
CSC 172– Data Structures and Algorithms

Lecture #10
Spring 2018

Please put away all electronic devices

• From now on, no electronic devices allowed during
lecture
– Includes Phone and Laptop
– Why?

• For your own good
• And for others

– What should I do instead?
• Take your notebook out and start keeping notes!

– But, I can multitask!
• You can just stay at home and watch lecture videos!

Announcements

• Lab 5 is out (List ADT)

• Project 2 is out
– Please finish the project before the spring recess
– I really do not want you work on the project during

the recess
– The project looks really simple but probably is the

hardest of all the projects.

PROJECT 2
(UR CALCULATOR)

Link

• http://www.cs.rochester.edu/courses/172/spring
2018/projects/proj2.pdf

Displays output

Displays output

Quiz on Project 2

• What will be the output if I enter

5+3

a) 8
b) 5+3
c) Nothing

Quiz on Project 2

• What will be the output if I enter

5

a) 5
b) 5.0
c) Nothing

Result of evaluation should be in double.

Quiz on Project 2

• What will be the output if I enter

a = 5+3

a) 8
b) 5+3
c) Nothing

Assignments won’t produce any output

Quiz on Project 2

• What will be the output if I enter

+++5+-+-3

a) 8
b) 2
c) Error

+ + = +
- - = +
+ - = -
- + = -

Agenda

• We will talk about two new Data Structures
– Map
– Stack
– (Both useful for Project 2)

• We will see you how can you use these in Java.

• Later, we will learn how to implement them.
– Stack: This week
– Map: After MidTerm

Maps

• A Map is an object that maps keys to values.

• A map cannot contain duplicate keys

• Each key can map to at most one value.

Map stores (key,value)

Key Value
Alice 15

Bob 12

Carol 108

Dave 105

Students.get(”Bob”) will give 12

Students HashMap

HashMap< String,Integer> students =
new HashMap< String,Integer>();

students.put("Alice", new Integer(15));
students.put("Bob", new Integer(12));
students.put("Carol", new Integer(108));
students.put("Dave", new Integer(105));

System.out.println(students.get("Alice"));
System.out.println(students.get("David"));
System.out.println(students.get("Dave"));

15
null
105

Agenda

• Stacks

• Well-ballanced expressions

• Infix and postfix expressions

STACKS AND APPLICATIONS

- Well-formed expressions
- stacks
- Infix, postfix

STACK IN JAVA

Java Stack

Stack: push(obj), pop(), and peek()

B

push

B

A

push

A

B

A

peek

B

pop

B

C

push

A

Practice problem
public static void main (String[] args)

{
Stack<Integer> stack = new Stack<Integer>();

for(int i = 0; i <= 10; i=i+2)
{

stack.push(i);
}

System.out.println("Top of stack = "+ stack.peek());
System.out.println("Popping element = "+ stack.pop());
System.out.println("Top of stack = "+ stack.peek());
System.out.println("Popping element = "+ stack.pop());
System.out.println("Popping element = "+ stack.pop());
System.out.println("Top of stack = "+ stack.peek());
stack.push(12);
System.out.println("Top of stack = "+ stack.peek());

} Top of stack = 10
Popping element = 10
Top of stack = 8
Popping element = 8
Popping element = 6
Top of stack = 4
Top of stack = 12

Application: Parsing

Most parsing uses stacks

Examples includes:
– Matching tags in HTML
– In Java or Well-formed expression, matching

• (...)
• [...]
• { ... }

Parsing HTML

The first example will demonstrate parsing
HTML

We will show how stacks may be used to
parse an HTML document

HTML File

Parsing HTML

HTML is made of nested
– opening tags, e.g., <some_identifier>, and
– matching closing tags, e.g., </some_identifier>

<html>
<head>

<title>Hello</title>
</head>
<body><p>This appears in the
<i>browser</i>.

</p></body>
</html>

Parsing HTML

Nesting indicates that any closing tag must
match the most recent opening tag

Strategy for parsing HTML:
– read though the HTML linearly
– place the opening tags in a stack
– when a closing tag is encountered, check that it

matches what is on top of the stack
• If yes, take it out. If no, error…
• [Most Browser knows how to recover]

Parsing HTML

<html>
<head><title>Hello</title></head>
<body><p>This appears in the
<i>browser</i>.</p></body>

</html>

<html>

Parsing HTML

<html>
<head><title>Hello</title></head>
<body><p>This appears in the
<i>browser</i>.</p></body>

</html>

<html> <head>

Parsing HTML

<html>
<head><title>Hello</title></head>
<body><p>This appears in the
<i>browser</i>.</p></body>

</html>

<html> <head> <title>

Parsing HTML

<html>
<head><title>Hello</title></head>
<body><p>This appears in the
<i>browser</i>.</p></body>

</html>

<html> <head> <title>

Parsing HTML

<html>
<head><title>Hello</title></head>
<body><p>This appears in the
<i>browser</i>.</p></body>

</html>

<html> <head>

Parsing HTML

<html>
<head><title>Hello</title></head>
<body><p>This appears in the
<i>browser</i>.</p></body>

</html>

<html> <body>

Parsing HTML

<html>
<head><title>Hello</title></head>
<body><p>This appears in the
<i>browser</i>.</p></body>

</html>

<html> <body> <p>

Parsing HTML

<html>
<head><title>Hello</title></head>
<body><p>This appears in the
<i>browser</i>.</p></body>

</html>

<html> <body> <p> <i>

Parsing HTML

<html>
<head><title>Hello</title></head>
<body><p>This appears in the
<i>browser</i>.</p></body>

</html>

<html> <body> <p> <i>

Parsing HTML

<html>
<head><title>Hello</title></head>
<body><p>This appears in the
<i>browser</i>.</p></body>

</html>

<html> <body> <p>

Parsing HTML

<html>
<head><title>Hello</title></head>
<body><p>This appears in the
<i>browser</i>.</p></body>

</html>

<html> <body>

Parsing HTML

<html>
<head><title>Hello</title></head>
<body><p>This appears in the
<i>browser</i>.</p></body>

</html>

<html>

Parsing HTML

We are finished parsing, and the stack is
empty

Possible errors:
– a closing tag which does not match the opening

tag on top of the stack
– a closing tag when the stack is empty
– the stack is not empty at the end of the document

3.2.5.1

Well-Formed Expressions

Or “balanced expressions”:

• ([this is] { a number } 12345) # well-formed

• ([this is] { a number) 12345} # not wf

• {[(34+4)/5] + 7}/4 # wf

• {[(34+4)/5} + 7]/4 # not wf

(Recursive) Definition of WFE

• The empty sequence is well-formed.

• If A and B are well-formed, then the
concatenation AB is well-formed

• If A is well-formed, then [A], {A}, and (A) are well-
formed.

• How to we check if an expression is WF?
– Use a stack!

Algorithm for Recognizing WFE

• Read the next delimiter token.
• If it is an open delimeter (i.e. [({)
– push it into the stack.

• If it is a close delimiter (i.e.])})
– match it with a corresponding open delimiter in the stack

([with] and so on).
– If there is no match à not WF
– If there is a match, stack.pop() and discard both

• When there is no more token left
– If the stack is empty à WF
– If the stack is not empty à not WF

Infix vs Postfix Expressions

• Infix: 5 + 4*5/2 - 3
• Postfix: 5 4 5 * 2 / + 3 -

• Infix: (5+4)*5/2 - 3
• Postfix: 5 4 + 5 * 2 / 3 –

Postfix Expression Evaluation Algorithm

• Initialize an empty stack
• While (there is still a token to read)
– read the token t
– if t is an operand, push it onto the stack
– if t is an operator,

• pop two operands from the stack, compute the result (using t)
// if there is division by zero, scream

• push the result back onto the stack
// if there is less than two operands, scream

• In the end, if there is one number in the stack,
output it.
– // If there is more than one number in the stack, scream.

Example We will see

• Infix:
1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

• Postfix (Reverse-Polish Notation):
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

Reverse-Polish Notation

Evaluate the following reverse-Polish(postfix)
expression using a stack:

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

Reverse-Polish Notation

Push 1 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

1

Reverse-Polish Notation

Push 1 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

2
1

Reverse-Polish Notation

Push 3 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

3
2
1

Reverse-Polish Notation

Pop 3 and 2 and push 2 + 3 = 5
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

5
1

Reverse-Polish Notation

Push 4 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

4
5
1

Reverse-Polish Notation

Push 5 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

5
4
5
1

Reverse-Polish Notation

Push 6 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

6
5
4
5
1

Reverse-Polish Notation

Pop 6 and 5 and push 5 × 6 = 30
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

30
4
5
1

Reverse-Polish Notation

Pop 30 and 4 and push 4 – 30 = –26
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–26
5
1

Reverse-Polish Notation

Push 7 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

7
–26
5
1

Reverse-Polish Notation

Pop 7 and –26 and push –26 × 7 = –182
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–182
5
1

Reverse-Polish Notation

Pop –182 and 5 and push –182 + 5 = –177
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–177
1

Reverse-Polish Notation

Pop –177 and 1 and push 1 – (–177) = 178
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

178

Reverse-Polish Notation

Push 8 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

8
178

Reverse-Polish Notation

Push 1 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

9
8

178

Reverse-Polish Notation

Pop 9 and 8 and push 8 × 9 = 72
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

72
178

Reverse-Polish Notation

Pop 72 and 178 and push 178 + 72 = 250
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

250

How about Infix Expression?

• Shunting yard algorithm

• Convert infix to postfix

• Or, evaluate infix expressions directly

Rough Idea (Shunting Yard Algorithm)

• Use 2 stacks: an operand stack, an operator stack
• If tok is an operand, push it on operand stack
• Else if tok is one of + - * /
– while (precedence(tok) ≤ precedence(stack.peek())

• Evaluate stack.peek()
– Push tok on top of operator stack

• Else if tok is one of ([{
– Push tok on top of operator stack

• Else if tok is one of)] }
– Evaluate operators on top until ([{ seen, match up

Acknowledgement

• Douglas Wilhelm Harder.
– Thanks for making an excellent set of slides for ECE

250 Algorithms and Data Structures course

• Prof. Hung Q. Ngo:
– Thanks for those beautiful slides created for CSC 250

(Data Structures) course at UB.

• Many of these slides are taken from these two
sources.

