
CSC 172– Data Structures and Algorithms

Lecture #11
Spring 2018

Please put away all electronic devices

Agenda

• Shunting Yard Algorithm

• How to Implement Stack and Queue
– Cost of various operations

SHUNTING YARD ALGORITHM

Infix vs Postfix Expressions

• Infix: 5 + 4*5/2 - 3
• Postfix: 5 4 5 * 2 / + 3 -

• Infix: (5+4)*5/2 - 3
• Postfix: 5 4 + 5 * 2 / 3 –

Postfix Expression Evaluation Algorithm

• Initialize an empty stack
• While (there is still a token to read)
– read the token t
– if t is an operand, push it onto the stack
– if t is an operator,

• pop two operands from the stack, compute the result (using t)
// if there is division by zero, scream

• push the result back onto the stack
// if there is less than two operands, scream

• In the end, if there is one number in the stack,
output it.
– // If there is more than one number in the stack, scream.

Example We will see

• Infix:
1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

• Postfix (Reverse-Polish Notation):
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

Reverse-Polish Notation

Evaluate the following reverse-Polish(postfix)
expression using a stack:

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

Reverse-Polish Notation

Push 1 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

1

Reverse-Polish Notation

Push 1 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

2
1

Reverse-Polish Notation

Push 3 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

3
2
1

Reverse-Polish Notation

Pop 3 and 2 and push 2 + 3 = 5
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

5
1

Reverse-Polish Notation

Push 4 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

4
5
1

Reverse-Polish Notation

Push 5 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

5
4
5
1

Reverse-Polish Notation

Push 6 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

6
5
4
5
1

Reverse-Polish Notation

Pop 6 and 5 and push 5 × 6 = 30
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

30
4
5
1

Reverse-Polish Notation

Pop 30 and 4 and push 4 – 30 = –26
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–26
5
1

Reverse-Polish Notation

Push 7 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

7
–26
5
1

Reverse-Polish Notation

Pop 7 and –26 and push –26 × 7 = –182
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–182
5
1

Reverse-Polish Notation

Pop –182 and 5 and push –182 + 5 = –177
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

–177
1

Reverse-Polish Notation

Pop –177 and 1 and push 1 – (–177) = 178
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

178

Reverse-Polish Notation

Push 8 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

8
178

Reverse-Polish Notation

Push 1 onto the stack
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

9
8

178

Reverse-Polish Notation

Pop 9 and 8 and push 8 × 9 = 72
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

72
178

Reverse-Polish Notation

Pop 72 and 178 and push 178 + 72 = 250
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

250

How about Infix Expression?

• Shunting yard algorithm

• Convert infix to postfix

• Or, evaluate infix expressions directly

Shunting Yard Algorithm

• Invented by Edsger Dijkstra
• Named the "shunting yard" algorithm because its

operation resembles that of a railroad shunting
yard.

• A Shunting yard is a railway yard found at some
freight train stations, used to separate railway
cars onto one of several tracks.

https://en.wikipedia.org/wiki/Classification_yard

Rough Idea (Shunting Yard Algorithm)

• Use 2 stacks: an operand stack, an operator stack
• If tok is an operand, push it on operand stack
• Else if tok is one of + - * /
– while (precedence(tok) ≤ precedence(stack.peek())

• stack.pop()
– Push tok on top of operator stack

• Else if tok is one of ([{
– Push tok on top of operator stack

• Else if tok is one of)] }
– Evaluate operators on top until ([{ seen, match up

Example We will see

• Infix:
1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

• Postfix (Reverse-Polish Notation):
1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

What would happen?

+

push

+

*

push

What would happen?

+

pop

+

/

push

*

/

Quiz

• Next Token +
• Stack Contains *(top), +

• What should you do?

Pop *, + and then push +

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
1 1

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
- 1 -

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
(1 - (

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
2 1 2 - (

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
+ 1 2 - (+

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
3 1 2 3 - (+

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
+ 1 2 3 + - (+

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
(1 2 3 + - (+ (

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
4 1 2 3 + 4 - (+ (

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
- 1 2 3 +4 - (+ (-

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
5 1 2 3 + 4 5 - (+ (-

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
* 1 2 3 + 4 5 - (+ (- *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
6 1 2 3 + 4 5 6 - (+ (- *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
) 1 2 3 + 4 5 6 * - - (+

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
* 1 2 3 + 4 5 6 * - - (+ *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
7 1 2 3 + 4 5 6 * - 7 - (+ *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
) 1 2 3 + 4 5 6 * - 7 * + -

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
+ 1 2 3 + 4 5 6 * - 7 * + - +

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
8 1 2 3 + 4 5 6 * - 7 * + - 8 +

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
* 1 2 3 + 4 5 6 * - 7 * + - 8 + *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
9 1 2 3 + 4 5 6 * - 7 * + - 8 9 + *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm

Currently Handling Operand List Operator Stack
9 1 2 3 + 4 5 6 * - 7 * + - 8 9 * +

1 2 3 + 4 5 6 × – 7 × + – 8 9 × +

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Practice Problem

• 24 + 4-15 * 8 / (2 + 5 * 2 - 8) + 4

24 4 + 15 8 * 2 5 2 * + 8 - / - 4+

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
1 1

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
- 1 -

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
(1 - (

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
2 1 2 - (

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
+ 1 2 - (+

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
3 1 2 3 - (+

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
+ 1 5 - (+

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
(1 5 - (+ (

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
4 1 5 4 - (+ (

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
- 1 5 4 - (+ (-

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
5 1 5 4 5 - (+ (-

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
* 1 5 4 5 - (+ (- *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
6 1 5 4 5 6 - (+ (- *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
) 1 5 4 5 6 - (+ (- *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
) 1 5 4 30 - (+ (-

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
) 1 5 -26 - (+

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
* 1 5 -26 - (+ *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
7 1 5 -26 7 - (+ *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
) 1 5 -26 7 - (+ *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
) 1 5 -182 - (+

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
) 1 -177 -

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
+ 178 +

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
8 178 8 +

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
* 178 8 + *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
9 178 8 9 + *

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
178 72 +

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Shunting Yard Algorithm (Single Pass)

Currently Handling Result Stack Operator Stack
250

1 – (2 + 3 + (4 – 5 × 6) × 7) + 8 × 9

Project 2

• You can use either approach:
– Convert the infix expression into Postfix and then

evaluate the postfix expression

– Or

– Evaluate the infix expression using the Single pass
method.

Acknowledgement

• Douglas Wilhelm Harder.
– Thanks for making an excellent set of slides for ECE

250 Algorithms and Data Structures course

• Prof. Hung Q. Ngo:
– Thanks for those beautiful slides created for CSC 250

(Data Structures) course at UB.

• Many of these slides are taken from these two
sources.

