CSC 172- Data Structures and Algorithms

Lecture #16
Spring 2018

Please put away all electronic devices

al0] a1l al2] a[3] al4] al5] al6] a[7] al8] al9]

xm \;7% ﬂwgu

«_A_L_Im_n

CSC172, Fall 2017

Announcement

Extra credit opportunity:

— Sorting dance

e http://www.cs.rochester.edu/courses/172/spring2018/sorti
ng dance.html

* (Any sorting algorithm)
* You need to have 10+ students
— Multiple workshop teams together?!

* You have to upload the video to YouTube and provide us the
link by April 23 (include the list of students participated)

* Also, 2 bonus points (divided among the number of
participants) for the best dance!

CSC172, Fall 2017

How it will impact

It will heal 3 pts of your overall project or exam score.
« Example:
* Your Exam Score:
— 20 out of 35
* Your Project Score:
— 15 out of 30
* Your overall score = 20+15 = 35 out of 65

Sorting Dance will heal by replacing
=min (3 * 20/35, 3 * 15/30)
=min(1.71, 1.5)

= 1.5 pts

with 3 pts.

After the dance, your total score for Projects and Exams will be:
20+15-1.5+3=36.5

CSC172, Fall 2017

Extremely useful data structure

Special cases include

- Huffman tree

- Expression tree

- Decision tree (in machine learning)
Heap data structure (later lecture)

BINARY TREES

CSC172, Fall 2017

Definition

This is not a binary tree:

M

¥ Ak L‘;‘”}"'-&“

- -

. - httpiAivwawhort.purd Ue.edu/

Neither is this

Binary Trees

Depth 2

Root

|

Height 3

vV \\right

\ right

\

Height 1

CSC172, Fall 2017

3,7, 1, g are leaves

5, 4, 0, 8, 2 are internal nodes

Ancestors and Descendants

1, 0,4, D are ancestors of 1

0, 3, 1, 7 are descendants of o

CSC172, Fall 2017

Application: Expression Trees

4%(3+2) - (6-3)*5/3

CSC172, Fall 2017

How to construct Expression Trees?

4*(3+2) - (6-3)*5/3
§ —

4 32+ *63-5=*3/ -

CSC172, Fall 2017

How to construct Expression Trees?

4 32+ *63-5>*3/ -

VISIOISIOICOISIOIOIOIO]S

How to construct Expression Trees?

WOLWOLOYLOOOOWLY

Stack

7/ \

CCCCCCCCCCCCCCC

How to construct Expression Trees?

LOLLOORLY

Stack

How to construct Expression Trees?

©OLOOBLY

Stack

How to construct Expression Trees?

QEOORVY

Stack

GICIOIOLS

I

How to construct Expression Trees?

CIOI01®

Stack

How to construct Expression Trees?

OI01O

CSC172, Fall 2017

Stack

How to construct Expression Trees?

LY

3

CSC172, Fall 2017

How to construct Expression Trees?

How to construct Expression Trees?

@ csc172017

Finally!

4%(3+2) - (6-3)*5/3

CSC172, Fall 2017

Another Application: Character Encoding

 UTF-8 encoding:
— Each character occupies 8 bits
— For example, ‘A’ = 0x41

« Atext document with 10° characters is 10° bytes long

« But characters were not born equal

CSC172, Fall 2017

English Character Frequencies

0.14
0.12

0.1 -

0.08

0.06

0.04

0.02

0

abcdefghijklImnopgrstuvwxyz

CSC172, Fall 2017

Variable-Length Encoding: Idea

Encode letter E with fewer bits, say bg bits
Letter J with many more bits, say b, bits
We gain space if

b - fE+b5-f7 <8fg+8f,

where fis the frequency vector

Problem: how to decode?

CSC172, Fall 2017

One Solution: Prefix-Free Codes

0
Q)
a 0 1
oo
d o

c eb a

CSC172, Fall 2017

| | [] n

bootstrap.html

Printing a Hierarch
demo.html
hide.js
images
L— textbook.jpg
index.html
index.html.backup

» The easiest way of printing a hierarchy (tree)

labs
1abl10.pdf
labl1l. pdf
labl. pdf
lab2.pdf
lab3.pdf
lab4. pdf
Lab4.zip
lab5.pdf
lab6.pdf
C172 lab7.pdf
lab7. tex
Lab7.zip
! 1 lab8. pdf

lab9. pdf

URList.java

URNode. java
Labs.html

labs lectures

lectures
110. pdf

1
111, pdf
labl.pdf lab2.pdf 11.pdf 12.pdf e
114, pdf

115, pdf
116.pdf
117, pdf
118, pdf
119. pdf
11, pdf

120. pdf
121. pdf
122. pdf
123. pdf
124, pdf
125. pdf
126.pdf
127.pdf
12.pdf

CSC172, Fall 2017

WHY ONLY BINARY TREE?

CCCCCCCCCCCCCCC

Any Tree can be “Encoded” as a Binary Tree

A A
//\\ B/
B CDETFG / \
/N /NSNS
H I J] K L M N | D
/\ | P
N O P Q / \
K F
/ \ \
P L G
/ /

LMC-RS Representation

* In this representation, every node has two pointers:
— LMC (Left-most-child)
— RS (Right Sibling)

CSC172, Fall 2017

LMC-RS Representation

public class Node

{
public int key;
public Node lmc, rs;
public Node(int 1tem)
{
key = 1tem;
Ilmc= rs= null;
¥
3

key

1mc rs

CSC172, Fall 2017

FULL VS. COMPLETE BINARY
TREE

CCCCCCCCCCCCCCC

Full Binary Tree

CSC172, Fall 2017

Complete Binary Tree

Let’s see the examples again

CSC172, Fall 2017

Full vs. Complete Binary Tree

CSC172, Fall 2017

TREE USING JAVA

CCCCCCCCCCCCCCC

A BTNode In Java

public class Node

i

public int key;
public Node left, right;

public Node(int 1tem)
{

key = 1tem;
left = right = null;

key

left right

CSC172, Fall 2017

There are many ways to traverse a binary tree
- (reverse) In order

- (reverse) Post order

- (reverse) Pre order

- Level order = breadth first

TREE WALKS/TRAVERSALS

CSC172, Fall 2017

Inorder Traversal

Inorder-Traverse(BTNode root)
- Inorder-Traverse(root.left)
- Visit(root)

- Inorder-Traverse(root.right)

Also called the (left, node, right) order

CSC172, Fall 2017

Inorder Printing in C++

void inorder print(BTNode root)
{

if (root != null) {
inorder_print(root.left);
printNode(root);
inorder_print(root.right);

“Visit” the node

CSC172, Fall 2017

In Picture

CSC172, Fall 2017

Run Time

« Suppose “visit” takes O(1)-time, say ¢ sec
—n, = # of nodes on the left sub-tree
—n, = # of nodes on the right sub-tree
—Note:n-1=n,+n,

 T(n)=T(n)+T(n)+c

 Induction: T(n) =cn, i.e. T(n)=0(n)

« T(n)=scn,+cn, +c

=c(n-1) +c
=cn

CSC172, Fall 2017

Reverse Inorder Traversal

 RevInorder-Traverse(root.right)
* Visit(root)
 RevInorrder-Traverse(root.left)

The (right, node, left) order

CSC172, Fall 2017

The other 4 traversal orders

* Preorder: (node, left, right)

» Reverse preorder: (node, right, left)
« Postorder: (left, right, node)

* Reverse postorder: (right, left, node)

We'll talk about level-order later

CSC172, Fall 2017

What is the preorder output for this tree?

What is the postorder output for this tree?

Questions to Ponder

void inorder print(BTNode root) {
if (root != NULL) {
inorder_print(root.left);
printNode(root);
inorder print(root.right);

Write the above routine without the recursive calls?

Use a stack

CSC172, Fall 2017

Reconstruct the tree from inorder+postorder

Il 3/4 8 7 0 1 5 9 2

Rt 54 3 0 8 7 /1 2 |9

CSC172, Fall 2017

Questions to Ponder

Can you reconstruct the tree given its postorder and
preorder sequences?

How about inorder and reverse postorder?
How about other pairs of orders?

How many trees are there which have the same in/post/pre-
order sequence? (suppose keys are distinct)

CSC172, Fall 2017

Number of trees with a given inorder sequence

Catalan numbers

Cn — i C'—lc’n—i
1=1

Co=1

1 2n 4"
C, = ~
n+ 1 (n) n3/2.\/m

https://en.wikipedia.org/wiki/Catalan_number

CSC172, Fall 2017

What is a traversal order good for?
* Many things

« E.g., Evaluate(root) of an expression tree
— If root is an operand, return the operand

— Else
* A = Evaluate(root.left)
e B = Evaluate(root.right)
e Return A root.key B

— root.key is one of the operators

« What traversal order is the above?

CSC172, Fall 2017

Level-Order Traversal

CSC 172, Fall 2017

How to do level-order traversal?

A (FIFO) Queue

CSC 172, Fall 2017

Level-Order Print in Java

void levelorder_ print(BTNode root) {

// Implement

CSC172, Fall 2017

Level-Order Print in Java

void printLevelOrder()

{

Queue<BTNode> queue = new LinkedList<BTNode>();
queue.offer(root);
while (!'queue.isEmpty())

{

BTNode currNode = queue.poll();
System.out.print(currNode.getPayLoad() + " ");

1f (CcurrNode.left !'= null) {
queue.offer(currNode.left);
3

1f (CcurrNode.right !'= null) {
queue.offer(currNode.right);
¥

CSC 172, Fall 2017

What if we change the Queue into a Stack

vold print

{

Order()

Stack<BTNr -~ "J-_'"-" mmn CLoaall An'ru,\,.l,.“ .
stack.pusl What if we change the Queue into a Stack

while (!s

{

BTNod
Systel

/*Eng
1f (t

S
¥
/*Eng
1f (t

votd print— Order() hat traversal is this?

Stack<BTNode> stack = new Stack<BTNode>();
stack.push(root);

while (!stack.isEmpty())
{ Pty What traversal is this?

BTNode tempNode = stack.pop(); ;
System.out.print(tempNode.getPayLoad() + " ");

/*Enqueue left child */

if (tempNode.left != null) { _
stack.push(tempNode.left);
}

/*Enqueue right child */

if (tempNode.right != null) {
stack.push(tempNode.right);

}

CSC 172, Fall 2017

StGCk.pu:n\Lcmpwuuc.rLgnLJ;

}

CSC 172, Fall 2017

ANOTHER EXAMPLE
WITHOUT RECURSION

CCCCCCCCCCCCCCC

How to do in-order traversal? (without recursion)

(A stock

Output
CSC 172, Fall 2017

How to do in-order traversal? (without recursion)

Output
CSC 172, Fall 2017

How to do in-order traversal? (without recursion)

Output
CSC 172, Fall 2017

How to do in-order traversal? (without recursion)

Output
CSC 172, Fall 2017

How to do in-order traversal? (without recursion)

Output
CSC 172, Fall 2017

How to do in-order traversal? (without recursion)

Output
CSC 172, Fall 2017

How to do in-order traversal? (without recursion)

Output
CSC 172, Fall 2017

How to do in-order traversal? (without recursion)

Output
CSC 172, Fall 2017

How to do in-order traversal? (without recursion)

Output
172, Fall 2017

How to do in-order traversal? (without recursion)

Output
172, Fall 2017

How to do in-order traversal? (without recursion)

Output
172, Fall 2017

How to do in-order traversal? (without recursion)

Output
172, Fall 2017

How to do in-order traversal? (without recursion)

Using a Stack!
Just use a Stack instead of a
Queue

e/\

A Stack

Output

CSC 172, Fall 2017

How to do in-order traversal? (without recursion)

Using a Stack!
Just use a Stack instead of a
Queue

a/\

-

A Stack

Output

CSC 172, Fall 2017

How to do in-order traversal? (without recursion)

Using a Stack!
Just use a Stack instead of a
Queue

@/\

A Stack

Output
CSC 172, Fall 2017

How to do in-order traversal? (without recursion)

Using a Stack!
Just use a Stack instead of a
Queue

@/\

A Stack

Output

CSC 172, Fall 2017

Summary

We have covered:

— Definition of a tree data structure and its
components

— LMC-RS vs 2-Children Tree

— Concepts of:
* Root, internal, and leaf nodes
« Parents, children, and siblings
* Ancestors and descendants
* Full vs Complete Tree
* Tree Traversal

Acknowledgement
* Douglas Wilhelm Harder.
— Thanks for making an excellent set of slides for ECE
250 Algorithms and Data Structures course
 Prof. Hung Q. Ngo:

— Thanks for those beautiful slides created for CSC 250
(Data Structures) course at UB.

* Many of these slides are taken from these two sources.

CSC172, Spring 2018

