
CSC 172– Data Structures and Algorithms

Lecture #12
Spring 2018

Please put away all electronic devices

CSC 172, Spring 2018

Student Feedback #1

• For Lab02, I received a grade of negative zero (-
0.00000/100). Should I be concerned or is this
just a Blackboard glitch/mistake?

• Yes. Please contact your Lab TAs asap.
• We will not consider any regrade request for any

quiz (1-6), lab (1-5), project (1) after the midterm.

CSC 172, Spring 2018

Student Feedback #2

• Website header still doesn't load on ipad or
iphone

• I have added a quick fix! Thanks for letting me
know.

CSC 172, Spring 2018

Student Feedback #3

• The online lectures have a tendency to lose audio at
different times of the whole lecture.

• Lecture video for 2/22/18 has no audio, sounds like maybe
your microphone got unplugged or something

• Sorry about that.
• Lecture videos picks the audio only from the wireless

microphone. If you ever find the mic is off, please let me
know immediately. I (along with your friends who are not
attending the lecture) will really appreciate it.

CSC 172, Spring 2018

Student Feedback #4

• I use my computer to take notes and the policy of no electronics is
hindering my ability to make the most out of the course. I would
appreciate it some expceptions are made, for example, its okay to use
electronics to take notes if sitting in the back rows.

• Please meet me in person. I allow exceptions. You can use laptops
following these two steps:

– 1. MUST: You must meet me in person before I grant you the privilege
– 2. After step 1, You can use your laptop sitting in back rows. As long as no

other students can be distracted by your laptop screen, you are good.

– https://www.nytimes.com/2017/11/22/business/laptops-not-during-
lecture-or-meeting.html

CSC 172, Spring 2018

Student Feedback #5
• I am usually concerned and lost about the topic of the quiz for

the week. It would be very helpful and appreciated if this
information could be shared online and during the lecture

• I won’t do that intentionally.
• The quiz on a particular week covers:

– What we covered last week.
• Tu, Th, Tu, Th (Nothing from the current week)
• All quizzes may/may not have coding components. You should always be

prepared to write code if required.
• Usually, Labs and Workshops cover the same material.
• As this information is common knowledge, I will NOT answer this question

on Piazza.

Tu, Th, Tu, Th

CSC 172, Spring 2018

Agenda

• Shunting Yard Algorithm

• How to Implement Stack and Queue
– Cost of various operations

For all data structures, this is how we will proceed:
1. Use the data structures if readily available in

Java
2. Will see how Java implements it
3. Implement / Figure out how to implement

CSC 172, Spring 2018

Practice Problem (Infix to Postfix)

• 24 + 4-15 * 8 / (2 + 5 * 2 - 8) + 4

24 4 + 15 8 * 2 5 2 * + 8 - / - 4+

CSC 172, Spring 2018

Use this format for answering
quiz/exam questions

Input List Stack

24 24

+ +
4 24 4

- 24 4 + -

15 24 4 + 15

* -*
8 24 4 + 15 8

/ 24 4 + 15 8 * -/

(-/ (

2 24 4 + 15 8 * 2
+ -/ (+

5 24 4 + 15 8 * 2 5

* -/ (+ *
2 24 4 + 15 8 * 2 5 2

- 24 4 + 15 8 * 2 5 2 * + -/ (-

8 24 4 + 15 8 * 2 5 2 * + 8

) 24 4 + 15 8 * 2 5 2 * + 8 - -/
+ 24 4 + 15 8 * 2 5 2 * + 8 - / - +

4 24 4 + 15 8 * 2 5 2 * + 8 - / - 4+ Empty

CSC 172, Spring 2018

STACK AND QUEUE
IMPLEMENTATION

CSC 172, Spring 2018

Java Stack

CSC 172, Spring 2018

Stack

A Stack is a data type which emphasizes
specific operations:

– Uses a explicit linear ordering
– Inserted objects are pushed onto the stack
– The top of the stack is the most recently object

pushed onto the stack
– When an object is popped from the stack, the

current top is erased

CSC 172, Spring 2018

Stack

Also called a last-in–first-out (LIFO) behavior
– Graphically, we may view these operations as

follows:

Peek Peek
Peek

CSC 172, Spring 2018

Applications

Numerous applications:
– Parsing code:

• Matching parenthesis
• HTML

– Tracking function calls
– Dealing with undo/redo operations
– Reverse-Polish calculators

The stack is a very simple data structure
– Given any problem, if it is possible to use a stack,

this significantly simplifies the solution

CSC 172, Spring 2018

Implementations

We will look at three implementations of
stacks:

The optimal asymptotic run time of any
algorithm is Q(1)

We will look at
– Singly Linked Lists
– Doubly Linked Lists
– Arrays (or ArrayList or Vectors)

Note: Java implements Stack by
extending Vector<E> class which is
very similar to the ArrayList<E>
(with some changes).

The core container for both,
ArrayList and Vector is an Array.

CSC 172, Spring 2018

Arrays

Front Back/nth elem
Push O(n) Q(1)
Pop O(n) Q(1)
Peek Q(1) Q(1)

The desired behavior of a Stack may be
reproduced by performing all operations at
the back of an array.

CSC 172, Spring 2018

Arrays

Front Back/nth elem
Push O(n) Q(1)
Pop O(n) Q(1)
Peek Q(1) Q(1)

The desired behavior of a Stack may be
reproduced by performing all operations at
the back of an array.

CSC 172, Spring 2018

Doubly Linked List (or LinkedList)

Front Back/nth elem
Push Q(1) Q(1)
Pop Q(1) Q(1)
Peek Q(1) Q(1)

The desired behavior of a Stack may be
reproduced by performing all operations at
either side. But you can’t avoid overhead of
a doubly-linked list anyway.

CSC 172, Spring 2018

Doubly Linked List (or LinkedList)

Front Back/nth elem
Push Q(1) Q(1)
Pop Q(1) Q(1)
Peek Q(1) Q(1)

The desired behavior of a Stack may be
reproduced by performing all operations at
either side. But you can’t avoid overhead of
a doubly-linked list anyway.

CSC 172, Spring 2018

Singly Linked List

Front Back/nth elem
Push Q(1) Q(1)
Pop Q(1) O(n)
Peek Q(1) Q(1)

The desired behavior of a Stack may be
reproduced by performing all operations at
the front of a singly linked list.

CSC 172, Spring 2018

Singly Linked List

Front Back/nth elem
Push Q(1) Q(1)
Pop Q(1) O(n)
Peek Q(1) Q(1)

The desired behavior of a Stack may be
reproduced by performing all operations at
the front of a singly linked list.

CSC 172, Spring 2018

QUEUE

CSC 172, Spring 2018

Queue

A Queue (Queue ADT) is an abstract data
type that emphasizes specific operations:
– Uses a explicit linear ordering
– Insertions and removals are performed

individually
– The object designated as the front of the queue

is the object which was in the queue the longest
– The remove operation removes the current front

of the queue

CSC 172, Spring 2018

Queue

Also called a first-in–first-out (FIFO) data
structure
– Graphically, we may view these operations as

follows:

CSC 172, Spring 2018

Queue

CSC 172, Spring 2018

add / offer

• The add method, which Queue inherits
from Collection, inserts an element unless it
would violate the queue's capacity restrictions, in
which case it throws IllegalStateException.

• The offer method, which is intended solely for
use on bounded queues, differs from add only in
that it indicates failure to insert an element by
returning false.

CSC 172, Spring 2018

remove / poll

The remove and poll methods both remove and return
the head of the queue.

The remove and poll methods differ in their behavior
only when the queue is empty. Under these
circumstances, remove throws NoSuchElementException,
while poll returns null.

CSC 172, Spring 2018

element / peek

• The element and peek methods return, but do not
remove, the head of the queue.

• They differ from one another in precisely the
same fashion as remove and poll: If the queue is
empty, element throws NoSuchElementException
, while peek returns null.

CSC 172, Spring 2018

Example
public static void main (String[] args)

{
Queue<Integer> queue = new LinkedList<>();

for(int i = 0; i <= 10; i=i+2) {
queue.add(i);

}

System.out.println("Front of queue = "+ queue.element());
System.out.println("Removing element = "+ queue.remove());
System.out.println("Front of queue = "+ queue.element());
System.out.println("Removing element = "+ queue.remove());
System.out.println("Removing element = "+ queue.remove());
System.out.println("Front of queue = "+ queue.element());
queue.add(12);
System.out.println("Front of queue = "+ queue.element());

}
Front of queue = 0
Removing element = 0
Front of queue = 2
Removing element = 2
Removing element = 4
Front of queue = 6
Front of queue = 6CSC 172, Spring 2018

Arrays

Front Back/nth elem
add/offer O(n) Q(1)
remove/poll O(n) Q(1)
element/peek Q(1) Q(1)

The desired behavior of a Queue can’t be
achieved using an array. Unless….

CSC 172, Spring 2018

Arrays

Front Back/nth elem
add/offer O(n) Q(1)
remove/poll O(n) Q(1)
element/peek Q(1) Q(1)

The desired behavior of a Queue can’t be
achieved using an array. Unless….

CSC 172, Spring 2018

Circular Array Queue

Front Back/nth elem
add/offer Q(1) Q(1)
remove/poll Q(1) Q(1)
element/peek Q(1) Q(1)

CSC 172, Spring 2018

Circular Array Queue

Front Back/nth elem
add/offer Q(1) Q(1)
remove/poll Q(1) Q(1)
element/peek Q(1) Q(1)

CSC 172, Spring 2018

Singly Linked List

Front Back/nth elem
add/offer Q(1) Q(1)
remove/poll Q(1) O(n)
element/peek Q(1) Q(1)

Queue is a FIFO data structure

The desired behavior of a Queue may be
achieved by adding elements at the back
and removing elements from the front.

CSC 172, Spring 2018

Singly Linked List

Front Back/nth elem
add/offer Q(1) Q(1)
remove/poll Q(1) O(n)
element/peek Q(1) Q(1)

Queue is a FIFO data structure

The desired behavior of a Queue may be
achieved by adding elements at the back
and removing elements from the front.

CSC 172, Spring 2018

Doubly Linked List

Front Back/nth elem
add/offer Q(1) Q(1)
remove/poll Q(1) Q(1)
element/peek Q(1) Q(1)

The desired behavior of a Queue may be
reproduced by a doubly linked list perfectly.

CSC 172, Spring 2018

Doubly Linked List

Front Back/nth elem
add/offer Q(1) Q(1)
remove/poll Q(1) Q(1)
element/peek Q(1) Q(1)

The desired behavior of a Queue may be
reproduced by a doubly linked list perfectly.

CSC 172, Spring 2018

Summary

• Stack:
– Last-in-first-out (LIFO)
– Usually uses an array to store the information
– Optimal runtime ! 1 for all operations

• Queue:
– First-in-first-out (FIFO)
– Usually uses a linked list to store the information
– Optimal runtime ! 1 for all operations

CSC 172, Spring 2018

Acknowledgement

• Douglas Wilhelm Harder.
– Thanks for making an excellent set of slides for ECE

250 Algorithms and Data Structures course

• Prof. Hung Q. Ngo:
– Thanks for those beautiful slides created for CSC 250

(Data Structures) course at UB.

• Many of these slides are taken from these two
sources.

CSC 172, Spring 2018

