
CSC 172– Data Structures and Algorithms

Lecture #16
Spring 2018

Please put away all electronic devices



CSC172, Spring 2018



CSC172, Fall 2017



Announcement

• Extra credit opportunity:
– Sorting dance
• http://www.cs.rochester.edu/courses/172/spring2018/sorti

ng_dance.html
• (Any sorting algorithm)
• You need to have 10+ students 

– Multiple workshop teams together?!
• You have to upload the video to YouTube and provide us the 

link by April 23 (include the list of students participated)
• Also, 2 bonus points (divided among the number of 

participants) for the best dance! 

CSC172, Fall 2017



How it will impact

• It will heal 3 pts of your overall project or exam score.
• Example:
• Your Exam Score:

– 20 out of 35
• Your Project Score:

– 15 out of 30
• Your overall score = 20+15 = 35 out of 65

Sorting Dance will heal by replacing
=min (3 * 20/35, 3 * 15/30) 
= min(1.71, 1.5) 
= 1.5 pts 
with 3 pts.

After the dance, your total score for Projects and Exams will be: 
20+15 -1.5 + 3 = 36.5

CSC172, Fall 2017



BINARY TREES

Extremely useful data structure
Special cases include
- Huffman tree
- Expression tree
- Decision tree (in machine learning)
- Heap data structure (later lecture)

CSC172, Fall 2017



Definition

This is not a binary tree:



Neither is this

CSC172, Fall 2017



Binary Trees

Root

right

rightleft

Depth 2

Height 3

Height 1

5

4 2

3 0

8 1

9

7

3, 7, 1, 9 are leaves

5, 4, 0, 8, 2 are internal nodes

CSC172, Fall 2017



Ancestors and Descendants

5

4 2

3 0

8 1

9

1, 0, 4, 5 are ancestors of 1

7
0, 8, 1, 7 are descendants of 0

CSC172, Fall 2017



Application: Expression Trees

4*(3+2) – (6-3)*5/3

-

*

4 +

3 2

/

3*

- 5

6 3

CSC172, Fall 2017



How to construct Expression Trees?

CSC172, Fall 2017

4*(3+2) – (6-3)*5/3

4 3 2 + * 6 3 – 5 * 3 / -

Infix

Postfix

Shunting Yard Algorithm



How to construct Expression Trees?

CSC172, Fall 2017

4 3 2 + * 6 3 – 5 * 3 / -

*4 + 6 3 - /*52 3 -3



How to construct Expression Trees?

CSC172, Fall 2017

*4 + 6 3 - /*52 3 -3

Stack



How to construct Expression Trees?

CSC172, Fall 2017

* 6 3 - /*5 3 -

4 +

23

Stack



How to construct Expression Trees?

CSC172, Fall 2017

*

6 3 - /*5 3 -

4 +

23

Stack



How to construct Expression Trees?

CSC172, Fall 2017

* 6 3

- /*5 3 -

4 +

23

Stack



CSC172, Fall 2017

*

6 3

-

/*5 3 -

4 +

23

Stack



How to construct Expression Trees?

CSC172, Fall 2017

*

6 3

-

/*

5

3 -

4 +

23

Stack



How to construct Expression Trees?

CSC172, Fall 2017

*

6 3

-

/

*

5

3 -

4 +

23

Stack



How to construct Expression Trees?

CSC172, Fall 2017

*

6 3

-

/

*

5

3

-

4 +

23



How to construct Expression Trees?

CSC172, Fall 2017

*

6 3

-

/

*

5

3

-

4 +

23



How to construct Expression Trees?

CSC172, Fall 2017

*

6 3

-

/

*

5

3

-

4 +

23



Finally!

4*(3+2) – (6-3)*5/3

-

*

4 +

3 2

/

3*

- 5

6 3

CSC172, Fall 2017



Another Application: Character Encoding

• UTF-8 encoding: 
– Each character occupies 8 bits
– For example, ‘A’ = 0x41

• A text document with 109 characters is 109 bytes long

• But characters were not born equal

CSC172, Fall 2017



English Character Frequencies

CSC172, Fall 2017



Variable-Length Encoding: Idea

• Encode letter E with fewer bits, say bE bits
• Letter J with many more bits, say bJ bits
• We gain space if

•

where f is the frequency vector

• Problem: how to decode?

bE · fE + bJ · fJ < 8fE + 8fJ

CSC172, Fall 2017



One Solution: Prefix-Free Codes

1 0 1 1 1 0 1 0 0

c e b a

CSC172, Fall 2017



Printing a Hierarchy

CSC172, Fall 2017

• The easiest way of printing a hierarchy (tree)

c172

labs

lab1.pdf lab2.pdf

lectures

l1.pdf l2.pdf



WHY ONLY BINARY TREE?

CSC172, Fall 2017



Any Tree can be “Encoded” as a Binary Tree

CSC172, Fall 2017



LMC-RS Representation

• In this representation, every node has two pointers:
– LMC (Left-most-child)
– RS (Right Sibling)

CSC172, Fall 2017



LMC-RS Representation
public class Node
{

public int key;
public Node lmc, rs;

public Node(int item)
{

key = item;
lmc= rs= null;

}
}

key

lmc rs

CSC172, Fall 2017



FULL VS. COMPLETE BINARY 
TREE

CSC172, Fall 2017



Full Binary Tree

CSC172, Fall 2017

5

4 2

3 0

8 1

Each node is either
(1) an internal node with exactly 

two non-empty children or 
(2) a leaf



Complete Binary Tree

CSC172, Fall 2017

5

4 2

3 0 19

8 127
6 1

3

• Has a restricted shape 
obtained by starting at the 
root and filling the tree by 
levels from left to right.

• In the complete binary tree of 
height d, all levels except 
possibly level d−1 are 
completely full. 

• The bottom level has its nodes 
filled in from the left side.



Let’s see the examples again

CSC172, Fall 2017



Full vs. Complete Binary Tree

CSC172, Fall 2017

5

4 2

3 0

8 1

5

4 2

3 0 19

8 1
2

7 6 1
3

Full but not 
complete

Complete 
but not full



TREE USING JAVA

CSC172, Fall 2017



A BTNode in Java
public class Node
{

public int key;
public Node left, right;

public Node(int item)
{

key = item;
left = right = null;

}
}

key

left right

CSC172, Fall 2017



TREE WALKS/TRAVERSALS

There are many ways to traverse a binary tree
- (reverse) In order
- (reverse) Post order
- (reverse) Pre order
- Level order = breadth first

CSC172, Fall 2017



Inorder Traversal

Inorder-Traverse(BTNode root)

- Inorder-Traverse(root.left)
- Visit(root)
- Inorder-Traverse(root.right)

Also called the (left, node, right) order

CSC172, Fall 2017



void inorder_print(BTNode root) 
{

if (root != null) {
inorder_print(root.left);
printNode(root);
inorder_print(root.right);

}
}

Inorder Printing in C++

“Visit” the node

CSC172, Fall 2017



In Picture

5

4 2

3 0

8 1

9

7

3

4

8

7

0

1

5

9

2

CSC172, Fall 2017



Run Time

• Suppose “visit” takes O(1)-time, say c sec
– nl = # of nodes on the left sub-tree
– nr = # of nodes on the right sub-tree
– Note: n - 1 = nl + nr

• T(n) = T(nl) + T(nr) + c
• Induction: T(n) ≤ cn, i.e. T(n) = O(n)
• T(n) ≤ cnl + cnr + c

= c(n-1) + c
= cn

CSC172, Fall 2017



Reverse Inorder Traversal

• RevInorder-Traverse(root.right)
• Visit(root)
• RevInorrder-Traverse(root.left)

The (right, node, left) order

CSC172, Fall 2017



The other 4 traversal orders

• Preorder: (node, left, right)
• Reverse preorder: (node, right, left)
• Postorder: (left, right, node)
• Reverse postorder: (right, left, node)

We’ll talk about level-order later

CSC172, Fall 2017



What is the preorder output for this tree?

5

4 2

3 0

8 1

9

7

5 4 3 0 8 7 1 2 9

CSC172, Fall 2017



What is the postorder output for this tree?

5

4 2

3 0

8 1

9

7

3 7 8 1 0 4 9 2 5

CSC172, Fall 2017



Questions to Ponder
void inorder_print(BTNode root) {

if (root != NULL) {
inorder_print(root.left);
printNode(root);
inorder_print(root.right);

}
}

Write the above routine without the recursive calls?

Use a stack

Don’t use a stack

CSC172, Fall 2017

Try this for fun! Not required for
Exam or Quiz



Reconstruct the tree from inorder+postorder

3 4 8 7 0 1 5 9 2Inorder

Preorder 5 4 3 0 8 7 1 2 9

5

CSC172, Fall 2017



Questions to Ponder

• Can you reconstruct the tree given its postorder and 
preorder sequences?

• How about inorder and reverse postorder?

• How about other pairs of orders?

• How many trees are there which have the same in/post/pre-
order sequence? (suppose keys are distinct)

CSC172, Fall 2017



Number of trees with a given inorder sequence

Cn =
nX

i=1

Ci�1Cn�i

C0 = 1

Cn =
1

n+ 1

✓
2n

n

◆
⇡ 4n

n3/2
p
⇡

Catalan numbers

CSC172, Fall 2017

https://en.wikipedia.org/wiki/Catalan_number

Catalan numbers:
Not required for Exam or Quiz



What is a traversal order good for?

• Many things

• E.g., Evaluate(root) of an expression tree
– If root is an operand, return the operand
– Else
• A = Evaluate(root.left)
• B = Evaluate(root.right)
• Return A root.key B

– root.key is one of the operators

• What traversal order is the above?

CSC172, Fall 2017



Level-Order Traversal

5

4 2

3 0

8 1

9

7

5 4 2 3 0 9 8 1 7

CSC 172, Fall 2017



How to do level-order traversal?

5

4 2

3 0

8 1

9

7

5

4 2

3 0 9

8 1

7

A (FIFO) Queue

CSC 172, Fall 2017



Level-Order Print in Java
void levelorder_print(BTNode root) {

// Implement

}

CSC172, Fall 2017



Level-Order Print in Java
void printLevelOrder()

{
Queue<BTNode> queue = new LinkedList<BTNode>();
queue.offer(root);
while (!queue.isEmpty())
{

BTNode currNode = queue.poll();
System.out.print(currNode.getPayLoad() + " ");

if (currNode.left != null) {
queue.offer(currNode.left);

}

if (currNode.right != null) {
queue.offer(currNode.right);

}
}

}
CSC 172, Fall 2017



What if we change the Queue into a Stack
void print__________Order()

{
Stack<BTNode> stack = new Stack<BTNode>();
stack.push(root);
while (!stack.isEmpty())
{

BTNode tempNode = stack.pop();
System.out.print(tempNode.getPayLoad() + " ");

/*Enqueue left child */
if (tempNode.left != null) {

stack.push(tempNode.left);
}

/*Enqueue right child */
if (tempNode.right != null) {
stack.push(tempNode.right);
}

}
}

What traversal is this?

Reverse Preorder

CSC 172, Fall 2017

What if we change the Queue into a Stack
void print__________Order()

{
Stack<BTNode> stack = new Stack<BTNode>();
stack.push(root);
while (!stack.isEmpty())
{

BTNode tempNode = stack.pop();
System.out.print(tempNode.getPayLoad() + " ");

/*Enqueue left child */
if (tempNode.left != null) {

stack.push(tempNode.left);
}

/*Enqueue right child */
if (tempNode.right != null) {
stack.push(tempNode.right);
}

}
}

What traversal is this?

Reverse Preorder

CSC 172, Fall 2017



ANOTHER EXAMPLE 
WITHOUT RECURSION

CSC172, Fall 2017



How to do in-order traversal? (without recursion)

5

4 2

3 0

8 1

9

7

5

4 2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output
CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

4 2

3 0

8 1

9

7

5

4 2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

5

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

4 2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

5 4

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

4 2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

5

3 4

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

5

3

4

4

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

5

3

4

0

4

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

5

3

4

0

4

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

5

3

4

0

4 8

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

5

3

4

0

4 8 7

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

5

3

4

4 8 7 0

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

5

3

4

4 8 7 0

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

3

4

4 8 7 0 1

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

3

4

4 8 7 0 1 5

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

3

4

4 8 7 0 1 5

2

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

3

4

4 8 7 0 1 5 9

CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

5

2

3 0

8 1

9

7

5

2

3 0 9

8 1

7

A Stack

Using a Stack!
Just use a Stack instead of a 
Queue 

Output

3

4

4 8 7 0 1 5 9 2

CSC 172, Fall 2017



Summary

We have covered:
– Definition of a tree data structure and its 

components
– LMC-RS vs 2-Children Tree
– Concepts of:

• Root, internal, and leaf nodes
• Parents, children, and siblings
• Ancestors and descendants
• Full vs Complete Tree
• Tree Traversal



Acknowledgement

• Douglas Wilhelm Harder. 
– Thanks for making an excellent set of slides for ECE 

250 Algorithms and Data Structures course

• Prof. Hung Q. Ngo:
– Thanks for those beautiful slides created for CSC 250 

(Data Structures) course at UB.

• Many of these slides are taken from these two sources. 

CSC172, Spring 2018


