CSC 172– Data Structures and Algorithms

Lecture #13 Spring 2018

Please put away all electronic devices

Announcement

- Midterm on this Thursday
 - Same location and time as for regular lectures
 - Time: 75 minutes

• Recursion

• Sorting

Recursion Versus Iteration

Recursion and iteration are similar

Iteration

A loop repetition condition determines whether to repeat the loop body or exit from the loop

Recursion

the condition usually tests for a base case

You can always write an iterative solution to a problem that is solvable by recursion

A recursive algorithm may be simpler than an iterative algorithm and thus easier to write, code, debug, and read

BUT

Tail Recursion or Last-Line Recursion

- When recursion involves single call that is at the end ...
- It is called **tail recursion** and it easy to make iterative

```
int factorial(int n) {
    if (n == 0)
        return 1;
    else
        return n * factorial(n - 1);
}
```

It is a straightforward process to turn such a function into an iterative one

Iterative factorial function

```
int factorial_iter(int n) {
    int result = 1;
    for (int k = 1; k <= n; k++)
    result = result * k;
    return result;
}</pre>
```

REAL WORLD EXAMPLE

Towers of Hanoi

- Move the three disks to a different peg, maintaining their order (largest disk on bottom, smallest on top, etc.)
 - Only the top disk on a peg can be moved to another peg
 - A larger disk cannot be placed on top of a smaller disk

Let's Play

<u>http://www.mathsisfun.com/games/towerofhan</u>
 <u>oi.html</u>

Recursive Algorithm for Towers of Hanoi

if *n* is 1

Move disk 1 (the smallest disk) from the starting peg to the destination peg

else

- Move the top n 1 disks from the starting peg to the temporary peg (neither starting nor destination peg)
- Move disk *n* (the disk at the bottom) from the starting peg to the destination peg
- Move the top n 1 disks from the temporary peg to the destination peg

BACKTRACKING

Solving a Maze

Backtracking:

Systematic trial and error search for solution to a problem

Backtracking

http://eightqueen.becher-sundstroem.de/

Acknowledgement

- Douglas Wilhelm Harder.
 - Thanks for making an excellent set of slides for ECE
 250 Algorithms and Data Structures course
- Prof. Hung Q. Ngo:
 - Thanks for those beautiful slides created for CSC 250 (Data Structures) course at UB.
- Many of these slides are taken from these two sources.

After Midterm

• Sorting and Sorting Dance

MIDTERM REVIEW

MIDTERM REVIEW

Chapters to Read

- Chapter 1
- Chapter 3 (Mathematical Background)
- Chapter 4 (Algorithm Analysis)
- Chapter 5 (Linear Structures)
- Chapter 6 (you can skip)
- Chapter 7 (Recursion)

Topics Covered

- Java Generics
- Induction
- Program Efficiency
- Asymptotic Analysis
- Recurrence Tree
- ArrayList and LinkedList
- Stack (+ Shunting Yard Algorithm)
- Queue
- Recursion

What did we learn?

WHAT DID WE LEARN?

DAG

DAG (Continued)

Now, you know how to create your own data structures

DAG (Continued)

DATA STRUCTURES COVERED

Linear Data Structures Covered

- Arrays
- ArrayLists
- LinkedLists
- Stacks
- Queues

After the MT: Other Data Structures

- Trees
 - LMC-RS Trees
 - Binary Trees
 - Binary Search Trees
 - Balanced Binary Search Trees (AVL trees)
 - » TreeMaps (Map implementation using Balanced Binary Search Tree) •
 - Heaps (and Priority Queues)
- Graphs
- HashMaps
- Sets?

ALGORITHMS

Algorithms

- Linear search vs Binary search
- Finding well-formed expression
- Shunting yard algorithm
- Recursion (and backtracking)

Projects and Data Structures

EXAM STRUCTURE

Exam Structure

Total: 60 pts Time: 75 Minutes Average: 1 minute per point Coverage: Everything including Recursion

• Short Questions (20 pts):

- One sentence answers
- Short questions
- Short functions

• Other Questions (40 pts):

- Questions will have parts
- All: Coding, Drawing, Theory,
- Also, there will be extra credit problem

How to prepare for the exam

• Go through workshop materials, labs, quizzes and above all, lecture slides

- Read the textbook to strengthen your understanding
 - Bonus: plenty of animations

THINGS TO AVOID

The Night before exam

During the exam

Or Finishing too early

WeKnowMemes

Practice Problems

• Workshop 6 (already uploaded)

- Lectures
- Quizzes
- Labs
- Workshops
- Projects

If you have attended all lectures, have completed all labs and projects on you own, it will be <u>hard</u> not to do well in the exam!

Coding

- Generics
- Recursion
- Iteration vs Recursion
- Implementing ADT
 - ArrayList
 - LinkedList
 - Stack
 - Queue
- Using Arrays, ArrrayList, LinkedList, Stack, Queue
- Using Singly Linked List

MT Evaluation

- Time for MT Evaluation:
- Dr. Jenny Hadingham
 - Assistant Director
 - <u>Center for Excellence in Teaching & Learning</u>