CSC 172- Data Structures and Algorithms

Lecture #12
Spring 2018

Please put away all electronic devices






Announcement

* What should you study this week:
— Chapter 7: Recursion (E-textbook)

CSC 172, Spring 2018



Agenda

e Recursion

e More recursion

CSC 172, Spring 2018



FIBONACCI SEQUENCE AND
RECURSION

CSC 172, Spring 2018



Agenda

The worst algorithm you can think of!
An iterative solution
A better iterative solution

The repeated squaring trick

CSC 172, Spring 2018



FIBONACCI SEQUENCE

CSC 172, Spring 2018



Fibonacci sequence

0,11,23,5,8,13,21, 34, ..

M T M M M M
S H WO N = O

CSC 172, Spring 2018



Time to watch a video!

 Fibonacci Number and Golden Ratio

e http://www.youtube.com/watch?v=aB KstBiou4

CSC 172, Spring 2018



Recursion — fib1()

*/
long fibl(int n) {
if (n <= 1) return n;
return fibl(n-1) + fibl(n-2);

CSC 172, Spring 2018



Typical Runtime

Fib1 run time
125
1
100
75
Em
g§ -
F3 s
25
7
1. 2 2
0 1 I |l I
37 38 39 40 41 42 43 44 45 46 47

n




On large numbers

Looks like the run time is doubled for each n++

We won’t be able to compute F[140] if the trend
continues

The age of the universe is 15 billion years < 2%0 sec

The function looks ... exponential
— |s there a theoretical justification for this?

CSC 172, Spring 2018



ANALYSIS OF FIB1()

CSC 172, Spring 2018



Guess and induct

* LetT[n] bethetime £fibl(n) takes

* For n=0, 1, suppose it takes d mili-sec

e T[0] = T[1l] = d

* Forn> 1, suppose it takes ¢ mili-secin £ibl (n)
not counting the recursive calls

* To estimate T[n], we can
— Guess a formula for it
— Prove by induction that it works

T[n] = ¢ + T[n-1] + T[n-2] whenn > 1

CSC 172, Spring 2018



The guess

* Bottom-up iteration

—T[0] = T[1] = d o112 3o s 152134 .
—T[2]=c+ 2d

—T[3] =2c + 3d

— T[4] = 4c + 5d

— T[5] = 7c + 8d

—T[6] = 12c + 13d

* Can you guess a formula for T[n]?
— T[n] = (F[n+1] — 1)c + F[n+1]d

CSC 172, Spring 2018



The Proof

* The base cases: n=0,1

e The hypothesis: suppose
e T[m] = (F[m+1] = 1)*c + Fm+1]*d forall m<n
e The induction step:
e T[n] =c+ T[n-1] + T[n-2]
=c+ (F[n] —1)*c + F[n]*d
+ (F[n-1] = 1)*c + F[n-1]*d
= (F[n+1] —1)*c + F[n]*d

CSC 172, Spring 2018



How does this help?

Pl = U0
O = L+ V5 ~ 1.6

CSC 172, Spring 2018



So, there are constants C, D such that

This explains the exponential-curve we saw

T(n) =06(p")

CSC 172, Spring 2018



From intuition to formality

* Suppose £1b1(140) runs on a computer with
C=10":

1072(1.6)*Y > 3.77 - 10'Y > 100 - age of univ.

CSC 172, Spring 2018



- A Linear time algorithm using ArrayList
- Alinear time algorithm using arrays

- Alinear time algorithm with constant space

BETTER ALGORITHMS FOR
COMPUTING F[N]

CSC 172, Spring 2018



An algorithm using ArrayList

Time Complexity: T(n) = 8(n)
Space Complexity:S(n) = 0(n)

long fib2(int n) {
// this 1s one implementation option
if (n <= 1) return n;
ArrayList<Long> A = new ArraylList<>();
A.add((long) 0);
A.add((long) 1);
for (int i=2; i<=n; i++) {
A.add(A.get(i-1)+ A.get(i-2));
I3

return A.get(n);

Guess how large an n we can handle this time?

CSC 172, Spring 2018



Data

#seconds 1 Eats up all
Heap Space

CSC 172, Spring 2018



How about an array?

Time Complexity: T(n) = 8(n)
long £ib3(int n) { Space Complexity:S(n) = 8(n)

if (n <= 1) return n;

long[] A = new long[n+l];

A[0] = 0;

A[l] = 1;

for (int i=2; i<=n; i++) {
A[i] = A[i-1]+A[i-2];

}

return A[n];

Guess how large an n we can handle this time?

CSC 172, Spring 2018



Data

#seconds 1 Stack Overflow

CSC 172, Spring 2018



Dynamic programming!

Time Complexity: T(n) = 0(n)
long fib4(long n) { Space Complexity: S(n) — 0(1)

if (n <= 1) return n;
long a=0, b=1l, temp = 0;
for (long i=2; i<= n; i++) {

temp = a + b; // F[i] = F[i-2] + F[i-1]
a = b; // a = F[i-1]
b = temp; // b = F[i]

}

return temp;

Guess how large an n we can handle this time?

CSC 172, Spring 2018



Data

___

#seconds 1

CSC 172, Spring 2018



Conclusion

* |teration is better/faster than recursion...

May not be always!

CSC 172, Spring 2018



- The repeated squaring trick

AN EVEN FASTER ALGORITHM

CSC 172, Spring 2018



Math helps!

 We can re-formulate the problem a little:

1 1] [1] |1
1 0| 0] |1
1 1| [1] ]2
1 0] |1] |1

CSC 172, Spring 2018






Fln+1]

Fin]

| |
e

IO }_\I




How to we compute A" quickly?

* Want

o

O =

* But can we even compute 3" quickly?

CSC 172, Spring 2018



First algorithm

long powerl(int n, int base) {
long ret=1;
for (int i=0; i<n; i++)
ret *= base;
return ret;

When n = 1019 it took 44 seconds

CSC 172, Spring 2018



Second algorithm

long power2 (int base, long n) {

Long ret; | ,
if(n== @) return 1; an _ 3n/2. 3”"’2 | if n is even
1f(n% 2 == 0) { 3-3"/2.3"2 otherwsie

ret= power2(base, n/2);
return ret * ret;
telsed

ret= power2(base, (n-1)/2);
return base * ret * ret;

Time Complexity: T(n) = O(log n)

When n = 10?° it took < 1 second

CSC 172, Spring 2018



Two 2x2 multiplication

int[ ][] matrix_multiplication_2Z2x2(int[][] a, int[][] b) {
int[ ][] result = new 1nt[2][2];

result[@][@] = a[@][0]*b[0][@] + a[@][1]*b[1][O];
result[@][1] = a[@][0]*p[@][1] + a[@][1]*b[1][1];
result[1][@0] = a[1][@]*b[@][@] + a[1][1]*b[1][O];
result[1][1] = a[1][@]*b[@][1] + a[1][1]*b[1][1];

return result;

Time Complexity: T(n) = 6(1)

CSC 172, Spring 2018



Second Algorithm For Matrix

int[J[] powerZ2Matrix(int[][] matrix,long n) {
int[]J[] ret;
1f (n == 1) return matrix;
1f (n % 2 == 0) {
ret = powerZMatrix(matrix, n/2);
return matrix_multiplication_2x2(ret, ret) ;
} else {
ret = powerZMatrix(matrix, (n-1)/2);
return matrix_multiplication_2x2(matrix,
matrix_multiplication_2x2(ret, ret));

Time Complexity: T(n) = 0(log n)

CSC 172, Spring 2018



Runtime analysis

* First algorithm O(n)
* Second algorithm O(log n)

* We can apply the second algorithm to the
Fibonacci problem: fib4() has the following data

H#seconds 1

CSC 172, Spring 2018



Conclusion

e Recursion is

— powerful!

Source: https://i.ytimg.com/vi/Y2kenVSIV8U/maxresdefault/jpg-all

;'.fffﬁ“ GREAT

.l"

uﬁ}MES GREAT
SPONSIBILITY




Recursion

Examples: From Textbook

1. Largest Number / Cummulative Sum
2. Greatest common divisior (GCD)

3. Log

4. Power

5. Many problems on List ADT

All these problems can be solved using either recursive or iterative
algorithms.

CSC 172, Fall 2017



Objectives

Thinking recursively

execution of a recursive method
Writing recursive algorithms
Towers of Hanoi problem with recursion

Backtracking to solve search problems, as in
mazes



RECURSIVE THINKING



Recursive Thinking

* Recursion is:
— A problem-solving approach, that can ...
— Generate simple solutions to ...

— Certain kinds of problems that would be difficult
to solve in other ways

* Recursion splits a problem:

* Into one or more simpler versions of itself



Recursive Thinking (cont.)

General Recursive Algorithm

i f the problem can be solved directly for the current value of n
Solve it
else

Recursively apply the algorithm to one or more problems
involving smaller values of n

Combine the solutions to the smaller problems to get the
solution to the original problem



EXAMPLES

CSC 172, Spring 2018



Recursive Algorithm for Finding the
Length of a String

if the string is empty (has no characters)
The length is O
else

3. Thelengthis 1+ the length of the string
that excludes the first character



Recursive Algorithm for Finding the
Length of a String (cont.)

public static int size(String str) {
1f ( str == null |l str.equals(""))
return 0;
else {
int output = 1 + size(str.substring(l));
return output;

h
}



Tracing a Recursive function

size("ace")
(o
return 1 + size("ce");
2 Cj;;;::: 1 + size("e");

l
1 CT:;;;j: 1 + size("");
)

0



Recursive Algorithm for Printing String
Characters

public static void print_chars(String str) {
1f (str == null |l str.equals("")) {
return;

} else {
System.out.println(str.charAt(0));
print_chars(str.substring(1));

¥

by



Recursive Algorithm for Printing String
Characters in Reverse Order

public static void print_chars_rev(String str) {
1f (str == null |l str.equals("")) {
return;
} else {
print_chars_rev(str.substring(1));
System.out.println(str.charAt(0));

¥
¥



50

Recursive Design Example: mystery

* What does this do?

int mystery (int n) {

1f (n == 0)
return 0;
else

return n * mystery(n-1);



Proving a Recursive Method Correct

Recall Proof by Induction
Prove the theorem for the base case(s): n=0

Show that:

51

— If the theorem is assumed true for n,

e Then it must be true for n+1

Result: Theorem true foralln>0



The Stack and Activation Frames

 Java maintains a stack on which it saves new
information in the form of an activation frame

* The activation frame contains storage for
— function arguments
— local variables (if any)
— the return address of the instruction that called the

function

* Whenever a new function is called (recursive or
otherwise), Java pushes a new activation frame
onto the stack



Run-Time Stack and Activation Frames
(cont.)

Frame for
size("")

Frame for
size("e™)

Frame for
size("ce™)

Frame for
size("ace™)

str: ""
return address in size("e™)

str: "e
return address in size("ce™)

" "

str: "ce
return address in size("ace™)

str: "ace"
return address in caller

Run-time stack after all calls

Frame for
size("e")

Frame for
size("ce™)

Frame for
size("ace")

str: "e"
return address in size("ce™)

str: "ce"
return address in size("ace™)

str: "ace"
return address in caller

Run-time stack after return from last call




Run-Time Stack and Activation Frames

size("ace")
str: "ace"
3 " " we
ace" — is false
return 1 J‘r size("ce");

:

size("ce")
5 str: "ce"
"ce" == "" is false

< return 1 + size("e");

A ‘

size("e")
str: "e"

1 "o wuo fl
e == 1S Taisc

— return 1 + size("");

i

size("")

str: ""
mn — mn lS truc
L{ return 0




Section 7.2

RECURSIVE DEFINITIONS OF
MATHEMATICAL FORMULAS



Recursive Definitions of Mathematical
Formulas

 Mathematicians often use recursive
definitions of formulas that lead naturally to

recursive algorithms
 Examples include:

— factorials

— powers

— greatest common divisors (gcd)



Factorial of n: n!

0 The factorial of n, or nl is defined as follows:
o'=1
n!=nx(n-—1)! (forn>0)

1 The base case: nis equal to O

1 The second formula is a recursive definition



Factorial of n:

The recursive definition
can be expressed by the

following algorithm:

if nequalsO
nlis1

else
nl=n*(n-1)!

The last step can be
implemented as:

return n * factorial (n
- 1)

n! (cont.)

factorial (4)
return 4 * factorial(3);
/ :
6 return 3 * factorial(2);
(/‘ :
2 return 2 * factorial(l);

Y
1 d\ 1 * factorial(0);

1



Factorial of n: n! (cont.)

factorial(4)
o
return 4 * factorial(3);
6 Cj:;:;:: 3 * factorial(2);

Y
int factorial (int n) { return 2 * factorial(l);

if (n == 0) 1H |
. ) return 1 * factorial(0);
return 1; Kv)

else 1

return n * factorial(n - 1);



Recursive Algorithm for Calculating x”

(cont.)
double power (double x, int n) {
if (n == 0)
return 1;
else if (n > 0)
return x * power(x, n - 1);
else

return 1.0 / power(x, -n);



Recursive Algorithm for Calculating gcd
(cont.)

int gcd(int m, int n) {
if (m < n)
return gecd(n, m); // Transpose arguments
else if (m $ n == 0)
return n;
else
return gecd(n, m % n);



Recursion Versus lteration

Recursion and iteration are similar

Iteration

A loop repetition condition determines whether to repeat the loop body or exit
from the loop

Recursion

the condition usually tests for a base case

You can always write an iterative solution to a problem that is
solvable by recursion
BUT

A recursive algorithm may be simpler than an iterative algorithm
and thus easier to write, code, debug, and read



64

Tail Recursion or Last-Line Recursion

* When recursion involves single call that is at the end ...
* Itis called tail recursion and it easy to make iterative

int factorial (int n) {
1f (n == 0)
return 1;
else
return n * factorial(n - 1);

}

* |tis a straightforward process to turn such a function into
an iterative one



lterative factorial function

int factorial iter(int n) ({
int result = 1;
for (int k = 1; k <= n; k++)
result = result * k;

return result;



Efficiency of Recursion

Recursive method often slower than iterative;
why?
Overhead for loop repetition smaller than
Overhead for call and return

If easier to develop algorithm using recursion,
Then code it as a recursive method:
Software engineering benefit probably outweighs ...
Reduction in efficiency

Don’t “optimize” prematurely!



Efficiency of Recursion (cont.)

* Memory usage

— A recursive version can require significantly more
memory that an iterative version because of the
need to save local variables and parameters on a
stack



Acknowledgement

* Douglas Wilhelm Harder.

— Thanks for making an excellent set of slides for ECE
250 Algorithms and Data Structures course

* Prof. Hung Q. Ngo:

— Thanks for those beautiful slides created for CSC 250
(Data Structures) course at UB.

 Many of these slides are taken from these two
sources.

CSC 172, Spring 2018



