
Energy Efficient Prefetching and Caching∗

Athanasios E. Papathanasiou and Michael L. Scott
University of Rochester

{papathan,scott}@cs.rochester.edu

http://www.cs.rochester.edu/{˜papathan,˜scott}

Abstract
Traditional disk management strategies—prefetching and
caching in particular—are designed to maximize perfor-
mance. In mobile systems they conflict with strategies
that attempt to save energy by powering down the disk
when it is idle. We present new rules for prefetching and
caching that maximize power-down opportunities (with-
out performance loss) by creating an access pattern char-
acterized by intense bursts of activity separated by long
idle times. We also describe an automatic system that
monitors past application behavior in order to generate ap-
propriate prefetching hints, and a general system of kernel
enhancements that coordinate I/O activity across all run-
ning applications.

We have implemented our system in the Linux kernel,
and have measured its performance and energy consump-
tion via physical instrumentation of a running laptop. We
describe our implementation and present quantitative re-
sults. For workloads including a mix of sequential ac-
cess to large files (multimedia), concurrent access to large
numbers of files (compilation), and random access to large
files (speech recognition), we report disk energy savings
of 60–80%, with negligible loss in throughput or interac-
tive responsiveness.

1 Introduction
Prefetching and caching are standard practice in modern
file systems. They serve to improve performance—to in-
crease throughput and decrease latency—by eliminating
as many I/O requests as possible, and by spreading the
requests that remain as smoothly as possible over time.
This strategy results in relatively short intervals of inac-
tivity. It ignores the goal of energy efficiency so impor-
tant to mobile systems, and in fact can frustrate that goal.
Magnetic disks, network interfaces, and similar devices
provide low-power states that save energy only when idle
intervals are relatively long. A smooth access pattern can
eliminate opportunities to save energy even during such
light workloads as MPEG and MP3 playback.

∗This work was supported in part by NSF grants EIA-0080124, CCR-
9988361, and CCR-0204344; by DARPA/AFRL contract F29601-00-K-
0182; and by Sun Microsystems Laboratories.

The aim of our work is to create bursty access pat-
terns for devices with non-operational low-power states,
increasing the average length of idle intervals and maxi-
mizing utilization when the device is active, without com-
promising performance. At present we are focusing on
hard disks.

Typical hard disks for mobile systems support at least
four power states: Active, Idle, Standby, and Sleep. The
disk only works in the Active state. In the Idle state the
disk is still spinning, but the electronics may be partially
unpowered, and the heads may be parked or unloaded. In
the Standby state the disk is spun down. The Sleep state
powers off all remaining electronics; a hard reset is re-
quired to return to higher states. Individual devices may
support additional states. The IBM TravelStar, for exam-
ple, has three different Idle sub-states.

One to three seconds are typically required to transition
from Standby to Active state. During that spin-up time
the disk consumes 1.5–2X as much power as it does when
Active. The typical laptop disk must therefore remain in
Standby state for a significant amount of time—on the or-
der of 5–16 seconds for current laptop disks—to justify
the energy cost of the subsequent spin-up. The energy
savings in Idle state approaches that of Standby state, par-
ticularly in very small form factor devices, and the time
and energy to move from Idle to Active state are minimal.
Hence, even modest increases of the disk’s idle interval
can lead to significant energy savings.

In previous work we made the case for energy effi-
ciency through burstiness and demonstrated the energy ef-
ficiency potential of aggressive prefetching for rate-based
applications with sequential access patterns [28, 29]. In
this paper, we provide a detailed description of the design
and implementation of our prefetching and caching algo-
rithms. In addition, we provide experimental results for
more challenging workload mixes, including applications
that make non-sequential accesses to multiple files.

We have implemented our system in the Linux 2.4.20
kernel. We have extended the memory management and
file system of the operating system with algorithms and
data structures to:

• Quickly identify the working set of the executing job

mls
USENIX 2004

mix and dynamically control the amount of memory
used for aggressive prefetching and buffering of dirty
data.

• Coordinate the generation of I/O requests among con-
currently running applications, so that they are ser-
viced by the device during the same small window of
time.

In designing and evaluating our system we have fo-
cused on long-running applications that are commonly ex-
ecuted on mobile systems, and that generate a large num-
ber of I/O requests, separated by idle times too short to
be exploited by the hard disk for energy savings. Ex-
amples include data transfer (copying); encoding, decod-
ing, and compression; compilation and build; scripting
utilities for system maintenance; and computationally de-
manding user interface tasks, e.g. speech recognition.

The following Section provides rules for optimal
prefetching when the goal is energy efficiency. Sec-
tions 3 and 4 describe the design of our prefetching and
request deferring mechanisms. Section 5 presents exper-
imental results. Section 6 discusses previous work. Sec-
tion 7 summarizes our conclusions.

2 Prefetching for Energy Efficiency
To illustrate the differences that arise when prefetch-
ing has the additional goal of improving disk energy ef-
ficiency, consider an application with reference string
{ A B C D E F G . . . } and a steady rate of one access
every 10 time units. Assume that the buffer cache has
room for three blocks, and that the disk requires one time
unit to fetch a block that misses in the cache.1

Figures 1–3 illustrate the execution of the application
while accessing the first 6 elements of the reference string,
with an optimal replacement strategy and three differ-
ent prefetching strategies: Figure 1 illustrates a fetch-on-
demand strategy; Figure 2 illustrates a strategy that fol-
lows the prefetching rules of Cao et al. [1]; Figure 3 il-
lustrates an energy-conscious prefetching strategy that at-
tempts to maximize the length of the disk idle intervals.
Under the fetch-on-demand strategy the application runs
for 66 time units and experiences 6 misses. The disk idle
time is spread across 6 intervals of 10 time units each.
With a traditional prefetching strategy (Figure 2) run time
decreases to 61 time units and the application experiences
just one miss. The distribution of disk idle time remains
practically unchanged, however: 5 intervals of 9 time
units each and one of 8 time units. The energy-conscious
prefetching strategy (Figure 3) achieves the same execu-
tion time and the same number of misses as traditional

1Note that the application in this example consumes data at a rate
slower than the bandwidth of the disk. The goal of our work is to in-
crease the length of disk idle interval for workloads that run for relatively
long periods and do not require the disk to be active constantly.

A

A

A B

A B

A B C

A B C

D B C

D B C

idle

idle

idle

D B C

D B C

D B C

D B C

idle

idle

idle

1

2−11

12

23

24−33

34

35−44

access(A)

fetch(A)

fetch(B)

access(B)

fetch(C)

access(C)

fetch(D)

access(D)

45

Time Application Disk Cache State

46−55

56

57−66

access(E)

access(F)

fetch(F)

fetch(E)

67 fetch(G)

13−22

Figure 1: Optimal Replacement and Fetch-on-Demand.
Accessing the reference string up to element F requires
66 time units. The disk idle time appears in 6 intervals of
10 time units each.

prefetching, but the disk idle time appears in two much
longer intervals: one of 27 time units and one of 28 time
units.

2.1 Rules for Optimal Prefetching Revisited
Traditional prefetching strategies aim to minimize execu-
tion time by deciding:
• when to fetch a block from disk,

• which block to fetch, and

• which block to replace.
Previous work [1] describes four rules to make these

decisions in a performance-optimal fashion:

1. Optimal Prefetching: Every prefetch should bring into
the cache the next block in the reference stream that is
not yet in the cache.

2. Optimal Replacement: Every prefetch should discard
the block whose next reference is farthest in the future.

3. Do no harm: Never discard block A to prefetch block
B when A will be referenced before B.

4. First Opportunity: Never perform a prefetch-and-
replace operation when the same operations (fetching
the same block and replacing the same block) could
have been performed previously.

The first three rules answer the questions of what to
prefetch (rules 1 and 2) and (partially) when to prefetch
(rule 3), and apply equally well to energy-conscious
prefetching. The fourth rule suggests that a prefetch op-
eration should be issued when (a) a prior fetch completes,

A

D E C

D E C

A B

idle A B C

A B C

idle

D B C

D B C

idle

D E Fidle

D E F

G E F

G E F

G H F

G H F

idle

idle

1

3

13−21

22

23−31

access(A)

fetch(A)

access(A)

access(C)

32 access(D)

Time Application Disk Cache State

access(B)

access(A)

access(C)

prefetch(B)

prefetch(C)

2

prefetch(D)

4−11

12

access(B)

prefetch(E)

33−41 access(D)

prefetch(F)

42 access(E) prefetch(G)

43−51

52

53−61

62

access(E)

access(F)

access(F)

access(G)

prefetch(H)

prefetch(I)

Figure 2: Optimal Replacement and Traditional Prefetch-
ing. Accessing the reference string up to element F re-
quires 61 time units. The disk idle time appears in 5 in-
tervals of 9 time units each and one of 8. In a long run the
average idle interval length will be 9 time units.

A

A B

A B C

A B C

A B C

A B C

D E F

D E F

D B C

D E C

D E F

idle

D E F

idle

1

3

22−30

31

access(A)

fetch(A)

access(A)

access(D)

access(D)

Time Application Disk Cache State

access(B)

access(A)

access(C)

prefetch(B)

prefetch(C)

2

4−11

12−21

access(C)

prefetch(D)

33−41 access(D)

42−51 access(E)

prefetch(E)32

prefetch(F)33

52−60 access(F)

61 access(F) prefetch(G)

Figure 3: Optimal Replacement and Energy-conscious
Prefetching. Accessing the reference string up to element
F requires 61 time units. The disk idle time appears in
one interval of 27 time units and one of 28. In a long run
the average idle interval length will be 28 time units.

or (b) the block that would be discarded was just refer-
enced. Identifying this first opportunity can be difficult,
and indeed most real systems are considerably less ag-
gressive. As noted by Patterson et al. [31], the full perfor-
mance benefit of prefetching will be achieved even if the
prefetch completes just barely before the corresponding
access.

We observe, however, that any uniform prefetch pol-
icy will tend to produce a smooth access pattern, with
short idle times. As an example, consider a system
with a cache size of k blocks, a reference string R =

{ b1 b2 . . . bk bk+1 . . . bn }, where n > k, and an inter-
access time of A. If we follow rule 4, we will fetch block
bk+1 immediately after the reference to b1, bk+2 immedi-
ately after the reference to b2 and so on, breaking a pos-
sible disk idle interval of length k × A into intervals of
lengthA−F , whereF represents the time to fetch a block
from the disk. Assuming F < A, an energy-conscious
prefetching algorithm should not initiate the prefetch of
bk+1 until F time units prior to its reference. Then in a
single burst it should prefetch blocks { bk+1 . . . b2k−1},
replacing blocks { b1 . . . bk−1}. Intuitively, this policy
alternates between “first opportunity” and “just in time”
prefetching, depending on whether the disk is currently in
the Active state.

Based on the above discussion, to accommodate the re-
quirement of energy efficiency, we replace rule 4 with the
following:

4′. Maximize Disk Utilization: Always initiate a prefetch
operation after the completion of a fetch, if there
are blocks available for replacement (with respect to
Rule 3).

5′. Respect Idle Time: Never interrupt a period of inactiv-
ity with a prefetch operation unless the prefetch has to
be performed immediately in order to maintain optimal
performance.

Rule 4′ guarantees that a soon-to-be-idle disk will not
be allowed to become inactive if there are blocks in the
cache that may be replaced by blocks that will be accessed
earlier in the future. This way disk utilization is maxi-
mized and short intervals of idle time that cannot be ex-
ploited for energy efficiency are avoided. Rule 5′ attempts
to maximize the length of a period of inactivity without
degrading performance. Note that the rule implies that
the prefetching algorithm should take into account addi-
tional delays due to disk activation or congestion as well
as the time required for a fetch to complete. An algorithm
that follows rules 4′ and 5′ will lead to the same hit ra-
tio and execution time as an algorithm following the rules
of Cao et al., but will exhibit fewer and longer periods of
disk inactivity whenever possible.

State Value
Active Power 2.0 W

Idle Power 0.61 W
Idle-to-Active Energy 1.5 J
Idle-to-Active Time 0.55 s

Active-to-Idle Energy 2.4 J
Active-to-Idle Time 0.85 s

Standby Power 0.15 W
Spin up Energy 5.0 J
Spin up Time 1.6 s

Spin down Energy 2.94 J
Spin down Time 2.3 s

Table 1: Abstract disk model parameters for computing
the potential of aggressive speculative prefetching. Values
are based on the characteristics of the Hitachi DK23DA
hard disk.

2.2 Prefetching’s Potential for Energy
Savings

In comparison to traditional prefetching, which aims to
reduce the latency of access to disks in the active state,
prefetching for energy efficiency has to be significantly
more aggressive in both quantity and coverage. A tradi-
tional prefetching algorithm can fetch data incrementally:
its goal is simply to request each block far enough in ad-
vance that it will already be available when the application
needs it. It will improve performance whenever its rate of
“true positives” (prefetched blocks that turn out to indeed
be needed) is reasonably high, and its “false positives”
(prefetched blocks that aren’t needed after all) don’t get in
the way of fetching the “false negatives” (needed blocks
that aren’t prefetched). By contrast, an energy-reducing
prefetching algorithm must fetch enough blocks to satisfy
all read requests during a lengthy idle interval. Minimiz-
ing “false negatives” is more important than it is in tradi-
tional prefetching, since the energy cost and performance
penalty of power state transitions is very high. These dif-
ferences suggest the need to fetch much more data, and
much more speculatively, than has traditionally been the
case. Indeed, prefetching for burstiness more closely re-
sembles prefetching for disconnected operation in remote
file systems [19] than it does prefetching for low latency.

Fortunately, avoiding a disk power-up operation
through speculative prefetching can justify fetching a
large number of “false positives” in terms of energy con-
sumption. To show the energy saving potential of spec-
ulative prefetching, we present calculated values for an
aggressive, speculative prefetching algorithm that follows
the rules for energy-efficient prefetching (Section 2.1)
with various “false-positive” to “true-positive” ratios, and
compare to a prefetching algorithm that follows Rules 1–
4 and prefetches only what is needed. We assume an ab-

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

E
ne

rg
y

Sa
vi

ng
s

Prefetch Cache Size (MB)

FPR:0
FPR:1
FPR:2

FPR:3
FPR:5

FPR:10

FPR:15
FPR:20

Figure 4: Energy savings of a speculative prefetching al-
gorithm across various prefetch buffer sizes and “false-
positive” to “true-positive” ratios (FPR) ranging from 0
to 20. An application with a “slow” data consumption
rate of 16 KB/sec is assumed.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

E
ne

rg
y

Sa
vi

ng
s

Prefetch Cache Size (MB)

FPR:0
FPR:1
FPR:2

FPR:3
FPR:5

FPR:10

FPR:15
FPR:20

Figure 5: Energy savings of a speculative prefetching al-
gorithm across various prefetch buffer sizes and “false-
positive” to “true-positive” ratios (FPR) ranging from 0
to 20. An application with a “fast” data consumption rate
of 240 KB/sec is assumed.

stract disk model based on the Hitachi DK23DA hard disk
with the characteristics shown in Table 1 and an optimal
power management policy (one that spins the disk down
whenever it can save energy by doing so, without perfor-
mance loss). We include in our calculations the cost of
reading data into memory. Based on the specifications of
Micron’s 512 Mb × 16 SDRAM DDR dies [25], this is
100µJ per page.

Figures 4 and 5 present results for “false-positive” to
“true-positive” ratios (FPR) ranging from 0 to 20 for a pair
of applications consuming data at 16 KB/s and 240 KB/s,

respectively. For the slower application (Figure 4), with
even a small amount of memory dedicated to prefetching,
significant energy savings can be achieved. Just 5 MB of
memory prefetching leads to over 50% energy savings,
even for “false-positive” to “true-positive” ratios as high
as 20 to 1, i.e. even if we prefetch more than 20 times as
much data as we actually use. For the faster application
(Figure 5), a 50% savings in disk + memory energy can be
achieved with a 25 MB prefetch buffer for “false-positive”
to “true-positive” ratios of up to 5 to 1. Larger ratios re-
quire significantly more prefetch memory.

3 Design of Energy-Aware
Prefetching

As mentioned in the previous Section, any prefetching al-
gorithm has to decide when to fetch a block, which block
to fetch, and which block to replace.

3.1 Deciding When to Prefetch
Based on Rules 4′ and 5′ presented in the previous Sec-
tion, our prefetching algorithm attempts to fetch from the
disk as many blocks that are going to be accessed in the
future as possible during periods when the disk is active,
and to postpone prefetching operations until the latest op-
portunity during periods when the disk is idle. To approx-
imate such behavior, we introduce an Epoch-based algo-
rithm into the memory management mechanisms of the
operating system. Each epoch consists of two phases: an
active phase and an idle phase. Prefetching occurs dur-
ing the active phase. To manage this prefetching, the OS
must:

1. Predict future data accesses. Prediction is based on
manual or automatic hints (Section 3.2).

2. Compute the amount of memory that can be used for
prefetching or storing new data. This step requires
identifying quickly the currently useful in-memory
data: the workload’s working set and cached files.

3. Free the required amount of memory by unmapping
pages and flushing dirty, mapped pages.

4. Prefetch or reserve buffers for writing new data propor-
tional to each executing application’s memory resource
requirements. The goal of this step is to coordinate
I/O accesses across concurrently running applications
so that they all generate their next demand miss at ap-
proximately the same time.

When the active phase completes, the idle phase of the
epoch begins. During the idle phase, accesses to each ac-
tive file are monitored by the operating system. Based
on the access pattern and rate, and the state of the buffer
cache, the operating system attempts to predict the next
miss time for each file, and to initiate a new prefetch-
ing cycle early enough to achieve optimal performance.

Random

 regarding following
 accesses

− Probability of access
− List of <offset, length>

− Pointer to information

Pattern Specifier

Loop

Sequential

First Access Time
Last Access Time

Time Information

+X
filename

file descriptor

File Specifier

Figure 6: Hint Interface: Applications can disclose future
file accesses using the hint interface. The interface speci-
fies a file using a filename or a file descriptor and provides
a pattern specifier that can be one of sequential, loop and
random. In addition, an estimation of the time of first and
last access can be given, if available.

Prefetching has to start well in advance in order to hide
both the latency of the fetch itself and the delay of a pos-
sible disk reactivation (power-up).

The start of a new epoch is triggered by one of the fol-
lowing events:

1. A new prefetching cycle has to be initiated in order to
maintain optimal performance.

2. A demand miss took place. In this case the prefetching
algorithm has failed to load into memory all required
data, or has mistakenly evicted useful pages from the
buffer cache during the active phase. The application
that issued the request may experience an increased de-
lay in addition to the penalty of a demand miss if the
disk has been placed into a low-power state.

3. The system is low on memory resources. The page
freeing logic has to be executed.

3.2 Deciding What to Prefetch
To achieve as high a degree of accuracy as possible, pre-
diction is based on hints. Our hint interface is an extension
of that described by Patterson et al. [31]. The hint inter-
face consists of a file specifier that can be a file descriptor
or a filename, a pattern specifier that shows whether the
file will be accessed in a sequential, loop or random way,
and estimates of the times of the first and last accesses
to the file. The time information can be represented as
offsets from the start of the application execution or from
the disclosure of the hint. For randomly accessed files the
hint interface also provides a list of “hot” clusters within
the file, the probability of access to each cluster, and an
optional pointer to a file that provides sets of clusters that
have a significant probability of being accessed within a
certain time period of the access to a specific page. Such
information can be generated through profiling. Figure 6
summarizes the hint interface. Hints are submitted to the
operating system through a new set of system calls.

New applications can use the new system calls di-
rectly in order to provide hints to the operating system.

Disclosure

Hints

System Calls

Applications
Monitor
Daemon

On−disk
File Access
Database

K
ernel L

evel

Figure 7: The monitor daemon provides hints automati-
cally on behalf of applications that do not support the hint
interface. It tracks file system use by monitoring system
calls. It analyzes the collected information, and creates
a hint database for each application whose access pattern
may be harmful to energy efficiency. When an application
with hints re-executes, its file accesses will automatically
be disclosed to the operating system by the monitor dae-
mon.

For existing applications, efficient file prediction may be
achieved by monitoring past file accesses and taking ad-
vantage of the semantic locality that appears in user be-
havior [20]. In our current prototype, a monitor daemon
tracks the file activity of all executing applications by trac-
ing the open, close, read, write execve, exit,
and setpgid system calls. Its goals are two-fold: to pre-
pare a database describing file accesses for each applica-
tion based on the collected information (Access Analysis)
and to generate hints automatically on behalf of applica-
tions based on the information in the database (Hint Gen-
eration). Figure 7 illustrates the operation of the monitor
daemon.

Since access analysis can be a computationally inten-
sive operation, it takes place only at periods during which
energy consumption is not a concern (when the mobile
system is plugged in). The analysis utility discovers asso-
ciations among file accesses and applications, and records
the access pattern (sequential, loop, and random) and the
time from the beginning of execution to the first and last
access to each file. For randomly accessed files the utility
also identifies clusters of pages within the file that tend
to be accessed together, the probability of an access to
a given cluster, and for each cluster X a list of clusters
that tend to be accessed within a certain time (currently
one minute) of the access to that cluster. The analysis
utility stores this information for applications that use the
file system for relatively long periods of time (currently
at least 1 minute) and cause access patterns that spread
a large amount of idle time across many short intervals.
Occasional accesses that appear during interactive work-
loads can be handled adequately by previously proposed
disk power management policies [4, 5, 15, 22].

In order to associate related file accesses that are gen-

erated by different processes (as an example consider ac-
cesses caused by the various invocations of the gcc com-
piler during the execution of a make operation), we take
advantage of the process group structure of Unix. The
analysis utility associates accesses with the process group
leader of the process that caused the access. The database
that maintains the hinting information is indexed by the
absolute pathname of the executable with which the ac-
cess was associated, the directory in which the access took
place, and the arguments used to make the invocation.

During normal system operation, the monitor daemon
tracks execve system calls. If there are hints available
in the database for the specified application, the daemon
automatically generates the hints on behalf of that appli-
cation.

3.3 Deciding What to Replace
As mentioned in Section 3.2, the first step during the initi-
ation of a new prefetching cycle is to compute the number
of pages that can be used for prefetching. Unlike a tradi-
tional prefetching algorithm, which can make incremen-
tal page-out decisions over time, the energy-conscious
prefetching algorithm must make a decision significantly
ahead of time, predicting the number of cached pages that
are not going to be accessed during a possibly long idle
phase.

Intuitively, two parameters determine the number of
pages that should be freed at the beginning of each epoch.
First, the reserved amount of memory should be large
enough to contain all predicted data accesses. Second,
prefetching or future writes should not cause the eviction
of pages that are going to be accessed sooner than the
prefetched data. Since our goal is to maximize the length
of the hard disk’s idle periods, we use the type of the first
miss during an epoch’s idle phase to refine our estimate of
the number of pages available for prefetching in the sub-
sequent epoch.

We categorize page misses as follows:

1. Eviction miss: A miss on a page that used to reside in
the buffer cache, but was evicted in favor of prefetch-
ing. Such a miss suggests that number of pages used
for prefetching in the current epoch was too large.

2. Prefetch miss: A miss on a page for which there was a
prediction (hint) that it was going to be accessed. Such
a miss suggests that a larger prefetch cache size could
have been used during the current epoch.

3. Compulsory miss: A miss on a page for which there is
no prior information.

An eviction miss during the idle phase of an epoch sug-
gests that the prefetching depth (the total number of pages
prefetched) should decrease, while a prefetch miss sug-
gests that the prefetching depth should increase. Control-
ling the prefetching depth based on eviction misses pro-

vides a way to protect the system from applications that
may issue incorrect hints. Incorrect hints will increase the
number of eviction misses and lead to a reduced prefetch-
ing depth. Section 4.4 describes in detail how our system
adjusts the prefetching depth.

4 Implementation
We have implemented our epoch-based energy-efficient
prefetching algorithm in the Linux kernel, version 2.4.20.
We describe that implementation in this Section.

4.1 Hinted Files
Prefetching hints are disclosed by the monitor daemon or
by applications themselves. In addition, the kernel auto-
matically detects and generates hints for long sequential
file accesses. The full set of hints, across all files is main-
tained in a doubly linked list, sorted by estimated first ac-
cess time. In addition to the information listed in Sec-
tion 3.2), the kernel keeps track of the following:
• Memory Status: Shows the caching state for a file. A

file can be completely uncached, have only its meta-
data cached, be partially cached, or be fully cached.
When a hint is disclosed using the filename of the file,
the caching state of the corresponding file is unknown.
In such cases the kernel assumes that the file is com-
pletely uncached, and aggressively attempts to prefetch
metadata and data. The kernel also keeps track of
open and close requests in order to associate hinted
accesses with their corresponding file descriptors.

• Rate of access: Keeps track of the average rate in pages
per second with which the file is being accessed.

• Prefetch Depth: Shows the number of pages that were
used for prefetching data for the corresponding hinted
file during the current epoch. The prefetching algo-
rithm allocates memory for prefetching to each hinted
file proportional to its average access rate.

4.2 Prefetch Thread
Idle interval length can be limited because of a lack of
coordination among requests generated by different appli-
cations. Even if there are long idle periods in the access
pattern of every application, we will be unable to power
down the disk unless these patterns are in phase. The op-
erating system must ensure that read and write requests
from independent concurrently running applications are
issued during the same small window of time. Write activ-
ity can easily be clustered because most write requests are
issued by a single entity: the update daemon. Similarly,
page-out requests are issued by the swap daemon. Read
and prefetching requests, however, are generated within
a process context independent of other applications. To
coordinate prefetching requests across all running appli-
cations we introduce a centralized entity that is responsi-
ble for generating prefetching requests for all running ap-

plications: the prefetch daemon. The prefetch daemon is
analogous to the update daemon and handles read activity.
Through the prefetch thread the problem of coordinating
I/O activity is reduced to that of coordinating three dae-
mons.

During the active phase the prefetch thread goes
through the list of hints and attempts to prefetch data in
a way that will equalize the expected time to first miss
across all applications. The prefetching algorithm sets an
initial target idle period and for each hinted file that is
predicted to be accessed within the target period it aggres-
sively prefetches metadata and data proportional to the av-
erage access rate. The target idle time is then increased
gradually until all hinted files are fully prefetched or the
amount of memory available for prefetching is depleted.

The target idle times used by the prefetching algorithm
are based on the “breakeven” times of modern mobile hard
disks: the times over which the energy savings of low-
power states exactly equal the energy cost of returning to
the Active state. Currently, we are using target idle times
of 2 seconds, which corresponds to the highest low-power
state of the IBM TravelStar [17], 5 seconds, which corre-
sponds to the IDLE-3 low-power state of the TravelStar
and the Idle state of the Hitachi DK23DA, and multiples
of the Standby state breakeven time (16 seconds for the
DK23DA). When the prefetching cycle completes, the al-
gorithm predicts that the length of the idle phase of the
upcoming epoch will be the period for which the prefetch
thread successfully prefetched all necessary data.

4.3 Prefetch Cache
We have augmented the kernel’s page cache with a new
data structure: the prefetch cache. Pages requested by the
prefetch daemon are placed in the prefetch cache. Each
page in the prefetch cache has a timestamp that indicates
when it is expected to be accessed. When a page is ref-
erenced, or its timestamp is exceeded, it is moved to the
standard LRU list and is thereafter controlled by the ker-
nel’s page reclamation policy.

4.4 Eviction Cache
To choose an appropriate size for the prefetch cache, we
must keep track of pages that are evicted in favor of
prefetching (Section 3.3). We do this using a new data
structure called the eviction cache. This cache retains the
metadata of recently evicted pages (though not their con-
tents!) along with a unique serial number, called the evic-
tion number. The eviction number counts the number of
pages that have been evicted in favor of prefetching. Dur-
ing the idle phase, if an eviction miss takes place, the dif-
ference between the page’s eviction number and the cur-
rent epoch’s starting eviction number indicates the num-
ber of pages that were evicted in favor of prefetching with-
out causing an eviction miss. It can be used as an estimate

of a suitable prefetching depth (prefetch cache size) for
the upcoming epoch. The prefetch depth does not change
in the case of compulsory misses or misses on pages that
were evicted in prior epochs. It is increased by a con-
stant amount if there were no misses, or if there were only
prefetch misses.2 In order to avoid significant oscillations
in the prefetching depth we use a moving average func-
tion. During system initialization, when there is no prior
information available, the prefetch depth is set to the num-
ber of idle pages in the system.

4.5 Handling Write Activity
The original Linux kernel uses a variant of the approxi-
mate interval periodic update policy [26]. The update dae-
mon runs every 5 seconds, and flushes all dirty buffers that
are older than 30 seconds. This policy is bad for energy
efficiency: under even light write workloads idle time will
appear in intervals of 5 seconds or less.

In our current implementation, we use a modified up-
date daemon that flushes all dirty buffers once per minute.
In addition, we have extended the open system call with
an additional flag that indicates that write-behind of dirty
buffers belonging to the file can be postponed until the
file is closed or the process that opened the file exits.
Such a direction is useful for several common applica-
tions, such as compilations and MP3 encoding, that pro-
duce files that do not have strict intra-application reliabil-
ity constraints. For legacy code, users can specify in a
configuration file the names of applications (gcc, for ex-
ample) or file classes (e.g. .o) for which write-back can
be delayed. The monitor daemon then provides a “flush-
on-close” or “flush-on-exit” directive to the operating sys-
tem.

A side effect of create and write accesses is that
they can lead to unpredicted read operations of file meta-
data, directories, or file system metadata (e.g. the free
block bitmaps). Such read operations are synchronous
and can interrupt lengthy idle intervals. For this reason the
monitor daemon keeps track of write and create ac-
cesses and generates hints for any files that may be written
or created by a certain application. During the prefetch-
ing cycle of the epoch, the prefetch thread speculatively
prefetches file system metadata for files associated with
write or create hints. At the memory management
level of the operating system, file system structure is not
known, since it is file system dependent. In order to en-
able file system metadata prefetching we have extended
the Linux virtual file system with two new function point-
ers: emulate create and emulate write. Both
functions execute the low level file system code that is
normally executed during file creation or disk block al-

2In the current implementation we increase by the pages low
value, used by the pageout daemon. In Linux this is 1/128 of the to-
tal number of memory pages but not less than 20 or more than 255.

location without actually modifying the file system (only
the corresponding read requests are issued). Currently, we
have an implementation of the two functions for the Linux
Ext2 file system.

Finally, write activity can lead to unexpected I/O re-
quests during an idle phase if the system runs out of mem-
ory and the page daemon has to start paging. For this rea-
son, during the active phase the prefetch thread reserves
a portion of the available memory for future writes. The
amount of memory allocated to each file is proportional
to its write rate. At the end of the prefetching cycle, the
prefetch threads clears a number of pages equal to the to-
tal number of reserved pages. Pages are reserved only for
files that have been active for at least a certain time period
(5 seconds) and have a fast write rate (at least 1 page per
second).

4.6 Power Management Policy
At the completion of the prefetching cycle, the prefetch
thread predicts the length of the upcoming idle phase
(Section 4.2). This prediction is forwarded to the ker-
nel’s power management policy. If the predicted length
is longer than the hard disk’s Standby breakeven time, the
disk is set to the Standby state within one second after
it becomes idle (the disk may be servicing requests for
several seconds after the prefetch thread completes its ex-
ecution).

Since the prediction provided by the prefetching sys-
tem is based only on file accesses associated with hints,
there is a significant chance of decreased prediction accu-
racy during highly interactive workloads that are not han-
dled efficiently by the monitor daemon. To avoid harmful
spin-down operations, the power management algorithm
monitors the accuracy of the prefetching system’s predic-
tions. If the prefetching system repeatedly mispredicts the
length of the idle phase, providing predictions that spec-
ify idle periods longer than the disk’s Standby breakeven
time, when the actual idle period length is shorter than the
breakeven time, the power management policy reverts to
a dynamic-threshold spin-down policy, ignoring predic-
tions coming from the prefetch thread until their accuracy
is increased.

For rate-based and non-interactive applications, the
same information that allows the operating system to
identify opportunities for spin-down can also be used to
predict appropriate times for spin-up, rendering the de-
vice available just in time to service requests. For this
purpose during the idle phase of an epoch the operating
system monitors the rate at which pages belonging to se-
quentially accessed files are consumed from the prefetch
cache. Based on this rate, the number of pages remain-
ing in the prefetch cache, and the disk’s power-up delay,
it computes the time at which the disk has to be activated
in order to avoid any noticeable delays.

Disk Hitachi
Capacity 10-30GB
Active 2.1W

Active Idle 1.6W (24%)
Low-Power Idle 0.6W (71%)

Standby 0.15W (93%)
Spin up 3.0W

Spin-up time 1.6s
Breakeven time 16s

Table 2: Energy consumption parameters for the Hitachi
DK23DA hard disk. The disk supports three low power
states: Active Idle (a portion of the electronics is off), Low
Power Idle (the heads are parked) and Standby.

5 Experimental Evaluation
In this section, we compare our energy-conscious
prefetching algorithm (called Bursty) to the standard
Linux 2.4.20 policies across systems with memory sizes
ranging from 64 MB to 492 MB. We use the power man-
agement policy described in Section 4.6 for the Bursty
system, and a 10 second fixed threshold power manage-
ment policy for Linux. Linux 2.4.20 supports a conser-
vative prefetching algorithm that reads up to 128 KB (32
4KB pages) in advance and leads to very short periods of
disk idle time for our experimental workloads. Hence, the
power management policy degenerates to the No-Spin-
Down policy.

Our experiments were conducted on a Dell Inspiron
4100 laptop with 512 MB of total memory and a Hitachi
DK23DA hard disk. Table 2 presents the power consump-
tion specifications of the disk. Power measurements were
collected from the disk’s two 5V supply lines. To measure
power, both the voltage and current need to be known.
The voltage is assumed to be fixed at 5V. We used 100mΩ

precision resistors in order to dynamically measure the
current through the supply lines. The voltage drop across
the resistors was measured through the following Na-
tional Instruments setup: a SCXI-1308 voltmeter terminal
block, a SCXI-1102C (32 channel multiplexer/amplifier
and 10kHz filter) module, a SCXI-1000 chassis (for the
mentioned modules), a SCXI-1349 card to chassis cable,
and a PCI-6052E Analog-to-Digital converter card (capa-
ble of 16 bit resolution, 333Ksamples/second). The gain
of the SCXI-1102C was set to 100 and the PCI-6052E
was set to have a range of +/−10V. The sampling rate
for each signal was 1000 samples/second. Measurements
were collected and converted to current and power using
National Instrument’s LabView (version 6.0.2) software.

The idle interval histogram graphs (Figures 8 and 9) are
based on traces collected from the ATA/IDE disk driver
during the execution of our workloads scenarios. In order
to avoid any disk activity caused by the tracing system,

we used a pinned-down 20 MB memory buffer that was
periodically transmitted to a logging system through the
network.

We use four different workload scenarios, with differ-
ent degrees of I/O intensity. The first, MPEG playback of
two 76 MB files (referred to as MPEG), represents a rela-
tively intensive read workload. The second (referred to as
Concurrent) is a read and write intensive workload, which
involves concurrent MP3 encoding and MPEG playback.
The MP3 encoder reads 10 WAV files with a total size
of 626 MB and produces 42.9 MB of data. During the
MP3 encoding process, the MPEG player accesses two
files with a total size of 152 MB. Our third workload (re-
ferred to as Make) is a full Linux kernel compilation. Fi-
nally, in order to evaluate our system for workloads that
consist of random accesses to files, we use the SPHINX-II
Speech Recognition utility [16] from CMU (referred to as
SPHINX). During speech recognition SPHINX accesses a
128 MB language model file in an apparently random way.
As input we use a set of recorded dialogues that were used
in the evaluation of the TRIPS Interactive Planning Sys-
tem [8]. We used a subset of the dialogues to prepare the
access pattern database (Section 3.2), and evaluated the
system on a different subset.

The metrics used in the comparisons are:
Length of idle periods Longer idle periods can be ex-

ploited by more power-efficient device states. Increas-
ing the length of idle periods can improve any under-
lying power management policy.

Energy savings We compare the energy savings
achieved for Linux and our Bursty system for various
memory sizes.

Slowdown A significant challenge for our Bursty system
is to minimize the performance penalties that may be
caused by increased disk congestion and disk spin-up
operations.
Figures 8-11 show the distribution of idle time intervals

for our workload scenarios. We present results for our
Bursty system using various memory sizes. For the first
three workloads, the memory size ranges from 64 MB to
492 MB. For SPHINX two sizes are used: 256 MB and
492 MB. Executing SPHINX on systems with less than
256 MB of memory leads to thrashing. In all graphs the
straight vertical line represents the 16 second break-even
point of the Hitachi hard disk. When executing on the
standard Linux kernel (not shown in the graphs), the first
three workloads lead to access patterns in which 100% of
the disk idle time appears in intervals of less than 1 sec-
ond, independent of memory size, preventing the use of
any low-power mode. In contrast, larger memory sizes
lead to longer idle interval lengths for the Bursty system,
providing more opportunities for the disk to transition to
a low-power mode. During the Linux kernel compilation,

0

20

40

60

80

100

0 50 100 150 200 250 300

Pe
rc

en
ta

ge
 o

f
T

ot
al

 I
dl

e
T

im
e

Idle Interval Length (seconds)

Bursty-64
Bursty-128

Bursty-256
Bursty-492

Figure 8: Cumulative distribution of disk idle time inter-
vals during MPEG playback. On the standard Linux ker-
nel (not shown), 100% of the disk idle time appears in
intervals of less than 1 second for all memory sizes.

0

20

40

60

80

100

0 10 20 30 40 50 60 70

Pe
rc

en
ta

ge
 o

f
T

ot
al

 I
dl

e
T

im
e

Idle Interval Length (seconds)

Bursty-64
Bursty-128

Bursty-256
Bursty-492

Figure 9: Distribution of disk idle time intervals during
concurrent MPEG playback and MP3 encoding. On the
standard Linux kernel (not shown), 100% of the disk idle
time appears in intervals of less than 1 second for all mem-
ory sizes.

the Bursty system manages to prefetch most of the ac-
cessed data when system memory exceeds 128 MB. At
96 MB our energy-aware prefetching algorithm slowly in-
creases the size of the prefetch cache, eventually achiev-
ing idle periods that are longer than the disk’s breakeven
time. The algorithm behaves similarly on a 64 MB sys-
tem. However, it also leads to increased paging that has a
negative effect on both energy and performance. For the
speech recognition workload at 492 MB the Bursty sys-
tem prefetched the whole language model file leading to
long idle phases. At 256 MB it prefetched up to 33% of
the file, leading to idle interval lengths only slightly longer

0

20

40

60

80

100

0 50 100 150 200

Pe
rc

en
ta

ge
 o

f
T

ot
al

 I
dl

e
T

im
e

Idle Interval Length (seconds)

Bursty-64MB
Bursty-96MB

Bursty-128MB

Bursty-256MB
Bursty-492MB

Figure 10: Distribution of disk idle time intervals during
a full Linux kernel compilation. On the standard Linux
kernel (not shown), 100% of the disk idle time appears in
intervals of less than 1 second for all memory sizes. At
a memory size of 128 MB and over all accessed files are
prefetched by the Bursty system leading to increased idle
interval lengths.

0

20

40

60

80

100

0 20 40 60 80 100 120

Pe
rc

en
ta

ge
 o

f
T

ot
al

 I
dl

e
T

im
e

Idle Interval Length (seconds)

Linux-256
Linux-492

Bursty-256
Bursty-492

Figure 11: Distribution of disk idle time intervals during
speech recognition by SPHINX. On the standard Linux
kernel with 256 MB, 100% of the disk idle time appears
in intervals of less than 1 second.

than Linux, due to accesses to the uncached portion of the
file.

Figure 12 presents disk energy savings as a function
of total system memory size. The base case used for the
comparisons is the standard Linux kernel on a 64 MB sys-
tem. For Linux, increasing the system’s memory size has
only a minor impact on the energy consumed by the disk,
because of the lack of long idle intervals. In contrast, the
savings achieved by the Bursty algorithm depend on the
amount of memory available. For the first workload, sig-

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

D
is

k
E

ne
rg

y
Sa

vi
ng

s

Total Memory (MB)

Bursty-MPEG
Bursty-Concurrent

Bursty-Make
Bursty-SPHINX

Figure 12: Disk energy savings as a function of total
memory size. Results are shown for all experimental
workloads: MPEG playback, Concurrent MPEG play-
back and MP3 encoding, Make (the Linux kernel compila-
tion) and SPHINX executing on our Bursty system. When
executing on the standard Linux kernel (not shown), in-
creasing the total memory size to 492 MB leads to at most
5.25% in disk energy savings across all workloads.

nificant energy savings are achieved for all memory sizes.
Even on the 64 MB system, the energy consumed by the
disk is reduced by 40.3%. Despite the fact that most disk
idle intervals are not long enough to justify a spin-down
operation, they allow the disk to make efficient use of
the low-power idle state that consumes just 0.6 W. With
492 MB, the Bursty system loads the required data in just
three very intensive I/O bursts, allowing the disk to transi-
tion and remain in the spin-down state for significant pe-
riods of time, and leading to 78.5% disk energy savings.

Results for the second workload are similar. However,
because of the increased I/O intensity the energy savings
are less pronounced. Energy consumption is reduced af-
ter the memory size exceeds 128 MB (15.9% energy sav-
ings). On a system with 492 MB energy savings reach
62.5%. For the Linux kernel compilation, our Bursty sys-
tem achieved significant energy savings for memory sizes
of 128 MB and larger: up to 66.6%. However, despite the
increase in idle interval lengths, on a 64 MB system our
algorithm leads to increased energy consumption (15.5%)
because of excessive paging. Finally, for the speech
recognition workload, disk energy savings reach 77.4%
for a 492 MB system. With 256 MB, the energy-conscious
prefetching algorithm saves 16.7% through more efficient
use of the active idle power mode.

Figure 13 presents the execution time for the work-
load scenarios. For the Concurrent workload (left side
of the graph), the slowdown of the MP3 encoding process
is 2.8% or less. The performance of the MPEG player

0

100

200

300

400

500

600

700

MPEG
Playback

 MP3
Encoder

MPEG
Playback

 Kernel
Make

 SPHINX

Concurrent Workload Single Application Workloads

T
im

e
(s

ec
o

n
d

s)

Linux-64MB
Linux-256MB
Linux-492MB
Bursty-64MB
Bursty-128MB
Bursty-256MB
Bursty-492MB

Figure 13: Execution time (in seconds) of the workloads
on Linux and the Bursty system with various memory
configurations.

stays within 1.6% of that on the Linux system in all cases
except the 64 MB system (Bursty-64MB), where it expe-
riences a slowdown of 4.8%. For the MPEG playback
workload, the Bursty system experiences a slowdown of
1% (for the 64 MB case) or less, when compared to Linux
with 492 MB of memory (Linux-492MB). For the Linux
kernel compilation the Bursty system stays within 5% of
the execution time of Linux across all memory sizes larger
than 128 MB. On a 64 MB system Bursty experiences
a performance penalty of 15% mostly due to increased
paging and disk congestion. Using a priority-based disk
queue that gives higher priority to demand requests than
prefetching requests could lead to improved performance.
Finally, during speech recognition aggressive prefetching
of the language model file leads to slightly improved per-
formance for SPHINX due to the reduction in page cache
misses. Our performance results show that the prefetch-
ing algorithm manages to avoid successfully most of the
delay that may be caused by disk spin-up operations. In
addition, it can lead to improved performance because of
an increased cache hit ratio.

6 Related Work
Power Management. The research community has been
very active in the area of power-conscious systems during
the last few years. Golding et al. [11] hint at the idea
of conserving such non-renewable resources as battery
power during idle periods by disabling unused resources.
Ellis et al. [6] suggest making energy efficiency a pri-
mary metric in the design of operating systems. ECOSys-
tem [37] provides a model for accounting and for fairly
allocating the available energy among competing appli-
cations according to user preferences. Odyssey [10, 27]
provides operating system support for application-aware

resource management. The key idea is to trade quality for
resource availability.

Several policies have been proposed to decrease the
power consumption of processors that support dynamic
voltage and frequency scaling. The key idea is to schedule
so as to “squeeze out the idle time” in rate-based applica-
tions. Several researchers have proposed voltage sched-
ulers for general purpose systems [9, 12, 35, 32]. Lebeck
et al. [21] explore power-aware page allocation in order
to make more efficient use of memory chips supporting
multiple power states, such as the Rambus DRAM chips.

Hard Disks. The energy efficiency of hard disks is not
a new topic. The cost and risks of Standby mode played a
role in the early investigation of hard-disk spin-down poli-
cies [4, 5, 15, 22]. Concurrently with our own work [28],
several groups have begun to investigate the deliberate
generation of bursty access patterns. Heath et al. [14] and
Weissel et al. [36] propose user-level mechanisms to in-
crease the burstiness of I/O requests from individual ap-
plications. Lu et al. [24] report that significant energy can
be saved by respecting the relationship between processes
and devices in the CPU scheduling algorithm. (We note,
however, that given the many-second “break-even” times
for hard disks, process scheduling can increase burstiness
only for non-interactive applications, which can tolerate
very long quanta.) Zeng et al. [38] propose “shaping” the
disk access pattern as part of a larger effort to make energy
a first-class resource in the eyes of the operating system.

Like Lu et al. and Zeng et al., we believe that the effec-
tive management of devices with standby modes requires
global knowledge, and must be implemented, at least in
part, by the operating system. Our work differs from
that of Lu et al. by focusing on aggressive read-ahead
and write-behind policies that can lead to bursty device-
level access patterns even for interactive applications. Our
work is more similar to that of Zeng et al., but without the
notion of energy as a first-class resource. While we agree
that energy awareness should be integrated into all aspects
of the operating system, it is not clear to us that it makes
sense to allocate joules to processes in the same way we
allocate cycles or bytes. Rather than say “I’d like to de-
vote 20% of my battery life to MP3 playback and 40%
to emacs,” we suspect that users in an energy-constrained
environment will say “I’d like to extend my battery life
as long as possible without suffering more than a 20%
drop in sound quality or interactive responsiveness.” It
will then be the responsibility of the operating system to
manage energy across applications to meet these quality-
of-service constraints.

Recently, researchers have begun to explore methods
to reduce the power consumption of large-scale storage
systems. Carrera et al. [7] compare design schemes for
conserving disk energy in network servers. Colarelli et

al. [2] explore massive arrays of idle disks, or MAID, as
an alternative to conventional mass storage systems for
scientific computing. Papathanasiou et al. [30] suggest
replacing server-class disks with power-efficient arrays of
laptop disks.

Disk access pattern “shaping” techniques, such as our
prefetching algorithm, can be applied to server storage
systems and improve their power efficiency. Zhu et
al. [39] propose power-aware storage cache management
algorithms that provide additional opportunities for a
large-scale storage system to save energy. Our prefetching
algorithm complements nicely their power-aware cache
replacement policy. Finally, Gurumurthi et al. [13] sug-
gest the use of DRPM [13], an approach that would dy-
namically modulate disk speed, decreasing the power re-
quired to keep the platters spinning when the load is light.

Prefetching. Prefetching has been suggested by sev-
eral researchers as a method to decrease application per-
ceived delays caused by the storage subsystem. Previous
work has suggested the use of hints as a method to in-
crease prefetching aggressiveness for workloads consist-
ing of both single [31] and multiple [34] applications. Cao
et al. [1] propose a two-level page replacement scheme
that allows applications to control their own cache re-
placement, while the kernel controls the allocation of
cache space among processes. Kaplan et al. [18] explore
techniques to control the amount of memory dedicated to
prefetching. Curewitz et al. [3] explore data compression
techniques in order to increase the amount of prefetched
data. To the best of our knowledge, previously proposed
prefetching algorithms do not address improved energy
efficiency. In general, they assume a non-congested disk
subsystem, and they allow prefetching to proceed in a con-
servative way resulting in a relatively smooth disk usage
pattern.

7 Conclusion
In our study we investigated page prefetching and caching
strategies that increase the burstiness of I/O patterns in
order to save energy in disks with non-operational low-
power states. In addition, we presented methods to predict
future accesses automatically and aggressively, to balance
the memory requirements of prefetching and caching, and
to coordinate accesses of concurrently running applica-
tions so that requests are generated and arrive at the disk
at roughly the same time.

We have implemented our ideas in the Linux 2.4.20
kernel. Experiments with a variety of applications show
that our techniques can increase the length of idle phases
significantly compared to a standard Linux kernel lead-
ing to disk energy savings of 60–80%. The savings de-
pend on the amount of available memory, and increase
as the system’s memory size increases. Even relatively

short increases in the average idle interval length can lead
to significant energy savings, mostly by making more ef-
ficient use of intermediate low-power states. Published
studies [23, 5] attribute 9-32% of the total laptop energy
consumption to the hard disk. These figures imply that
our prefetching algorithm may increase battery lifetime
by up to 25%. The exact fraction depends on the system
configuration and the executing workload.

Though our current work has focused on hard disks,
increased burstiness could be used to improve the en-
ergy efficiency of other devices with non-operational low-
power states. Network interfaces—for wireless networks
in particular—are an obvious example, but they introduce
new complications. First, in addition to standby states,
several wireless interfaces support multiple active states,
with varying levels of broadcast power suitable for com-
munication over varying distances. Second, while a disk
never initiates communication, a wireless network does.
Third, the energy consumed by a wireless interface de-
pends on the quality of the channel, so communication
bursts should be scheduled, when possible, during peri-
ods of high channel quality.

Over time, we speculate that burstiness may become
important in the processor domain as well. In a proces-
sor with multiple clock domains, for example [33], one
can save dynamic power in a floating-point application
by slowing down the (lightly-used) integer unit. Alterna-
tively, by scheduling instructions for burstiness, one might
save both dynamic and static power by gating off volt-
age to the integer unit during periods of inactivity. This
tradeoff between operational scale-down, with a smooth
access pattern, and non-operational power-down, with a
bursty access pattern, arises in multiple situations (includ-
ing DRPM [13]), and is likely to be a recurring theme in
our future work.

References
[1] CAO, P., FELTEN, E. W., AND LI, K. A Study

of Integrated Prefetching and Caching Strategies. In
Proc. of the 1995 ACM Joint Intl. Conf. on Measure-
ment and Modeling of Computer Systems (SIGMETR-
CIS’95/PERFORMANCE’95) (1995), pp. 188–197.

[2] COLARELLI, D., AND GRUNWALD, D. Massive Ar-
rays of Idle Disks for Storage Archives. In Proc. of the
2002 ACM/IEEE Conf. on Supercomputing (SC’02) (Nov.
2002), pp. 1–11.

[3] CUREWITZ, K. M., KRISHNAN, P., AND VITTER, J. S.
Practical Prefetching via Data Compression. In Proc. of the
1993 ACM SIGMOD Intl. Conf. on Management of Data
(SIGMOD’93) (May 1993), pp. 257–266.

[4] DOUGLIS, F., KRISHNAN, P., AND BERSHAD, B. Adap-
tive Disk Spin-down Policies for Mobile Computers. In
Proc. of the 2nd USENIX Symp. on Mobile and Location-
Independent Computing (Apr. 1995).

[5] DOUGLIS, F., KRISHNAN, P., AND MARSH, B. Thwart-
ing the Power-Hungry Disk. In Proc. of the 1994 Winter
USENIX Conf. (Jan. 1994), pp. 293–306.

[6] ELLIS, C. S. The Case for Higher Level Power Manage-
ment. In Proc. of the 7th Workshop on Hot Topics in Op-
erating Systems (HotOS VII) (Mar. 1999).

[7] ENRIQUE V. CARRERA, EDUARDO PINHEIRO, R. B.
Conserving Disk Energy in Network Servers. In Proc.
of the 17th Annual ACM Intl. Conf. on Supercomputing
(ICS’03) (June 2003), pp. 86–97.

[8] FERGUSON, G., AND ALLEN, J. TRIPS: An Intelligent
Integrated Problem-Solving Assistant. In Proc. of the 15th
National Conf. on Artificial Intelligence (AAAI-98) (July
1998), pp. 567–573.

[9] FLAUTNER, K., AND MUDGE, T. Vertigo: Auto-
matic Performance-Setting for Linux. In Proc. of the 5th
USENIX Symp. on Operating Systems Design and Imple-
mentation (OSDI’02) (Dec. 2002), pp. 105–116.

[10] FLINN, J., AND SATYANARAYANAN, M. Energy-Aware
Adaptation for Mobile Applications. In Proc. of the 17th
ACM Symp. on Operating Systems Principles (Dec. 1999),
pp. 48–63.

[11] GOLDING, R., II, P. B., STAELIN, C., SULLIVAN, T.,
AND WILKES, J. Idleness is not sloth, Jan. 1995.

[12] GOVIL, K., CHAN, E., AND WASSERMAN, H. Com-
paring Algorithms for Dynamic Speed-Setting of a Low-
Power CPU. In Proc. of the 1st Annual Intl. Conf. on
Mobile Computing and Networking (MobiCom’95) (Nov.
1995).

[13] GURUMURTHI, S., SIVASUBRAMANIAM, A., KAN-
DEMIR, M., AND FRANKE, H. DRPM: Dynamic Speed
Control for Power Management in Server Class Disks. In
Proc. of the 30th Intl. Symp. on Computer Architecture
(ISCA’03) (June 2003), ACM Press, pp. 169–181.

[14] HEATH, T., PINHEIRO, E., HOM, J., KREMER, U., AND

BIANCHINI, R. Application Transformations for Energy
and Performance-Aware Device Management. In Proc. of
the 11th Intl. Conf. on Parallel Architectures and Compi-
lation Techniques (PACT’02) (Sept. 2002).

[15] HELMBOLD, D. P., LONG, D. D. E., AND SHERROD, B.
A Dynamic Disk Spin-down Technique for Mobile Com-
puting. In Proc. of the 2nd Annual Intl. Conf. on Mobile
Computing and Networking (MobiCom’96) (Nov. 1996).

[16] HUANG, X., ALLEVA, F., HON, H.-W., HWANG, M.-Y.,
AND ROSENFELD, R. The SPHINX-II speech recognition
system: an overview. Computer Speech and Language 7,
2 (1993), 137–148.

[17] IBM Corporation. OEM Hard Disk Drive Specifications
for DARA-2xxxxx (6 GB – 25 GB). 2.5-Inch Hard Disk
Drive with ATA Interface. Revision (2.1), Nov. 1999.

[18] KAPLAN, S. F., MCGEOCH, L. A., AND COLE, M. F.
Adaptive Caching for Demand Prepaging. In Proceed-
ings of the 3rd Intl. Symp. on Memory Management (2002),
ACM Press, pp. 114–126.

[19] KISTLER, J. J., AND SATYANARAYANAN, M. Discon-
nected Operation in the Coda File System. ACM Trans. on
Computer Systems 10, 1 (Feb. 1992), 3–25.

[20] KUENNING, G. H., AND POPEK, G. J. Automated Hoard-
ing for Mobile Computers. In Proc. of the 16th ACM Symp.
on Operating Systems Principles (Oct. 1997), ACM Press,
pp. 264–275.

[21] LEBECK, A. R., FAN, X., ZENG, H., AND ELLIS, C. S.
Power Aware Page Allocation. In Proc. of the 9th Intl.
Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’00) (Nov. 2000),
pp. 105–116.

[22] LI, K., KUMPF, R., HORTON, P., AND ANDERSON, T.
Quantitative Analysis of Disk Drive Power Management in
Portable Computers. In Proc. of the 1994 Winter USENIX
Conf. (Jan. 1994), pp. 279–291.

[23] LORCH, J. R., AND SMITH, A. J. Energy consumption
of Apple Macintosh computers. IEEE Micro 18, 6 (Nov.
1998), 54–63.

[24] LU, Y.-H., BENINI, L., AND MICHELI, G. D. Power-
Aware Operating Systems for Interactive Systems. IEEE
Trans. on Very Large Scale Integration (VLSI) Systems 10,
1 (Apr. 2002).

[25] Micron Technology Inc. Micron 256Mb and 512Mb: x16
TwinDie SDRAM (Revision A 5/03 EN), May 2003.

[26] MOGUL, J. C. A Better Update Policy. In Proc. of the
USENIX Summer 1994 Technical Conf. (June 1994).

[27] NOBLE, B., SATYANARAYANAN, M., NARAYANAN, D.,
TILTON, J. E., FLINN, J., AND WALKER, K. R. Ag-
ile Application-Aware Adaptation for Mobility. In Proc.
of the 16th ACM Symp. on Operating Systems Principles
(Oct. 1997).

[28] PAPATHANASIOU, A. E., AND SCOTT, M. L. Increasing
Disk Burstiness for Energy Efficiency. Tech. Rep. 792,
Computer Science Departmeny, University of Rochester,
Nov. 2002.

[29] PAPATHANASIOU, A. E., AND SCOTT, M. L. Energy
Efficiency Through Burstiness. In Proc. of the 5th IEEE
Workshop on Mobile Computing Systems and Applications
(WMCSA’03) (Oct. 2003), pp. 44–53.

[30] PAPATHANASIOU, A. E., AND SCOTT, M. L. Power-
efficient Server-class Performance from Arrays of Laptop
Disks. Tech. Rep. 837, Computer Science Departmeny,
University of Rochester, Apr. 2004.

[31] PATTERSON, R. H., GIBSON, G., GINTING, E.,
STODOLSKY, D., AND ZELENKA, J. Informed Prefetch-
ing and Caching. In Proc. of the 15th ACM Symp. on Op-
erating Systems Principles (Dec. 1995), pp. 79–95.

[32] PERING, T., BURD, T., AND BRODERSEN, R. Volt-
age Scheduling in the lpARM Microprocessor System. In
Proc. of the 2000 Intl. Symp. on Low Power Electronics
and Design (ISLPED’00) (July 2000), pp. 96–101.

[33] SEMERARO, G., MAGKLIS, G., BALASUBRAMONIAN,
R., ALBONESI, D. H., DWARKADAS, S., AND SCOTT,
M. L. Energy Efficient Processor Design Using Multi-
ple Clock Domains with Dynamic Voltage and Frequency
Scaling. In Proc. of the 8th Intl. Symp. on High Per-
formance Computer Architecture (HPCA-8) (Feb. 2002),
pp. 29–40.

[34] TOMKINS, A., PATTERSON, R. H., AND GIBSON, G. In-
formed multi-process prefetching and caching. In Proc.
of the 1997 ACM Joint Intl. Conf. on Measurement and
Modeling of Computer Systems (SIGMETRCIS’97) (1997),
ACM Press, pp. 100–114.

[35] WEISER, M., WELCH, B., DEMERS, A., AND SHENKER,
S. Scheduling for Reduced CPU Energy. In Proc. of the
1st USENIX Symp. on Operating Systems Design and Im-
plementation (OSDI’94) (Nov. 1994).

[36] WEISSEL, A., BEUTEL, B., AND BELLOSA, F. Cooper-
ative I/O: A Novel I/O Semantics for Energy-Aware Ap-
plications. In Proc. of the 5th USENIX Symp. on Operat-
ing Systems Design and Implementation (OSDI’02) (Dec.
2002).

[37] ZENG, H., FAN, X., ELLIS, C. S., LEBECK, A. R., AND

VAHDAT, A. ECOSystem: Managing Energy as a First
Class Operating System Resource. In Proc. of the 10th
Intl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’02) (Oct. 2002).

[38] ZENG, H., FAN, X., ELLIS, C. S., LEBECK, A. R., AND

VAHDAT, A. Currentcy: Unifying Policies for Resource
Management. In Proc. of the USENIX 2003 Annual Tech-
nical Conf. (June 2003).

[39] ZHU, Q., DAVID, F., ZHOU, Y., DEVARAJ, C., AND

CAO, P. Reducing Energy Consumption of Disk Storage
Using Power-Aware Cache Management. In Proc. of the
10th Intl. Symp. on High Performance Computer Architec-
ture (HPCA-10) (Feb. 2004).

