## CSC 172- Data Structures and Algorithms

Lecture #12

Spring 2018

Please put away all electronic devices



#### **Announcement**

- What should you study this week:
  - Chapter 7: Recursion (E-textbook)

## Agenda

• Recursion

More recursion

## FIBONACCI SEQUENCE AND RECURSION

## Agenda

The worst algorithm you can think of!

An iterative solution

A better iterative solution

The repeated squaring trick

## FIBONACCI SEQUENCE

## Fibonacci sequence

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

- F[0] = 0
- F[1] = 1
- F[2] = F[1] + F[0] = 1
- F[3] = F[2] + F[1] = 2
- F[4] = F[3] + F[2] = 3
- F[n] = F[n-1] + F[n-2]

#### Time to watch a video!

Fibonacci Number and Golden Ratio

http://www.youtube.com/watch?v=aB KstBiou4

#### Recursion – fib1()

#### Typical Runtime

Fib1 run time



```
Exception in thread "main" java.lang.StackOverflowError at Fibonacci.fib1(Fibonacci.java:7) at Fibonacci.fib1(Fibonacci.java:7) at Fibonacci.fib1(Fibonacci.java:7) at Fibonacci.fib1(Fibonacci.java:7) at Fibonacci.fib1(Fibonacci.java:7)
```

## On large numbers

Looks like the run time is doubled for each n++

 We won't be able to compute F[140] if the trend continues

• The age of the universe is 15 billion years  $< 2^{60}$  sec

- The function looks ... exponential
  - Is there a theoretical justification for this?

## **ANALYSIS OF FIB1()**

#### Guess and induct

- Let T[n] be the time fib1(n) takes
- For n=0, 1, suppose it takes d mili-sec
- T[0] = T[1] = d
- For n > 1, suppose it takes c mili-sec in fib1(n) not counting the recursive calls
- To estimate T[n], we can
  - Guess a formula for it
  - Prove by induction that it works

$$T[n] = c + T[n-1] + T[n-2]$$
 when  $n > 1$ 

## The guess

#### Bottom-up iteration

$$-T[0] = T[1] = d$$

$$-T[2] = c + 2d$$

$$-T[3] = 2c + 3d$$

$$-T[4] = 4c + 5d$$

$$-T[5] = 7c + 8d$$

$$-T[6] = 12c + 13d$$

#### Fibonacci Sequence:

Can you guess a formula for T[n]?

$$-T[n] = (F[n+1] - 1)c + F[n+1]d$$

#### The Proof

- The base cases: n=0,1
- The hypothesis: suppose
  - T[m] = (F[m+1] 1)\*c + F[m+1]\*d for all m < n
- The induction step:

## How does this help?

$$F[n] = \frac{\phi^n - (-1/\phi)^n}{\sqrt{5}}$$

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.6$$
The golden ratio

#### So, there are constants C, D such that

$$C\phi^n \le T[n] \le D\phi^n$$

This explains the exponential-curve we saw

$$T(n) = \Theta(\phi^n)$$

## From intuition to formality

• Suppose fib1(140) runs on a computer with  $C = 10^{-9}$ :

$$10^{-9}(1.6)^{140} \ge 3.77 \cdot 10^{19} > 100 \cdot \text{age of univ.}$$

- A Linear time algorithm using ArrayList
- A linear time algorithm using arrays
- A linear time algorithm with constant space

# BETTER ALGORITHMS FOR COMPUTING F[N]

## An algorithm using ArrayList

```
Time Complexity: T(n) = \theta(n)
Space Complexity: S(n) = \theta(n)
```

```
long fib2(int n) {
    // this is one implementation option
    if (n <= 1) return n;
    ArrayList<Long> A = new ArrayList<>();
    A.add((long) 0);
    A.add((long) 1);
    for (int i=2; i<=n; i++) {
         A.add(A.get(i-1)+ A.get(i-2));
    }
    return A.get(n);
}</pre>
```

Guess how large an n we can handle this time?

#### Data

| n         | <b>10</b> <sup>6</sup> | <b>10</b> <sup>7</sup> | <b>10</b> <sup>8</sup> | <b>10</b> <sup>9</sup>    |
|-----------|------------------------|------------------------|------------------------|---------------------------|
| # seconds | 1                      | 1                      | 9                      | Eats up all<br>Heap Space |

```
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space at java.util.Arrays.copyOf(Arrays.java:3210) at java.util.Arrays.copyOf(Arrays.java:3181) at java.util.ArrayList.grow(ArrayList.java:261) at java.util.ArrayList.ensureExplicitCapacity(ArrayList.java:235) at java.util.ArrayList.ensureCapacityInternal(ArrayList.java:227) at java.util.ArrayList.add(ArrayList.java:458) at Fibonacci.fib2(Fibonacci.java:16)
```

## How about an array?

```
Time Complexity: T(n) = \theta(n)
                         Space Complexity: S(n) = \theta(n)
long fib3(int n) {
    if (n \le 1) return n;
    long[] A = new long[n+1];
    A[0] = 0;
   A[1] = 1;
    for (int i=2; i<=n; i++) {
        A[i] = A[i-1] + A[i-2];
    return A[n];
```

Guess how large an n we can handle this time?

#### Data

| n         | <b>10</b> <sup>6</sup> | <b>10</b> <sup>7</sup> | <b>10</b> <sup>8</sup> | <b>10</b> <sup>9</sup> |
|-----------|------------------------|------------------------|------------------------|------------------------|
| # seconds | 1                      | 1                      | 1                      | Stack Overflow         |

```
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space at Fibonacci.fib3(Fibonacci.java:24) at Fibonacci.main(Fibonacci.java:53)
```

#### Dynamic programming!

```
Time\ Complexity:\ T(n)=\theta(n) Space\ Complexity:\ S(n)=\theta(1) if (n <= 1) return n; long a=0, b=1, temp = 0; for (long i=2; i<= n; i++) { temp = a + b; // F[i] = F[i-2] + F[i-1] a = b; // a = F[i-1] b = temp; // b = F[i] } return\ temp; }
```

Guess how large an n we can handle this time?

#### Data

| n         | <b>10</b> <sup>8</sup> | <b>10</b> <sup>9</sup> | <b>10</b> <sup>10</sup> | 1011 |
|-----------|------------------------|------------------------|-------------------------|------|
| # seconds | 1                      | 3                      | 35                      | 359  |

```
long n= 1000000000;
```

Total Time = 2312683996 3311503426941990459

Exception in thread "main"
java.lang.OutOfMemoryError: Java heap
space
at java.lang.Long.valueOf(Long.java:840)

#### Conclusion

• Iteration is better/faster than recursion...

May not be always!

- The repeated squaring trick

#### AN EVEN FASTER ALGORITHM

## Math helps!

We can re-formulate the problem a little:

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} F[3] \\ F[2] \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} F[n+1] \\ F[n] \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

## How to we compute A<sup>n</sup> quickly?

Want

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n$$

But can we even compute 3<sup>n</sup> quickly?

#### First algorithm

```
long power1(int n, int base) {
   long ret=1;
   for (int i=0; i<n; i++)
      ret *= base;
   return ret;
}</pre>
```

When  $n = 10^{10}$  it took 44 seconds

#### Second algorithm

```
long power2 (int base, long n) {
Long ret;
    if(n== 0) return 1;
    if(n% 2 == 0) {
        ret= power2(base, n/2);
        return ret * ret;
    }else{
        ret= power2(base, (n-1)/2);
        return base * ret * ret;
}
```

Time Complexity:  $T(n) = O(\log n)$ 

When  $n = 10^{19}$  it took < 1 second

#### Two 2x2 multiplication

```
int[][] matrix_multiplication_2x2(int[][] a, int[][] b) {
    int[][] result = new int[2][2];

    result[0][0] = a[0][0]*b[0][0] + a[0][1]*b[1][0];
    result[0][1] = a[0][0]*b[0][1] + a[0][1]*b[1][1];
    result[1][0] = a[1][0]*b[0][0] + a[1][1]*b[1][0];
    result[1][1] = a[1][0]*b[0][1] + a[1][1]*b[1][1];
    return result;
}
```

*Time Complexity:*  $T(n) = \theta(1)$ 

#### Second Algorithm For Matrix

Time Complexity:  $T(n) = O(\log n)$ 

## Runtime analysis

First algorithm O(n)

Second algorithm O(log n)

 We can apply the second algorithm to the Fibonacci problem: fib4() has the following data

| n         | <b>10</b> <sup>8</sup> | <b>10</b> <sup>9</sup> | <b>10</b> <sup>10</sup> | <b>10</b> <sup>19</sup> |
|-----------|------------------------|------------------------|-------------------------|-------------------------|
| # seconds | 1                      | 1                      | 1                       | 1                       |

### Conclusion

- Recursion is
  - powerful!



Source: https://i.ytimg.com/vi/Y2kenVSIV8U/maxresd@fault7jpgFall

### Recursion

#### Examples: From Textbook

- 1. Largest Number / Cummulative Sum
- 2. Greatest common divisior (GCD)
- 3. Log
- 4. Power
- 5. Many problems on List ADT

All these problems can be solved using either recursive or iterative algorithms.

## **Objectives**

- Thinking recursively
- Tracing execution of a recursive method
- Writing recursive algorithms
- Towers of Hanoi problem with recursion
- Backtracking to solve search problems, as in mazes

### **RECURSIVE THINKING**

## Recursive Thinking

- Recursion is:
  - A problem-solving approach, that can ...
  - Generate simple solutions to ...
  - Certain kinds of problems that would be difficult to solve in other ways

- Recursion splits a problem:
  - Into one or more simpler versions of itself

## Recursive Thinking (cont.)

#### **General Recursive Algorithm**

if the problem can be solved directly for the current value of *n*.

Solve it

#### else

**Recursively** apply the algorithm to **one or more** problems involving **smaller** values of *n* 

**Combine** the **solutions to the smaller problems** to get the solution to the original problem

## **EXAMPLES**

# Recursive Algorithm for Finding the Length of a String

if the string is empty (has no characters)
The length is 0
else

3. The length is 1 + the length of the string that excludes the first character

# Recursive Algorithm for Finding the Length of a String (cont.)

```
public static int size(String str) {
   if ( str == null || str.equals(""))
     return 0;
   else {
     int output = 1 + size(str.substring(1));
     return output;
   }
}
```

### **Tracing a Recursive function**



## Recursive Algorithm for Printing String Characters

```
public static void print_chars(String str) {
   if (str == null || str.equals("")) {
      return;
   } else {
      System.out.println(str.charAt(0));
      print_chars(str.substring(1));
   }
}
```

## Recursive Algorithm for Printing String Characters in Reverse Order

```
public static void print_chars_rev(String str) {
    if (str == null || str.equals("")) {
        return;
    } else {
        print_chars_rev(str.substring(1));
        System.out.println(str.charAt(0));
    }
}
```

### Recursive Design Example: mystery

What does this do?

```
int mystery (int n) {
   if (n == 0)
     return 0;
   else
     return n * mystery(n-1);
}
```

## Proving a Recursive Method Correct

- Recall Proof by Induction
- Prove the theorem for the base case(s): n=0
- Show that:
  - If the theorem is assumed true for n,
    - Then it must be true for n+1
- Result: Theorem true for all n ≥ 0

### The Stack and Activation Frames

- Java maintains a stack on which it saves new information in the form of an activation frame
- The activation frame contains storage for
  - function arguments
  - local variables (if any)
  - the return address of the instruction that called the function
- Whenever a new function is called (recursive or otherwise), Java pushes a new activation frame onto the stack

# Run-Time Stack and Activation Frames (cont.)

Frame for size("")

Frame for size("e")

Frame for size("ce")

Frame for size("ace")

str: ""

return address in size("e")

str: "e"

return address in size("ce")

str: "ce"

return address in size("ace")

str: "ace"

return address in caller

Frame for size("e")

Frame for size("ce")

Frame for size("ace")

str: "e"

return address in size("ce")

str: "ce"

return address in size("ace")

str: "ace"

return address in caller

Run-time stack after all calls

Run-time stack after return from last call

#### **Run-Time Stack and Activation Frames**



Section 7.2

# RECURSIVE DEFINITIONS OF MATHEMATICAL FORMULAS

## Recursive Definitions of Mathematical Formulas

- Mathematicians often use recursive definitions of formulas that lead naturally to recursive algorithms
- Examples include:
  - factorials
  - powers
  - greatest common divisors (gcd)

### Factorial of n: n!

 $\square$  The factorial of n, or n! is defined as follows:

$$0! = 1$$

$$n! = n \times (n - 1)!$$
 (for  $n > 0$ )

- $\square$  The base case: n is equal to 0
- The second formula is a recursive definition

## Factorial of n: n! (cont.)

The recursive definition can be expressed by the following algorithm:

```
if n equals 0
  n! is 1
else
  n! = n * (n - 1)!
```

The last step can be implemented as:

```
return n * factorial(n
- 1);
```



## Factorial of n: n! (cont.)

```
factorial(4)
                                  return 4 * factorial(3);
                                         return 3 * factorial(2);
                                               return 2 * factorial(1);
int factorial(int n) {
if (n == 0)
                                                     return 1 * factorial(0);
  return 1;
else
  return n * factorial(n - 1);
```

# Recursive Algorithm for Calculating $x^n$ (cont.)

```
double power(double x, int n) {
  if (n == 0)
    return 1;
  else if (n > 0)
    return x * power(x, n - 1);
  else
    return 1.0 / power(x, -n);
}
```

# Recursive Algorithm for Calculating gcd (cont.)

```
int gcd(int m, int n) {
  if (m < n)
     return gcd(n, m); // Transpose arguments
else if (m % n == 0)
    return n;
  else
    return gcd(n, m % n);
}</pre>
```

### **Recursion Versus Iteration**

#### Recursion and iteration are <u>similar</u>

#### **Iteration**

A loop repetition condition determines whether to repeat the loop body or exit from the loop

#### Recursion

the condition usually tests for a base case

You can always write an iterative solution to a problem that is solvable by recursion

#### **BUT**

A recursive algorithm may be simpler than an iterative algorithm and thus easier to write, code, debug, and read

#### **Tail Recursion or Last-Line Recursion**

- When recursion involves single call that is at the end ...
- It is called tail recursion and it easy to make iterative

```
int factorial(int n) {
  if (n == 0)
    return 1;
  else
    return n * factorial(n - 1);
}
```

 It is a straightforward process to turn such a function into an iterative one

### Iterative factorial function

```
int factorial_iter(int n) {
    int result = 1;
    for (int k = 1; k <= n; k++)
    result = result * k;
    return result;
}</pre>
```

## **Efficiency of Recursion**

Recursive method often slower than iterative; why?

Overhead for loop repetition smaller than

Overhead for call and return

If easier to develop algorithm using recursion,

Then code it as a recursive method:

Software engineering benefit probably outweighs ...

Reduction in efficiency

Don't "optimize" prematurely!

## **Efficiency of Recursion (cont.)**

- Memory usage
  - A recursive version can require significantly more memory that an iterative version because of the need to save local variables and parameters on a stack

## Acknowledgement

- Douglas Wilhelm Harder.
  - Thanks for making an excellent set of slides for ECE
     250 Algorithms and Data Structures course
- Prof. Hung Q. Ngo:
  - Thanks for those beautiful slides created for CSC 250 (Data Structures) course at UB.
- Many of these slides are taken from these two sources.