
CSC 172– Data Structures and Algorithms

Lecture #15
Spring 2018

Please put away all electronic devices



CSC172, Spring 2018



Announcement

• Lab 7 (Sorting) will be released tonight 
• Due on Sunday (1st April). 

CSC172, Spring 2018



Agenda

• Sorting 

• And More Sorting

CSC172, Spring 2018



Outline

In this topic, we will introduce sorting, 
including:
– Definitions
– Assumptions
– In-place sorting
– Stable sorting
– Sorting techniques and strategies
– Overview of run times

CSC172, Spring 2018



Why Sorting ?

• Why do we really need to sort the data?
– Mostly to facilitate faster searching
– Visualization

• Is it sometimes better not to sort the data?

CSC172, Spring 2018



Linear search vs. binary search

• Binary search 
– is much faster
– but takes time to sort

• Pre-sort + binary search if lots of searches are 
expected

• m searches, T(n) sort time
– O(mn) vs O(T(n) + m log n)

CSC172, Spring 2018

Linear Search Sorting + Binary Search



Definition

Sorting is the process of:
– Taking a list of objects which could be stored in a 

linear order
(a0, a1, ..., an – 1)

e.g., numbers, and returning an reordering
(a'0, a'1, ..., a'n – 1)

such that
a'0 ≤ a'1 ≤ · · · ≤ a'n – 1

8.1

CSC172, Spring 2018



Definition

Seldom will we sort isolated values
– Usually we will sort a number of records 

containing a number of fields based on a key:
19991532 Stevenson Monica 3 Glendridge Ave.

19990253 Redpath Ruth 53 Belton Blvd.

19985832 Kilji Islam 37 Masterson Ave.

20003541 Groskurth Ken 12 Marsdale Ave.

19981932 Carol Ann 81 Oakridge Ave.

20003287 Redpath David 5 Glendale Ave.

19981932 Carol Ann 81 Oakridge Ave.

19985832 Khilji Islam 37 Masterson Ave.

19990253 Redpath Ruth 53 Belton Blvd.

19991532 Stevenson Monica 3 Glendridge Ave.

20003287 Redpath David 5 Glendale Ave.

20003541 Groskurth Ken 12 Marsdale Ave.

19981932 Carol Ann 81 Oakridge Ave.

20003541 Groskurth Ken 12 Marsdale Ave.

19985832 Kilji Islam 37 Masterson Ave.

20003287 Redpath David 5 Glendale Ave.

19990253 Redpath Ruth 53 Belton Blvd.

19991532 Stevenson Monica 3 Glendridge Ave.

Numerically by ID Number Lexicographically by surname, then given name

CSC172, Spring 2018



Definition

In these topics, we will assume that:
– Arrays are to be used for both input and output,

– We will focus on sorting integers and leave the 
more general case of sorting records based on 
one or more fields as an implementation detail

CSC172, Spring 2018



In-place Sorting

Sorting algorithms may be performed in-place, 
that is, with the allocation of at most Q(1)
additional memory (e.g., fixed number of local 
variables)

Other sorting algorithms require the allocation of 
second array of equal size
– Requires Q(n) additional memory

We will prefer in-place sorting algorithms

CSC172, Spring 2018



Classifications

The operations of a sorting algorithm are 
based on the actions performed:

Insertion

Swapping/ Exchanging 

Selection  

Merging 

CSC172, Spring 2018



Run-time

The run time of the sorting algorithms we will 
look at fall into one of three categories:

Q(n) Q(n log n)     O(n2)

We will examine average- and worst-case
scenarios for each algorithm

The run-time may change significantly based 
on the scenario

CSC172, Spring 2018



Run-time

We will review the more traditional O(n2)
sorting algorithms:
– Bubble sort, Selection sort, Insertion sort

Some of the faster Q(n log n) sorting 
algorithms:
– Quicksort, Merge sort, and Heap sort

CSC172, Spring 2018



Lower-bound Run-time

Any sorting algorithm must examine each 
entry in the array at least once
– Consequently, all sorting algorithms must be W(n)

We will not be able to achieve Q(n) behavior 
without additional assumptions

CSC172, Spring 2018



Lower-bound Run-time

The general run time is W(n log n)

The proof depends on:
– The number of permutations of n objects is n!,
– A binary tree with 2h leaf nodes has height at least h,
– Each permutation is a leaf node in a comparison 

tree, and
– The property that lg(n!) = Q(n log n)

https://www.mcs.sdsmt.edu/ecorwin/cs372/handouts/theta_n_factorial.htm
http://lti.cs.vt.edu/LTI_ruby/Books/CS172/html/SortingLowerBound.html

CSC172, Spring 2018



Summary

Introduction to sorting, including:
– Assumptions
– In-place sorting (O(1) additional memory)
– Sorting techniques

• insertion, swapping, selection, merging
– Run-time classification: O(n), O(n log n), O(n2)

CSC172, Spring 2018



Simple Sorting Algorithms



Sorting Algorithms Covered

• Bubble Sort

• Selection Sort

• Insertion Sort

CSC172, Spring 2018



Visualization

• https://visualgo.net/bn/sorting

• http://sorting.at/#

CSC172, Spring 2018



Bubble sort

• Compare each element (except the last one) with its 
neighbor to the right
– If they are out of order, swap them
– This puts the largest element at the very end
– The last element is now in the correct and final place

• Compare each element (except the last two) with its 
neighbor to the right
– If they are out of order, swap them
– This puts the second largest element next to last
– The last two elements are now in their correct and final places

• Compare each element (except the last three) with its 
neighbor to the right
– Continue as above until you have no unsorted elements on the left

CSC172, Spring 2018



Example of bubble sort

7 2 8 5 4

2 7 8 5 4

2 7 8 5 4

2 7 5 8 4

2 7 5 4 8

2 7 5 4 8

2 5 7 4 8

2 5 4 7 8

2 7 5 4 8

2 5 4 7 8

2 4 5 7 8

2 5 4 7 8

2 4 5 7 8

2 4 5 7 8

(done)

CSC172, Spring 2018



Code for bubble sort

public static void bubbleSort(int[] a) {

int outer, inner;

for (outer = a.length - 1; outer > 0; outer--) {  // counting down

for (inner = 0; inner < outer; inner++) {        // bubbling up

if (a[inner] > a[inner + 1]) {  // if out of order...

int temp = a[inner];          // ...then swap

a[inner] = a[inner + 1];

a[inner + 1] = temp;

}

}

}

}

CSC172, Spring 2018



Analysis of bubble sort
• for (outer = a.length - 1; outer > 0; outer--) {

for (inner = 0; inner < outer; inner++) { 
if (a[inner] > a[inner + 1]) { 

// code for swap omitted
}  }  }

• Let n = a.length= size of the array
• The outer loop is executed n-1 times (call it n, that�s close enough)
• Each time the outer loop is executed, the inner loop is executed

– Inner loop executes n-1 times at first, linearly dropping to just once
– In the inner loop, the comparison is always done (constant time), 

the swap might be done (also constant time)
• Result is n * n/2 * c, that is, O(n2/2 ) = O(n2)

CSC172, Spring 2018



Loop invariants

• You run a loop in order to change things

• Oddly enough, what is usually most important in understanding a 
loop is finding an invariant: that is,  a condition that doesn’t 
change

• In bubble sort, we put the largest elements at the end, and once 
we put them there, we don�t move them again

– Our invariant is: Every element to the right of outer is in the correct place
– That is, for all j > outer, if i < j, then a[i] <= a[j]

– When this is combined with the loop exit test, outer == 0, we know that all
elements of the array are in the correct place

CSC172, Spring 2018



Selection sort

• Given an array of length n,
– Search elements 0 through n-1 and select the smallest

• Swap it with the element in location 0
– Search elements 1 through n-1 and select the smallest

• Swap it with the element in location 1
– Search elements 2 through n-1 and select the smallest

• Swap it with the element in location 2
– Search elements 3 through n-1 and select the smallest

• Swap it with the element in location 3
– Continue in this fashion until there�s nothing left to 

search

CSC172, Spring 2018



Example and analysis of selection sort

nAnalysis:
nThe outer loop executes n-1 times
nThe inner loop executes about n/2

times on average (from n to 2 times)
nWork done in the inner loop is 

constant (swap two array elements)
nTime required is roughly (n-1)*(n/2)
nYou should recognize this as O(n2)

7 2 8 5 4

2 7 8 5 4

2 4 8 5 7

2 4 5 8 7

2 4 5 7 8

CSC172, Spring 2018



Selection sort

void selection_sort(int[] array) {
int i, j, k;
for (i=0; i< array.length-1; i++) {

j=i;
for (k=i+1; k< array.length k++)

if (array[k] < array[j]) j=k;
if (j!=i) swap(array, i, j);

}
}

CSC172, Spring 2018



Properties

• Number of comparisons & run-time Ω(n2)
– Even when the input is already sorted, thus not adaptive

• Sorting is in-place, i.e. O(1)-extra storage

• Number of data movements is always O(n): nice!
– Important for some applications (relational database) 

where we want to move memory/disk blocks

•

CSC172, Spring 2018



Insertion sort

T (n) = O(
n�1X

j=1

j) = O(n2)

CSC172, Spring 2018



CSC172, Spring 2018https://images-na.ssl-images-amazon.com/images/I/5164OWIqLqL.jpg



Insertion sort

void insertion_sort(int[] array) {
int temp, j;
for (int i=1; i<array.length; i++) {

temp = array[i];
j = i-1;
while (j >= 0 && array[j] > temp) {

array[j+1] = array[j];
j--;

}
array[j+1] = temp;

}
}

CSC172, Spring 2018



One step of insertion sort

3 4 7 12 14 14 20 21 33 38 10 55 9 23 28 16

sorted next to be inserted

3 4 7 55 9 23 28 16

10
temp

3833212014141210

sorted

less than 10

CSC172, Spring 2018



Properties

• Worst case run time is O(n2)
– Worst case input: inversely sorted vector

• Sorting is in-place, i.e. O(1)-extra storage

• Number of comparisons Ω(n2) at worst
• Number of item moves is also Ω(n2) at worst

• Adaptive: O(n) time for nearly sorted input

• It is a stable sort algorithm
CSC172, Spring 2018



Stable vs. Not Stable

CSC172, Spring 2018



More efficient sorting algorithms

CSC172, Spring 2018



Divide and Conquer
1. Base Case, solve the problem directly if it is 

small enough

2. Divide the problem into two or more 
similar and smaller subproblems

3. Recursively solve the subproblems 

4. Combine solutions to the subproblems

CSC172, Spring 2018



Divide and Conquer - Sort

Problem: 
• Input:    A[left..right] – unsorted array of integers

• Output: A[left..right] – sorted in non-decreasing order

CSC172, Spring 2018



Divide and Conquer - Sort
1. Base case

at most one element (left ≥ right),  return

2. Divide A into two subarrays: FirstPart, SecondPart
Two Subproblems:

sort the FirstPart 
sort the SecondPart

3. Recursively
sort FirstPart
sort SecondPart

4. Combine sorted FirstPart  and sorted SecondPart

CSC172, Spring 2018



Overview

• Divide and Conquer

• Merge Sort

• Quick Sort

CSC172, Spring 2018



Merge sort

CSC172, Spring 2018

T (n) = 2T (n/2) +O(n) = O(n log n)

A classic divide-and-conquer algorithm



Merge Sort: Idea

Merge

Recursively 
sort

Divide into
two halves FirstPart SecondPart

FirstPart SecondPart

A

A is sorted!

CSC172, Spring 2018



Merge Sort: Algorithm

Merge-Sort (A, left, right)

if     left ≥ right return

else

middle ← b(left+right)/2û

Merge-Sort(A, left, middle)

Merge-Sort(A, middle+1, right)

Merge(A, left, middle, right)

Recursive Call

CSC172, Spring 2018



Merge sort

CSC172, Spring 2018

public static void MergeSort(int [] arr)
{

if (arr.length <= 1) return;
int[] left = new int[arr.length/2];
int [] right = new int[arr.length - arr.length/2];
System.arraycopy(arr, 0, left, 0, arr.length/2);
System.arraycopy(arr, arr.length/2, right, 0, 

arr.length - arr.length/2);

MergeSort(left);
MergeSort(right);

merge(arr, left, right);
}

An important idea!



CSC172, Spring 2018



6          2          8         4        3         7           5          16          2          8         4 3          7          5         1

Merge-Sort(A, 0, 7)
Divide

A:

CSC172, Spring 2018



6          2          8         4

3          7          5         1

6          2 8          4

Merge-Sort(A, 0, 3) , divide
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

8          4

6          26 2

Merge-Sort(A, 0, 1) , divide
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

8          4

6

2

Merge-Sort(A, 0, 0) , base case
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

8          4

6 2

Merge-Sort(A, 0, 0), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

8          4

6

2

Merge-Sort(A, 1, 1) , base case
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

8          4

6 2

Merge-Sort(A, 1, 1), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

8          4

2          6

Merge(A, 0, 0, 1)
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

8          42          6

Merge-Sort(A, 0, 1), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

8          4

2          6

Merge-Sort(A, 2, 3)

48

, divide
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

4

2          6

8

Merge-Sort(A, 2, 2), base case
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

4

2          6

8

Merge-Sort(A, 2, 2), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



4

2          6

8

Merge-Sort(A, 3, 3), base case
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

4

2          6

8

Merge-Sort(A, 3, 3), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

2          6

4         8

Merge(A, 2, 2, 3)
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

2          6 4         8

Merge-Sort(A, 2, 3), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         1

2          4           6        8

Merge(A, 0, 1, 3)
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3          7          5         12          4           6        8

Merge-Sort(A, 0, 3), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



3         7         5         1

2          4           6        8

Merge-Sort(A, 4, 7)
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



1         3         5         7

2          4           6        8A:

Merge (A, 4, 5, 7)

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



1         3         5         72          4           6        8

Merge-Sort(A, 4, 7), return
A:

Merge-Sort(A, 0, 7)

CSC172, Spring 2018



1          2          3        4             5          6        7          8

Merge(A, 0, 3, 7)
A:

Merge-Sort(A, 0, 7)
Merge-Sort(A, 0, 7), done!

CSC172, Spring 2018



A[middle]A[left]

Sorted
FirstPart

Sorted 
SecondPart

Merge-Sort: Merge

A[right]

merge

A:

A:

Sorted

CSC172, Spring 2018



6 10 14 223 5 15 28
L: R:

Temporary Arrays

5 15 28 30 6 10 145

Merge-Sort: Merge Example

2 3 7 8 1 4 5 6A:

CSC172, Spring 2018



Merge-Sort: Merge Example

3 5 15 28 30 6 10 14

L:

A:

3 15 28 30 6 10 14 22

R:

i=0 j=0

k=0

2 3 7 8 1 4 5 6

1

CSC172, Spring 2018



Merge-Sort: Merge Example

1 5 15 28 30 6 10 14

L:

A:

3 5 15 28 6 10 14 22

R:

k=1

2 3 7 8 1 4 5 6

2

i=0 j=1

CSC172, Spring 2018



Merge-Sort: Merge Example

1 2 15 28 30 6 10 14

L:

A:

6 10 14 22

R:

i=1

k=2

2 3 7 8 1 4 5 6

3

j=1

CSC172, Spring 2018



Merge-Sort: Merge Example

1 2 3 6 10 14

L:

A:

6 10 14 22

R:

i=2 j=1

k=3

2 3 7 8 1 4 5 6

4

CSC172, Spring 2018



Merge-Sort: Merge Example

1 2 3 4 6 10 14

L:

A:

6 10 14 22

R:

j=2

k=4

2 3 7 8 1 4 5 6

i=2

5

CSC172, Spring 2018



Merge-Sort: Merge Example

1 2 3 4 5 6 10 14

L:

A:

6 10 14 22

R:

i=2 j=3

k=5

2 3 7 8 1 4 5 6

6

CSC172, Spring 2018



Merge-Sort: Merge Example

1 2 3 4 5 6 14

L:

A:

6 10 14 22

R:

k=6

2 3 7 8 1 4 5 6

7

i=2 j=4

CSC172, Spring 2018



Merge-Sort: Merge Example

1 2 3 4 5 6 7 14

L:

A:

3 5 15 28 6 10 14 22

R:
2 3 7 8 1 4 5 6

8

i=3 j=4

k=7

CSC172, Spring 2018



Merge-Sort: Merge Example

1 2 3 4 5 6 7 8

L:

A:

3 5 15 28 6 10 14 22

R:
2 3 7 8 1 4 5 6

i=4 j=4

k=8

CSC172, Spring 2018



The merge procedure

CSC172, Spring 2018

public static void merge(int[] target,
int[] left,
int[] right)

{
int i=0, j=0, k=0;

while (i < left.length && j < right.length) {
if (left[i] < right[j])

target[k++] = left[i++];
else

target[k++] = right[j++];
}

while (i < left.length) target[k++] = left[i++];
while (j < right.length) target[k++] = right[j++];

}



Running time of MergeSort

• The running time can be expressed as a 
recurrence:

(1)   if 1
( )

2 ( / 2) ( )   if 1
n

T n
T n n n

Q =ì
= í +Q >î

solving_trivial_problem   if 1
( )

num_pieces ( / subproblem_size_factor) dividing combining   if 1
n

T n
T n n

=ì
= í + + >î

CSC172, Spring 2018



Merge-Sort Analysis
cn

2 × cn/2 = cn

4 × cn/4 = cn

n/2 × 2c = cn

log n levels

• Total running time: Q(nlogn)
• Total Space: Q (n)

Total: cn log n

n

n/2 n/2

n/4 n/4 n/4 n/4

2 2 2

CSC172, Spring 2018



Recurrence Tree / Repeated Substitution Method

T(n)  =  2T(n/2) + cn n > 1
=  1 n=1

l T(n) = 2T(n/2) + cn
= 2 { 2T(n/22) + c.n/2} + cn
= 22 T(n/22) + c.2n
= 22 {2T(n/23) + c.n/22} + c.2n
= 23 T(n/23) + c.3n
= ……
= 2k T(n/2k) + c.k×n
= ….
= 2log n T(1) + c.(log n)× n  when n/2k = 1  Þ k= log2 n
= 2log n × 1 + c.( log n)× n
= n + c.n log n where 2log n = n

l Therefore, T(n) = O(n log n)

CSC172, Spring 2018



Merge-Sort Summary

Approach: divide and conquer
Time 

– Most of the work is in the merging
– Total time: Q(n log n)

Space: 
– Q(n), more space than other sorts.

CSC172, Spring 2018



Properties of Merge Sort
• Worst case run time O(n log n) is optimal among comparison-based 

sorting algorithms
– O(n log n) comparisons and item moves

• Space complexity S(n) = S(n/2) + cn = Θ(n)
– Big problem!
– Can be made in-place, but too complex
– Only O(log n) space (for recursion) when sorting linked list

• Is stable, not adaptive

• Question: write an iterative version of merge sort 
– Quite complicated (and not required for quiz/exam)

• Recursion > Iteration (slightly), 

CSC172, Spring 2018



Why merge sort?

• Merge sort isn’t an “in place” sort—it requires extra 
storage

• However, it doesn’t require this storage “all at once”

• This means you can use merge sort to sort 
something that doesn’t fit in memory—say, 300 
million census records—then much of the data must 
be kept on backup media, such as a hard drive

• Merge sort is a good way to do this

CSC172, Spring 2018



Using merge sort for large data sets

• Very roughly, here’s how to sort large amounts of data:
– Repeat:

• Read in as much data as fits in memory
• Sort it, using a fast sorting algorithm (quicksort may be a good choice)
• Write out the sorted data to a new file

– After all the data has been written into smaller, individually 
sorted files:
• Read in the initial portion of each sorted file into individual arrays
• Start merging the arrays
• Whenever an array becomes empty, read in more data from its file
• Every so often, write the destination array to the (one) final output file

• When you are done, you will have one (large) sorted file

CSC172, Spring 2018



Quick Sort: Idea

1) Select: pick an element

2) Divide: partition elements so 
that x goes to its final  position E

3) Conquer: recursively sort left 
and right partitions

CSC172, Spring 2018



Quick Sort - Partitioning

l A key step in the Quick sort algorithm is partitioning
the array
l We choose some (any) number p in the array to use as a 

pivot
l We partition the array into three parts:

p

numbers 
less than p

numbers greater than 
or equal to p

p

CSC172, Spring 2018



Quick Sort – Partitioning

CSC172, Spring 2018



Quick Sort – Partitioning – algorithm

Index l scans the sequence from the left, and index r from the right.

Increment l until 
arr[l] is larger than the 
pivot; and
decrement r until 
arr[r] is smaller than 
the pivot. 
Then swap elements 
indexed by l and r.
Repeat until whole 
array is processed.

CSC172, Spring 2018



Quick Sort – Partitioning – algorithm

A final swap with the pivot completes the partitioning.

CSC172, Spring 2018



Basic Quicksort

CSC172, Spring 2018

public static void recursive_qs(int[] arr, int left, int right)
{

if (right <= left) return;

// partition,
int i=left-1, j=right;
while (true) {

while (arr[++i] <= arr[right])
if (i == right) break;

while (arr[--j] >= arr[right])
if (j == left || j == i) break;

if (j <= i) break;
Sort.swap(arr, i, j);

}
if (i < right) Sort.swap(arr, i, right);

// recursively sort the left & the right parts
recursive_qs(arr, left, i-1);
recursive_qs(arr, i+1, right);

}



Properties

• Worst-case run time Ω(n2)
– Which sequence of pivots lead  to this?

• Not stable
• Not adaptive

• Why is it called “quick” sort then?
– Work well on “average”, O(n log n)

CSC172, Spring 2018



Why O(n log n) can be expected?

CSC172, Spring 2018

T (n) = T (n/10) + T (9n/10) + cn



Making Quicksort Quick

• We can make it more likely to work well by 
randomizing the pivot!!!

• It is very slow on almost-equal inputs
– Randomization can fix that too!

CSC172, Spring 2018



Randomized Quick sort

CSC172, Spring 2018

public static void recursive_rqs(int[] arr, int left, int right)
{

if (right <= left) return;

// pick a random pivot
int m = (int)(Math.random() * (right-left+1));
swap(arr, right, left+m);

int i=left-1, j=right;
while (true) {

while (arr[++i] <= arr[right])
if (i == right) break;

while (arr[--j] >= arr[right])
if (j == left || j == i) break;

if (j <= i) break;
Sort.swap(arr, i, j);

}
if (i < right) Sort.swap(arr, i, right);

// recursively sort the left & the right parts
recursive_rqs(arr, left, i-1);
recursive_rqs(arr, i+1, right);

}



GENERIC SORTING ROUTINES

CSC172, Spring 2018



Selection Sort

CSC172, Spring 2018

public static void selection_sort(int[] array) {
int i, j, k;
for (i=0; i< array.length-1; i++) {

j=i;
for (k=i+1; k< array.length; k++)

if (array[k] < array[j]) j=k;
if (j!=i) swap(array, i, j);

}
}



Generic Selection Sort

CSC172, Spring 2018

public static <T extends Comparable<T>> void
selection_sort_generic(T[] array) {

int i, j, k;
for (i=0; i< array.length-1; i++) {

j=i;
for (k=i+1; k< array.length; k++)

if (array[k].compareTo(array[j]) < 0) j=k;

if (j != i) swapGeneric(array, i, j);
}

}



Summary

• Simple Sorting Algorithms
– Bubble Sort, Selection Sort, and Insertion Sort. 

• Optimal Comparison-based Sorting Algorithms
– Merge Sort, Quick Sort

• Later we will also cover Heap Sort

CSC172, Spring 2018



Acknowledgement

• Douglas Wilhelm Harder. 
– Thanks for making an excellent set of slides for ECE 

250 Algorithms and Data Structures course

• Prof. Hung Q. Ngo:
– Thanks for those beautiful slides created for CSC 250 

(Data Structures) course at UB.

• Many of these slides are taken from these two 
sources. 

CSC172, Spring 2018


