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A Little History

z SVMs introduced in COLT-92 by Boser, Guyon, 
Vapnik. Greatly developed ever since.

z Initially popularized in the NIPS community, now an 
important and active field of all Machine Learning 
research. 

z Special issues of Machine Learning Journal, and 
Journal of Machine Learning Research.

z Kernel Machines: large class of learning algorithms, 
SVMs a particular instance.
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A Little History

z Annual workshop at NIPS
z Centralized website: www.kernel-machines.org
z Textbook (2000): see www.support-vector.net
z Now: a large and diverse community: from machine 

learning, optimization, statistics, neural networks, 
functional analysis, etc. etc

z Successful applications in many fields (bioinformatics, 
text, handwriting recognition, etc)

z Fast expanding field, EVERYBODY WELCOME ! -
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Preliminaries

z Task of this class of algorithms: detect and 
exploit complex patterns in data (eg: by 
clustering, classifying, ranking, cleaning, etc. 
the data)

z Typical problems: how to represent complex 
patterns; and how to exclude spurious 
(unstable) patterns (= overfitting)

z The first is a computational problem; the 
second a statistical problem.
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Very Informal Reasoning

z The class of kernel methods implicitly defines 
the class of possible patterns by introducing a 
notion of similarity between data

z Example: similarity between documents
z By length
z By topic
z By language …

z Choice of similarity Î Choice of relevant 
features 
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More formal reasoning

z Kernel methods exploit information about the inner 
products between data items

z Many standard algorithms can be rewritten so that they 
only require inner products between data (inputs)

z Kernel functions = inner products in some feature 
space (potentially very complex)

z If kernel given, no need to specify what features of the 
data are being used
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Jus t in case …

z Inner product between vectors 

z Hyperplane:
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Overview of the Tutorial

z Introduce basic concepts with extended 
example of Kernel Perceptron

z Derive Support Vector Machines 
z Other kernel based algorithms
z Properties and Limitations of Kernels
z On Kernel Alignment
z On Optimizing Kernel Alignment
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Parts I and II: overview

z Linear Learning Machines (LLM)
z Kernel Induced Feature Spaces
z Generalization Theory
z Optimization Theory
z Support Vector Machines (SVM)
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Modularity

z Any kernel-based learning algorithm composed of two 
modules:

– A general purpose learning machine
– A problem specific kernel function

z Any K-B algorithm can be fitted with any kernel
z Kernels themselves can be constructed in a modular 

way
z Great for software engineering (and for analysis)

IMPORTANT
CONCEPT
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1-Linear Learning Machines

z Simplest case: classification. Decision function 
is a hyperplane in input space

z The Perceptron Algorithm (Rosenblatt, 57)

z Useful to analyze the Perceptron algorithm, 
before looking at SVMs and Kernel Methods in 
general
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Basic Notation

z Input space
z Output space
z Hypothesis
z Real-valued:
z Training Set
z Test error
z Dot product
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Perceptron

z Linear Separation of the 
input space
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Perceptron Algorithm

Update rule 
(ignoring threshold):
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Observations

z Solution is a linear combination of training 
points

z Only used informative points (mistake driven)
z The coefficient of a point in combination 

reflects its ‘difficulty’ 
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Observations - 2

z Mistake bound:

z coefficients are non-negative
z possible to rewrite the algorithm using this alternative 

representation
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Dual Representation

The decision function can be re-written as 
follows:

f x w x b y x x bi i i( ) , ,= + = +∑α

w y xi i i= ∑α

IMPORTANT
CONCEPT
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Dual Representation

z And also the update rule can be rewritten as follows:

z if                                             then

z Note: in dual representation, data appears only inside 
dot products

y y x x bi j j j iα ,∑ + ≤3 8 0 α α ηi i← +
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Duality: First Property of SVMs

z DUALITY is the first feature of Support Vector 
Machines

z SVMs are Linear Learning Machines 
represented in a dual fashion

z Data appear only within dot products (in 
decision function and in training algorithm)

f x w x b y x x bi i i( ) , ,= + = +∑α
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Limitations of LLMs

Linear classifiers cannot deal with

z Non-linearly separable data
z Noisy data

z + this formulation only deals with vectorial data
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Non-Linear Classifiers

z One solution: creating a net of simple linear 
classifiers (neurons): a Neural Network
(problems: local minima; many parameters; 
heuristics needed to train; etc)

z Other solution: map data into a richer feature 
space including non-linear features, then use a 
linear classifier
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Learning in the Feature Space

z Map data into a feature space where they are 
linearly separable  x x→ φ( )
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Problems with Feature Space

z Working in high dimensional feature spaces 
solves the problem of expressing complex 
functions

BUT:
z There is a computational problem (working with 

very large vectors)
z And a generalization theory problem (curse of 

dimensionality)
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Implicit Mapping to Feature Space

We will introduce Kernels:

z Solve the computational problem of working 
with many dimensions

z Can make it possible to use infinite dimensions 
– efficiently in time / space

z Other advantages, both practical and 
conceptual
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Kernel-Induced Feature Spaces

z In the dual representation, the data points only 
appear inside dot products:

z The dimensionality of space F not necessarily 
important. May not even know the map 

f x y x x bi i i( ) ( , ( ))= +∑α φ φ

φ
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Kernels 

z A function that returns the value of the dot 
product between the images of the two 
arguments

z Given a function K, it is possible to verify that it 
is a kernel

K x x x x( , ) ( ), ( )1 2 1 2= φ φ

IMPORTANT
CONCEPT



www.support-vector.net

Kernels

z One can use LLMs in a feature space by 
simply rewriting it in dual representation and 
replacing dot products with kernels:

x x K x x x x1 2 1 2 1 2, ( , ) ( ), ( )← = φ φ
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The Kernel Matrix

z (aka the Gram matrix):

K(m,m)…K(m,3)K(m,2)K(m,1)

……………

K(2,m)…K(2,3)K(2,2)K(2,1)

K(1,m)…K(1,3)K(1,2)K(1,1)

IMPORTANT
CONCEPT

K=
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The Kernel Matrix

z The central structure in kernel machines
z Information ‘bottleneck’: contains all necessary 

information for the learning algorithm 
z Fuses information about the data AND the 

kernel
z Many interesting properties:
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Mercer’s Theo rem

z The kernel matrix is Symmetric Positive 
Definite

z Any symmetric positive definite matrix can be 
regarded as a kernel matrix, that is as an inner 
product matrix in some space
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More Formally: Mercer’s Theo rem

z Every (semi) positive definite, symmetric 
function is a kernel: i.e. there exists a mapping  

such that it is possible to write:

Pos. Def. 

φ

K x x x x( , ) ( ), ( )1 2 1 2= φ φ
K x z f x f z d x d z

f L

( , ) ( ) ( ) ≥

∀ ∈
I 0

2
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Mercer’s Theo rem

z Eigenvalues expansion of Mercer’s Kernels:

z That is: the eigenfunctions act as features !

K x x x xi

i

i i( , ) ( ) ( )1 2 1 2= ∑λφ φ
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Examples of Kernels

z Simple examples of kernels are:

K x z x z

K x z e
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Example: Polynomial Kernels
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Example: Polynomial Kernels
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Example: the two spirals 

z Separated by a hyperplane in feature space 
(gaussian kernels)
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Making Kernels

z The set of kernels is closed under some 
operations. If K, K’ are kernels, then:

z K+K’ is a kernel
z cK is a kernel, if c>0
z aK+bK’ is a kernel, for a,b >0
z Etc etc etc…… 
z can make complex kernels from simple ones: 

modularity !

IMPORTANT
CONCEPT
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Second Property of SVMs:

SVMs are Linear Learning Machines, that 
z Use a dual representation 
AND
z Operate in a kernel induced feature space
(that is: 
is a linear function in the feature space implicitely

defined by K)

f x y x x bi i i( ) ( , ( ))= +∑α φ φ
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Kernels over General Structures

z Haussler, Watkins, etc: kernels over sets, over 
sequences, over trees, etc.

z Applied in text categorization, bioinformatics, 
etc



www.support-vector.net

A bad ke rnel …

z … would be a kernel whose kernel matrix is 
mostly diagonal: all points orthogonal to each 
other, no clusters, no structure …
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No Free Kernel

z If mapping in a space with too many irrelevant 
features, kernel matrix becomes diagonal

z Need some prior knowledge of target so 
choose a good kernel

IMPORTANT
CONCEPT
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Other Kernel-based algorithms

z Note: other algorithms can use kernels, not just
LLMs (e.g. clustering; PCA; etc). Dual 
representation often possible (in optimization
problems, by Representer’s theorem).
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%5($.
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The Generalization Problem

z The curse of dimensionality: easy to overfit in high 
dimensional spaces
(=regularities could be found in the training set that are accidental, 
that is that would not be found again in a test set)

z The SVM problem is ill posed (finding one hyperplane
that separates the data: many such hyperplanes exist)

z Need principled way to choose the best possible
hyperplane

NEW 
TOPIC
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The Generalization Problem

z Many methods exist to choose a good 
hyperplane (inductive principles)

z Bayes, statistical learning theory / pac, MDL, 
…

z Each can be used, we will focus on a simple 
case motivated by statistical learning theory 
(will give the basic SVM)



www.support-vector.net

Statistical (Computational) 
Learning Theory

z Generalization bounds on the risk of overfitting 
(in a p.a.c. setting: assumption of I.I.d. data; 
etc)

z Standard bounds from VC theory give upper 
and lower bound proportional to VC dimension

z VC dimension of LLMs proportional to 
dimension of space (can be huge)  



www.support-vector.net

Assumptions and Definitions

z distribution D over input space X
z train and test points drawn randomly (I.I.d.) from D 
z training error of h:  fraction of points in S misclassifed

by h
z test error of h: probability under D to misclassify a point 

x 
z VC dimension: size of largest subset of X shattered by 

H (every dichotomy implemented)
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VC  Bounds 





=

m

VC
O
~ε

VC = (number of dimensions of X) +1

Typically VC >> m, so not useful

Does not tell us which hyperplane to choose
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Margin Based Bounds
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Note: also compression bounds exist; and online bounds.
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Margin Based Bounds

z (The worst case bound still holds, but if lucky (margin is 
large)) the other bound can be applied and better 
generalization can be achieved:

z Best hyperplane: the maximal margin one
z Margin is large is kernel chosen well







=

m

R
O

2)/(~ γε

IMPORTANT
CONCEPT
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Maximal Margin Classifier

z Minimize the risk of overfitting by choosing the 
maximal margin hyperplane in feature space

z Third feature of SVMs: maximize the margin
z SVMs control capacity by increasing the 

margin, not by reducing the number of degrees 
of freedom (dimension free capacity control).
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Two kinds of margin

z Functional and geometric margin:
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Two kinds of margin
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Max Margin = Minimal Norm

z If we fix the functional margin to 1, the 
geometric margin equal  1/||w||

z Hence, maximize the margin by minimizing the 
norm
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Max Margin = Minimal Norm

Distance between
The two convex hulls
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The primal problem

z Minimize:
subject to:

w w

y w x bi i

,

, + ≥4 9 1

IMPORTANT
STEP
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Optimization Theory

z The problem of finding the maximal margin
hyperplane: constrained optimization
(quadratic programming)

z Use Lagrange theory (or Kuhn-Tucker Theory)
z Lagrangian: 
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From Primal to Dual

L w w w y w x bi i i
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The Dual Problem

z Maximize:

z Subject to:

z The duality again ! Can use kernels !
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Convexity

z This is a Quadratic Optimization problem: 
convex, no local minima (second effect of 
Mercer’s conditions)

z Solvable in polynomial time …
z (convexity is another fundamental  property of

SVMs)

IMPORTANT
CONCEPT
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Kuhn-Tucker Theorem

Properties of the solution:
z Duality: can use kernels
z KKT conditions:

z Sparseness: only the points nearest to the hyperplane
(margin = 1) have positive weight

z They are called support vectors

w y xi i i= ∑α

αi i iy w x b

i

, + − =

∀

1 6 1 0
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KKT Conditions Imply Sparseness
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another fundamental property of SVMs
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Properties of SVMs - Summary

9 Duality
9 Kernels
9 Margin
9 Convexity
9 Sparseness
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Dealing with noise                   

( )2

2

1

γ
ξ

ε ∑ 2+
≤

R

m

y w x bi i i, + ≥ −4 9 1 ξ

In the case of non-separable data 
in feature space, the margin distribution 
can be optimized
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The Soft-Margin Classifier
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Slack Variables                    
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Soft Margin-Dual Lagrangian

z Box constraints

z Diagonal
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The regression case

z For regression, all the above properties are 
retained, introducing epsilon-insensitive loss:
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Regression: the ε-tube
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Implementation Techniques

z Maximizing a quadratic function, subject to a 
linear equality constraint (and inequalities as 
well)
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Simple Approximation

z Initially complex QP pachages were used.
z Stochastic Gradient Ascent (sequentially 

update 1 weight at the time) gives excellent 
approximation in most cases

α α αi i
i i

i i i i j
K x x

y y K x x← + −
�
��
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��∑1

1
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Full Solution: S.M.O.

z SMO: update two weights simultaneously
z Realizes gradient descent without leaving the 

linear constraint (J. Platt).

z Online versions exist (Li-Long; Gentile)
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Other “ kernelized” Algorithms

z Adatron, nearest neighbour, fisher 
discriminant, bayes classifier, ridge regression, 
etc. etc

z Much work in past years into designing kernel 
based algorithms

z Now: more work on designing good kernels (for 
any algorithm)
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On Combining Kernels

z When is it advantageous to combine kernels ?
z Too many features leads to overfitting also in 

kernel methods
z Kernel combination needs to be based on 

principles
z Alignment
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Kernel Alignment

z Notion of similarity between kernels:
Alignment (= similarity between Gram 
matrices)

A K K
K K

K K K K
( , )
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, ,
1 2

1 2

1 1 2 2
=

IMPORTANT
CONCEPT
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Many interpretations

z As measure of clustering in data
z As Correlation coefficient between ‘oracles’ 

z Basic idea: the ‘ultimate’ kernel should be YY’, 
that is should be given by the labels vector 
(after all: target is the only relevant feature !)
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The ideal kernel

1…1-1-1
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Combining Kernels

z Alignment in increased by combining kernels 
that are aligned to the target and not aligned to 
each other.

z

A K YY
K YY

K K YY YY
( , ' )

, '

, ' , '
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Spectral Machines 

z Can (approximately) maximize the alignment of 
a set of labels to a given kernel

z By solving this problem:

z Approximated by principal eigenvector 
(thresholded) (see courant-hilbert theorem)

y
yKy

yy
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Courant-Hilbert theorem

z A: symmetric and positive definite,
z Principal Eigenvalue / Eigenvector 

characterized by:

λ = max
'v

vAv

vv
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Optimizing Kernel Alignment

z One can either adapt the kernel to the labels or 
vice versa

z In the first case: model selection method
z Second case: clustering / transduction method
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Applications of SVMs

z Bioinformatics
z Machine Vision
z Text Categorization
z Handwritten Character Recognition
z Time series analysis
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Text Kernels

z Joachims (bag of words)
z Latent semantic kernels (icml2001)
z String matching kernels
z …
z See KerMIT project …
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Bioinformatics

z Gene Expression
z Protein sequences
z Phylogenetic Information
z Promoters
z …
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Conclusions:

z Much more than just a replacement for neural 
networks. -

z General and rich class of pattern recognition methods

z %RR RQ 690V��ZZZ�VXSSRUW�YHFWRU�QHW
z Kernel machines website 

www.kernel-machines.org
z www.NeuroCOLT.org


