CSC 172- Data Structures and Algorithms

Lecture #12
Spring 2018

Please put away all electronic devices






Announcement

* What should you study this week:
— Chapter 7: Recursion (E-textbook)
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Agenda

e Recursion

e More recursion
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FIBONACCI SEQUENCE AND
RECURSION
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Agenda

The worst algorithm you can think of!
An iterative solution
A better iterative solution

The repeated squaring trick
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FIBONACCI SEQUENCE
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Fibonacci sequence

0,11,23,5,8,13,21, 34, ..

M T M M M M
S H WO N = O
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Time to watch a video!

 Fibonacci Number and Golden Ratio

e http://www.youtube.com/watch?v=aB KstBiou4
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Recursion — fib1()

*/
long fibl(int n) {
if (n <= 1) return n;
return fibl(n-1) + fibl(n-2);
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Typical Runtime
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On large numbers

Looks like the run time is doubled for each n++

We won’t be able to compute F[140] if the trend
continues

The age of the universe is 15 billion years < 2%0 sec

The function looks ... exponential
— |s there a theoretical justification for this?
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ANALYSIS OF FIB1()
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Guess and induct

* LetT[n] bethetime £fibl(n) takes

* For n=0, 1, suppose it takes d mili-sec

e T[0] = T[1l] = d

* Forn> 1, suppose it takes ¢ mili-secin £ibl (n)
not counting the recursive calls

* To estimate T[n], we can
— Guess a formula for it
— Prove by induction that it works

T[n] = ¢ + T[n-1] + T[n-2] whenn > 1
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The guess

* Bottom-up iteration

—T[0] = T[1] = d o112 3o s 152134 .
—T[2]=c+ 2d

—T[3] =2c + 3d

— T[4] = 4c + 5d

— T[5] = 7c + 8d

—T[6] = 12c + 13d

* Can you guess a formula for T[n]?
— T[n] = (F[n+1] — 1)c + F[n+1]d
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The Proof

* The base cases: n=0,1

e The hypothesis: suppose
e T[m] = (F[m+1] = 1)*c + Fm+1]*d forall m<n
e The induction step:
e T[n] =c+ T[n-1] + T[n-2]
=c+ (F[n] —1)*c + F[n]*d
+ (F[n-1] = 1)*c + F[n-1]*d
= (F[n+1] —1)*c + F[n]*d
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How does this help?

Pl = U0
O = L+ V5 ~ 1.6
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So, there are constants C, D such that

This explains the exponential-curve we saw

T(n) =06(p")
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From intuition to formality

* Suppose £1b1(140) runs on a computer with
C=10":

1072(1.6)*Y > 3.77 - 10'Y > 100 - age of univ.
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- A Linear time algorithm using ArrayList
- Alinear time algorithm using arrays

- Alinear time algorithm with constant space

BETTER ALGORITHMS FOR
COMPUTING F[N]
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An algorithm using ArrayList

Time Complexity: T(n) = 8(n)
Space Complexity:S(n) = 0(n)

long fib2(int n) {
// this 1s one implementation option
if (n <= 1) return n;
ArrayList<Long> A = new ArraylList<>();
A.add((long) 0);
A.add((long) 1);
for (int i=2; i<=n; i++) {
A.add(A.get(i-1)+ A.get(i-2));
I3

return A.get(n);

Guess how large an n we can handle this time?

CSC 172, Spring 2018



Data

#seconds 1 Eats up all
Heap Space
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How about an array?

Time Complexity: T(n) = 8(n)
long £ib3(int n) { Space Complexity:S(n) = 8(n)

if (n <= 1) return n;

long[] A = new long[n+l];

A[0] = 0;

A[l] = 1;

for (int i=2; i<=n; i++) {
A[i] = A[i-1]+A[i-2];

}

return A[n];

Guess how large an n we can handle this time?
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Data

#seconds 1 Stack Overflow
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Dynamic programming!

Time Complexity: T(n) = 0(n)
long fib4(long n) { Space Complexity: S(n) — 0(1)

if (n <= 1) return n;
long a=0, b=1l, temp = 0;
for (long i=2; i<= n; i++) {

temp = a + b; // F[i] = F[i-2] + F[i-1]
a = b; // a = F[i-1]
b = temp; // b = F[i]

}

return temp;

Guess how large an n we can handle this time?
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Data

___

#seconds 1
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Conclusion

* |teration is better/faster than recursion...

May not be always!
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- The repeated squaring trick

AN EVEN FASTER ALGORITHM
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Math helps!

 We can re-formulate the problem a little:

1 1] [1] |1
1 0| 0] |1
1 1| [1] ]2
1 0] |1] |1
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How to we compute A" quickly?

* Want

o

O =

* But can we even compute 3" quickly?
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First algorithm

long powerl(int n, int base) {
long ret=1;
for (int i=0; i<n; i++)
ret *= base;
return ret;

When n = 1019 it took 44 seconds

CSC 172, Spring 2018



Second algorithm

long power2 (int base, long n) {

Long ret; | ,
if(n== @) return 1; an _ 3n/2. 3”"’2 | if n is even
1f(n% 2 == 0) { 3-3"/2.3"2 otherwsie

ret= power2(base, n/2);
return ret * ret;
telsed

ret= power2(base, (n-1)/2);
return base * ret * ret;

Time Complexity: T(n) = O(log n)

When n = 10?° it took < 1 second
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Two 2x2 multiplication

int[ ][] matrix_multiplication_2Z2x2(int[][] a, int[][] b) {
int[ ][] result = new 1nt[2][2];

result[@][@] = a[@][0]*b[0][@] + a[@][1]*b[1][O];
result[@][1] = a[@][0]*p[@][1] + a[@][1]*b[1][1];
result[1][@0] = a[1][@]*b[@][@] + a[1][1]*b[1][O];
result[1][1] = a[1][@]*b[@][1] + a[1][1]*b[1][1];

return result;

Time Complexity: T(n) = 6(1)
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Second Algorithm For Matrix

int[J[] powerZ2Matrix(int[][] matrix,long n) {
int[]J[] ret;
1f (n == 1) return matrix;
1f (n % 2 == 0) {
ret = powerZMatrix(matrix, n/2);
return matrix_multiplication_2x2(ret, ret) ;
} else {
ret = powerZMatrix(matrix, (n-1)/2);
return matrix_multiplication_2x2(matrix,
matrix_multiplication_2x2(ret, ret));

Time Complexity: T(n) = 0(log n)
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Runtime analysis

* First algorithm O(n)
* Second algorithm O(log n)

* We can apply the second algorithm to the
Fibonacci problem: fib4() has the following data

H#seconds 1

CSC 172, Spring 2018



Conclusion

e Recursion is

— powerful!

Source: https://i.ytimg.com/vi/Y2kenVSIV8U/maxresdefault/jpg-all

;'.fffﬁ“ GREAT

.l"

uﬁ}MES GREAT
SPONSIBILITY




Recursion

Examples: From Textbook

1. Largest Number / Cummulative Sum
2. Greatest common divisior (GCD)

3. Log

4. Power

5. Many problems on List ADT

All these problems can be solved using either recursive or iterative
algorithms.
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Objectives

Thinking recursively

execution of a recursive method
Writing recursive algorithms
Towers of Hanoi problem with recursion

Backtracking to solve search problems, as in
mazes



RECURSIVE THINKING



Recursive Thinking

* Recursion is:
— A problem-solving approach, that can ...
— Generate simple solutions to ...

— Certain kinds of problems that would be difficult
to solve in other ways

* Recursion splits a problem:

* Into one or more simpler versions of itself



Recursive Thinking (cont.)

General Recursive Algorithm

i f the problem can be solved directly for the current value of n
Solve it
else

Recursively apply the algorithm to one or more problems
involving smaller values of n

Combine the solutions to the smaller problems to get the
solution to the original problem



EXAMPLES
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Recursive Algorithm for Finding the
Length of a String

if the string is empty (has no characters)
The length is O
else

3. Thelengthis 1+ the length of the string
that excludes the first character



Recursive Algorithm for Finding the
Length of a String (cont.)

public static int size(String str) {
1f ( str == null |l str.equals(""))
return 0;
else {
int output = 1 + size(str.substring(l));
return output;

h
}



Tracing a Recursive function

size("ace")
(o
return 1 + size("ce");
2 Cj;;;::: 1 + size("e");

l
1 CT:;;;j: 1 + size("");
)

0



Recursive Algorithm for Printing String
Characters

public static void print_chars(String str) {
1f (str == null |l str.equals("")) {
return;

} else {
System.out.println(str.charAt(0));
print_chars(str.substring(1));

¥

by



Recursive Algorithm for Printing String
Characters in Reverse Order

public static void print_chars_rev(String str) {
1f (str == null |l str.equals("")) {
return;
} else {
print_chars_rev(str.substring(1));
System.out.println(str.charAt(0));

¥
¥
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Recursive Design Example: mystery

* What does this do?

int mystery (int n) {

1f (n == 0)
return 0;
else

return n * mystery(n-1);



Proving a Recursive Method Correct

Recall Proof by Induction
Prove the theorem for the base case(s): n=0

Show that:

51

— If the theorem is assumed true for n,

e Then it must be true for n+1

Result: Theorem true foralln>0



The Stack and Activation Frames

 Java maintains a stack on which it saves new
information in the form of an activation frame

* The activation frame contains storage for
— function arguments
— local variables (if any)
— the return address of the instruction that called the

function

* Whenever a new function is called (recursive or
otherwise), Java pushes a new activation frame
onto the stack



Run-Time Stack and Activation Frames
(cont.)

Frame for
size("")

Frame for
size("e™)

Frame for
size("ce™)

Frame for
size("ace™)

str: ""
return address in size("e™)

str: "e
return address in size("ce™)

" "

str: "ce
return address in size("ace™)

str: "ace"
return address in caller

Run-time stack after all calls

Frame for
size("e")

Frame for
size("ce™)

Frame for
size("ace")

str: "e"
return address in size("ce™)

str: "ce"
return address in size("ace™)

str: "ace"
return address in caller

Run-time stack after return from last call




Run-Time Stack and Activation Frames

size("ace")
str: "ace"
3 " " we
ace" — is false
return 1 J‘r size("ce");

:

size("ce")
5 str: "ce"
"ce" == "" is false

< return 1 + size("e");

A ‘

size("e")
str: "e"

1 "o wuo fl
e == 1S Taisc

— return 1 + size("");

i

size("")

str: ""
mn — mn lS truc
L{ return 0




Section 7.2

RECURSIVE DEFINITIONS OF
MATHEMATICAL FORMULAS



Recursive Definitions of Mathematical
Formulas

 Mathematicians often use recursive
definitions of formulas that lead naturally to

recursive algorithms
 Examples include:

— factorials

— powers

— greatest common divisors (gcd)



Factorial of n: n!

0 The factorial of n, or nl is defined as follows:
o'=1
n!=nx(n-—1)! (forn>0)

1 The base case: nis equal to O

1 The second formula is a recursive definition



Factorial of n:

The recursive definition
can be expressed by the

following algorithm:

if nequalsO
nlis1

else
nl=n*(n-1)!

The last step can be
implemented as:

return n * factorial (n
- 1)

n! (cont.)

factorial (4)
return 4 * factorial(3);
/ :
6 return 3 * factorial(2);
(/‘ :
2 return 2 * factorial(l);

Y
1 d\ 1 * factorial(0);

1



Factorial of n: n! (cont.)

factorial(4)
o
return 4 * factorial(3);
6 Cj:;:;:: 3 * factorial(2);

Y
int factorial (int n) { return 2 * factorial(l);

if (n == 0) 1H |
. ) return 1 * factorial(0);
return 1; Kv)

else 1

return n * factorial(n - 1);



Recursive Algorithm for Calculating x”

(cont.)
double power (double x, int n) {
if (n == 0)
return 1;
else if (n > 0)
return x * power(x, n - 1);
else

return 1.0 / power(x, -n);



Recursive Algorithm for Calculating gcd
(cont.)

int gcd(int m, int n) {
if (m < n)
return gecd(n, m); // Transpose arguments
else if (m $ n == 0)
return n;
else
return gecd(n, m % n);



Recursion Versus lteration

Recursion and iteration are similar

Iteration

A loop repetition condition determines whether to repeat the loop body or exit
from the loop

Recursion

the condition usually tests for a base case

You can always write an iterative solution to a problem that is
solvable by recursion
BUT

A recursive algorithm may be simpler than an iterative algorithm
and thus easier to write, code, debug, and read
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Tail Recursion or Last-Line Recursion

* When recursion involves single call that is at the end ...
* Itis called tail recursion and it easy to make iterative

int factorial (int n) {
1f (n == 0)
return 1;
else
return n * factorial(n - 1);

}

* |tis a straightforward process to turn such a function into
an iterative one



lterative factorial function

int factorial iter(int n) ({
int result = 1;
for (int k = 1; k <= n; k++)
result = result * k;

return result;



Efficiency of Recursion

Recursive method often slower than iterative;
why?
Overhead for loop repetition smaller than
Overhead for call and return

If easier to develop algorithm using recursion,
Then code it as a recursive method:
Software engineering benefit probably outweighs ...
Reduction in efficiency

Don’t “optimize” prematurely!



Efficiency of Recursion (cont.)

* Memory usage

— A recursive version can require significantly more
memory that an iterative version because of the
need to save local variables and parameters on a
stack
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