CSC 172- Data Structures and Algorithms

Lecture #16
Spring 2018
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Announcement

Extra credit opportunity:

— Sorting dance

e http://www.cs.rochester.edu/courses/172/spring2018/sorti
ng dance.html

* (Any sorting algorithm)
* You need to have 10+ students
— Multiple workshop teams together?!

* You have to upload the video to YouTube and provide us the
link by April 23 (include the list of students participated)

* Also, 2 bonus points (divided among the number of
participants) for the best dance!
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How it will impact

It will heal 3 pts of your overall project or exam score.
« Example:
* Your Exam Score:
— 20 out of 35
* Your Project Score:
— 15 out of 30
* Your overall score = 20+15 = 35 out of 65

Sorting Dance will heal by replacing
=min (3 * 20/35, 3 * 15/30)
=min(1.71, 1.5)

= 1.5 pts

with 3 pts.

After the dance, your total score for Projects and Exams will be:
20+15-1.5+3=36.5
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Extremely useful data structure

Special cases include

- Huffman tree

- Expression tree

- Decision tree (in machine learning)
Heap data structure (later lecture)

BINARY TREES
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Definition

This is not a binary tree:
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Neither is this
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3,7, 1, g are leaves

5, 4, 0, 8, 2 are internal nodes



Ancestors and Descendants

1, 0,4, D are ancestors of 1

0, 3, 1, 7 are descendants of o
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Application: Expression Trees

4%(3+2) - (6-3)*5/3
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How to construct Expression Trees?

4*(3+2) - (6-3)*5/3
§  —

4 32+ *63-5=*3/ -
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How to construct Expression Trees?

4 32+ *63-5>*3/ -
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How to construct Expression Trees?
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How to construct Expression Trees?
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How to construct Expression Trees?
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How to construct Expression Trees?
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How to construct Expression Trees?
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How to construct Expression Trees?
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How to construct Expression Trees?
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How to construct Expression Trees?




How to construct Expression Trees?
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Finally!

4%(3+2) - (6-3)*5/3
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Another Application: Character Encoding

 UTF-8 encoding:
— Each character occupies 8 bits
— For example, ‘A’ = 0x41

« Atext document with 10° characters is 10° bytes long

« But characters were not born equal
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English Character Frequencies

0.14
0.12

0.1 -

0.08

0.06

0.04

0.02

0

abcdefghijklImnopgrstuvwxyz
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Variable-Length Encoding: Idea

Encode letter E with fewer bits, say bg bits
Letter J with many more bits, say b, bits
We gain space if

b - fE+b5-f7 <8fg+8f,

where fis the frequency vector

Problem: how to decode?

CSC172, Fall 2017



One Solution: Prefix-Free Codes

0
Q)
a 0 1
oo
d o

c eb a
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» The easiest way of printing a hierarchy (tree)
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126.pdf
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WHY ONLY BINARY TREE?
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Any Tree can be “Encoded” as a Binary Tree
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LMC-RS Representation

* In this representation, every node has two pointers:
— LMC (Left-most-child)
— RS (Right Sibling)

CSC172, Fall 2017



LMC-RS Representation

public class Node

{
public int key;
public Node lmc, rs;
public Node(int 1tem)
{
key = 1tem;
Ilmc= rs= null;
¥
3

key

1mc rs
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FULL VS. COMPLETE BINARY
TREE
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Full Binary Tree
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Complete Binary Tree




Let’s see the examples again
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Full vs. Complete Binary Tree
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TREE USING JAVA
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A BTNode In Java

public class Node

i

public int key;
public Node left, right;

public Node(int 1tem)
{

key = 1tem;
left = right = null;

key

left right
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There are many ways to traverse a binary tree
- (reverse) In order

- (reverse) Post order

- (reverse) Pre order

- Level order = breadth first

TREE WALKS/TRAVERSALS
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Inorder Traversal

Inorder-Traverse(BTNode root)
- Inorder-Traverse(root.left)
- Visit(root)

- Inorder-Traverse(root.right)

Also called the (left, node, right) order
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Inorder Printing in C++

void inorder print(BTNode root)
{

if (root != null) {
inorder_print(root.left);
printNode(root);
inorder_print(root.right);

“Visit” the node
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In Picture
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Run Time

« Suppose “visit” takes O(1)-time, say ¢ sec
—n, = # of nodes on the left sub-tree
—n, = # of nodes on the right sub-tree
—Note:n-1=n,+n,

 T(n)=T(n)+T(n)+c

 Induction: T(n) =cn, i.e. T(n)=0(n)

« T(n)=scn,+cn, +c

=c(n-1) +c
=cn
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Reverse Inorder Traversal

 RevInorder-Traverse(root.right)
* Visit(root)
 RevInorrder-Traverse(root.left)

The (right, node, left) order
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The other 4 traversal orders

* Preorder: (node, left, right)

» Reverse preorder: (node, right, left)
« Postorder: (left, right, node)

* Reverse postorder: (right, left, node)

We'll talk about level-order later
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What is the preorder output for this tree?




What is the postorder output for this tree?




Questions to Ponder

void inorder print(BTNode root) {
if (root != NULL) {
inorder_print(root.left);
printNode(root);
inorder print(root.right);

Write the above routine without the recursive calls?

Use a stack
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Reconstruct the tree from inorder+postorder

Il 3/4 8 7 0 1 5 9 2

Rt 54 3 0 8 7 /1 2 |9
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Questions to Ponder

Can you reconstruct the tree given its postorder and
preorder sequences?

How about inorder and reverse postorder?
How about other pairs of orders?

How many trees are there which have the same in/post/pre-
order sequence? (suppose keys are distinct)
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Number of trees with a given inorder sequence

Catalan numbers

Cn — i C'—lc’n—i
1=1

Co=1

1 2n 4"
C, = ~
n+ 1 (n) n3/2.\/m

https://en.wikipedia.org/wiki/Catalan_number
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What is a traversal order good for?
* Many things

« E.g., Evaluate(root) of an expression tree
— If root is an operand, return the operand

— Else
* A = Evaluate(root.left)
e B = Evaluate(root.right)
e Return A root.key B

— root.key is one of the operators

« What traversal order is the above?
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Level-Order Traversal
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How to do level-order traversal?

A (FIFO) Queue
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Level-Order Print in Java

void levelorder_ print(BTNode root) {

// Implement
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Level-Order Print in Java

void printLevelOrder()

{

Queue<BTNode> queue = new LinkedList<BTNode>();
queue.offer(root);
while (!'queue.isEmpty())

{

BTNode currNode = queue.poll();
System.out.print(currNode.getPayLoad() + " ");

1f (CcurrNode.left !'= null) {
queue.offer(currNode.left);
3

1f (CcurrNode.right !'= null) {
queue.offer(currNode.right);
¥

CSC 172, Fall 2017



What if we change the Queue into a Stack

vold print

{

Order()

Stack<BTNr -~ "J-_'"-" mmn CLoaall An'ru,\,.l,.“ .
stack.pusl What if we change the Queue into a Stack

while (!s

{

BTNod
Systel

/*Eng
1f (t

S
¥
/*Eng
1f (t

votd print— Order() hat traversal is this?

Stack<BTNode> stack = new Stack<BTNode>();
stack.push(root);

while (!stack.isEmpty())
{ Pty What traversal is this?

BTNode tempNode = stack.pop(); ;
System.out.print(tempNode.getPayLoad() + " ");

/*Enqueue left child */

if (tempNode.left != null) { _
stack.push(tempNode.left);
}

/*Enqueue right child */

if (tempNode.right != null) {
stack.push(tempNode.right);

}
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}
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ANOTHER EXAMPLE
WITHOUT RECURSION
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How to do in-order traversal? (without recursion)

(A stock

Output
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How to do in-order traversal? (without recursion)

Output
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How to do in-order traversal? (without recursion)

Output
CSC 172, Fall 2017



How to do in-order traversal? (without recursion)

Output
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How to do in-order traversal? (without recursion)

Output
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How to do in-order traversal? (without recursion)

Output
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How to do in-order traversal? (without recursion)

Output
CSC 172, Fall 2017




How to do in-order traversal? (without recursion)

Output
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How to do in-order traversal? (without recursion)

Output
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How to do in-order traversal? (without recursion)

Output
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How to do in-order traversal? (without recursion)

Output
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How to do in-order traversal? (without recursion)

Output
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How to do in-order traversal? (without recursion)

Using a Stack!
Just use a Stack instead of a
Queue

e/\

A Stack

Output

CSC 172, Fall 2017




How to do in-order traversal? (without recursion)

Using a Stack!
Just use a Stack instead of a
Queue

a/\

-

A Stack

Output
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How to do in-order traversal? (without recursion)

Using a Stack!
Just use a Stack instead of a
Queue

@/\

A Stack

Output
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How to do in-order traversal? (without recursion)

Using a Stack!
Just use a Stack instead of a
Queue

@/\

A Stack

Output
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Summary

We have covered:

— Definition of a tree data structure and its
components

— LMC-RS vs 2-Children Tree

— Concepts of:
* Root, internal, and leaf nodes
« Parents, children, and siblings
* Ancestors and descendants
* Full vs Complete Tree
* Tree Traversal
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