this
case, meta-level predications), while still keeping the
actual workings of operators such as eat more or less
unchanged. So in this case, we would want to make
an eat-simulation either unrewarding or negatively
rewarding if the object to be eaten is inedible. This
would surely degrade ME’s performance, but this also
remains to be confirmed.

To investigate the effects that ablation of opportunis-
tic behavior has on ME’s cumulative utility, we will
focus our attention on one representative scenario. Ini-
tially, ME is at home feeling hungry and thirsty, knows
applejuice1 at home to be potable, but does not know
any item to be edible. To find out about the (only)
edible item pizza1, ME must walk to grove1 and ask
guru. With sufficient lookahead, having knowledge
about pizza1 will incline ME to walk to plaza1 and eat
pizza1 there. To entirely suppress ME’s opportunis-
tic behavior, we designate eating pizza1 as ME’s sole
goal and make ME uninterested in any action other
than asking guru to acquire food knowledge, traveling
to reach guru and pizza1, and eating pizza1.

In this case, none of ME’s actions are disrupted by
any spontaneous fire, and upon accomplishing its goal of

eating pizza1 after 18 steps, ME achieves a cumulative
utility of 66.5. The sequence of actions and events,
each annotated with its time of occurrence in reverse
chronological order, is as follows:
((EAT PIZZA1 PLAZA1) 17), (FIRE 15), ((WALK HOME PLAZA1

PATH2) 14), ((WALK HOME PLAZA1 PATH2) 12), ((WALK GROVE1

HOME PATH1) 9), (RAIN 9), (FIRE 8), ((WALK GROVE1 HOME

PATH1) 5), (RAIN 5), ((ASK+WHETHER GURU (EDIBLE PIZZA1)

GROVE1) 3), (FIRE 2), ((WALK HOME GROVE1 PATH1) 1),

((WALK HOME GROVE1 PATH1) 0), (RAIN 0).

With its opportunistic behavior restored, ME thinks
ahead into the future and chooses to execute a seem-
ingly best action at each step, achieving a higher cumu-
lative utility of 80.5 after 18 steps. The higher cumu-
lative utility comes from ME’s better choices of actions
(e.g., drinking when thirsty); specifically, it is a direct
result of ME’s seizing the initial opportunity to drink
the potable applejuice1 to relieve its thirst, and ME
can see and exploit such an opportunity because it is
not blindly pursuing any one goal but rather is acting
opportunistically. This case is shown below; no spon-
taneous fire disrupts any of ME’s actions, and ME also
finds out about pizza1 and eventually eats it.
((EAT PIZZA1 PLAZA1) 17), (RAIN 16), ((WALK HOME PLAZA1

PATH2) 15), ((WALK HOME PLAZA1 PATH2) 13), (RAIN 13),

((WALK GROVE1 HOME PATH1) 11), (RAIN 11), ((WALK GROVE1

HOME PATH1) 10), (RAIN 9), ((ASK+WHETHER GURU

(EDIBLE PIZZA1) GROVE1) 8), (FIRE 7), ((WALK HOME GROVE1

PATH1) 0) 6), ((WALK HOME GROVE1 PATH1) 5), (RAIN 5),

(FIRE 2), ((DRINK 4 APPLEJUICE1 HOME) 0), (RAIN 0).

These preliminary results indicate that ME can in-
deed benefit from both self-awareness and opportunis-
tic, thoughtful self-motivation. While the results are
encouraging, we are planning on doing systematic eval-
uations of our hypotheses, as we will outline in the con-
cluding section.

Conclusion
We have presented an explicitly self-aware and self-
motivated agent that thinks ahead, plans and reasons
deliberately, and acts reflectively, both by drawing on
knowledge about itself and its environment and by seiz-
ing opportunities to optimize its cumulative utility.

We have pointed out that deliberate self-motivation
differs significantly from the impulsive self-motivation
in behavioral robots and reinforcement-learning agents,
driven by policies acquired through extensive experi-
ence (or through imitation), but not guided by symbolic
reasoning about current and potential future circum-
stances. Our approach can be viewed as an integration
of two sorts of agent paradigms – behavioral (purely
opportunistic) agents on the one hand, and planning-
based (goal-directed) agents on the other. Agents in
the former paradigm focus on the present state, using
it to choose an action that conforms with a policy re-
flecting past reward/punishment experience. Agents in
the latter paradigm are utterly future-oriented, aiming
for some goal state while being impervious to the cur-
rent state, except to the extent that the current state
supports or fails to support steps toward that future



state. Some work in cognitive robotics (e.g., (TWN04;
FFL04)) and in autonomous agents in computer games
(e.g., (DEVG08)) intersects our approach, in that
moves are chosen on the basis of the expected value
of a sequence of moves (for instance, for a player in a
Robocup world, or a person walking in a crowd, avoid-
ing collisions). But generally these agents either are fo-
cused on externally supplied goals, or use feature-based
rather than logical representations of states, and so can-
not truly reason about them.

Additionally, we noted that our agent to some extent
meets the knowledge representation and reasoning re-
quirements (Sch05) for explicitly self-aware agents. Its
ability to handle propositional attitudes (and in that
sense metaknowledge) are particularly relevant to that
point. Its self-knowledge, world knowledge, and intro-
spection enable it to create and evaluate possible plans;
furthermore, ME uses its current factual knowledge in
any given state to perform bounded forward inference.

There are issues to address in our future work. First,
ME is excessively skeptical in its presumption that
ground predications are false whenever they cannot eas-
ily be established. Ignorance should not equal nega-
tion of knowledge. For example, not knowing if there
is food does not mean there is no food; instead, be-
ing hungry and not knowing if there is food should
prompt the agent to find out if there is food, that is,
the agent should still consider pursuing eating. Some
of this can probably be handled alternatively with “(¬)
know-whether” propositions in ME’s knowledge base.
If ME knows whether φ but φ is not inferrable by or
known to ME, then ME can conclude ¬φ. If φ is not
known to ME and ME does not know whether φ, then
this might motivate ME to find out whether φ holds.

Eventually, degrees of uncertainty should be allowed
for in ME’s knowledge. If ME has definite negative
knowledge of a precondition, then ME certainly should
not consider pursuing the action. On the other hand,
if it is still possible that a precondition currently not
known to be satisfiable might be true, and if ME would
like to pursue this action, then ME should aim to prove
or disprove this precondition. To make ME less skepti-
cal, we can specify that if ME has been to a location,
then any non-occluded facts at that location that are
not known by ME to be true are false; otherwise, no
such assumption should be made.

Ultimately, we envisage an explicitly self-aware and
self-motivated conversation agent with knowledge- and
suggestion-driven dialogue behavior. The agent’s be-
havior is ultimately driven by a planning executive that
continually augments, modifies and partially executes a
“life plan” that guides all of the agent’s deliberate ac-
tions, whether physical, verbal or mental. Given the
large number of possible dialogue moves corresponding
to particular dialogue states, it is desirable to guide
such a continually evolving planning executive by “sug-
gestions” (certain kinds of if-then rules) triggered by the
current situation. Such suggestions could be extremely
helpful in inclining the agent to particular actions in

particular situations.
By way of systematic demonstration, we would ide-

ally want to show that our agent comes closer to reap-
ing the maximum attainable cumulative utility than
does either a purely opportunistic one or a solely goal-
directed one. This raises the challenge of computing
what the maximum attainable cumulative utility ac-
tually is in a given scenario. A possible approach to
computing this maximum may be exhaustive forward
search, as far into the future as possible. We would
also want to explore probabilistic versions of such eval-
uations, in not-entirely-predictable worlds.
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