CSC 172- Data Structures and Algorithms

Lecture 719
Spring 2018

Please put away all electronic devices

HEAP DATA STRUCTURE

- [llustration of a binary tree 1 use
- Heap sort algorithm

- Magic behind Priority Queues

PRIORITY QUEUE

Recap: Priority Queues

e Stack: FILO

— push(), pop(), peek()
 Queue: FIFO

— offer(), poll(), peek()
Priority Queue:

—Is a Queue

— Each element has a “priority”

— offer() stores new element (with “priority”)

— poll() removes element with highest/lowest priority
— peek () shows that element but doesn’t remove

Code

public static void main(String args[])
{
// Creating empty priority queue
PriorityQueue<Integer> pq =
new PriorityQueue<Integer>(Q);

// hdding items to the pg Head value using peek function::Z
pq.offer(7); The pq elements:
pg.offer(3); 3
/
// Printing the most priority element E;

System.out.println("Head value :"+ pq.peek()); After FemOVing an element

// Printing all elements E;

System.out.println("The pq elements:");

Iterator itr = pq.iterator(); 77

while (itr.hasNext()) .
System.out.println(itr.next()); A'Fter' addlng 2

// Removing the top priority element (or head) and 22
int] dified pQueue 7/

5

- - ("After removing an element™);

itr = pg.iterator(Q);

while (itr.hasNext())
System.out.println(itr.next());

ystem.out.println('After adding 2");

itr = pg.iterator(Q);

while (itr.hasNext())
System.out.println(itr.next());

How to implement a PQ with what’s known

* Using an unsorted ArrayList
— offer takes O(1)
— peek, poll take O(n)

« Using a sorted ArrayList
— offer takes O(n)
— peek, poll take O(1)

« Similarly for a LinkedList

* O(n) is way too slow for high-speed routers!

Need New Designs!

Heap

[llustration of a binary tree in use
- Heap sort alg()rithm

- Priority Queues

HEAP DATA STRUCTURE AND
HEAP SORT ALGORITHM

How can we implement a PQ?

Binary Max Heap

Complete binary tree
- BEvery level 1s filled
- Except possibly the last

Node’s key > children’s
keys

Need to Switch 3 and 5 for making it a heap

Array representation of Heap

Array representation of Heap

peek

int peek() {
return al[0];
}

Adding (offer) 9

10) 8 3 2 6 4 2 1 1

ndex @ @ @ © OQ © 0 @0 O ©

Adding elements (offer)

ndex @ @ @ © OQ © 0 Q@ © 9 ¢

Adding elements (offer)

ndex @ @ @ © OQ © 0 Q@ © 9 ¢

Adding elements (offer)

ndex @ @ @ © OQ © 0 Q@ © 9 ¢

Adding elements (offer)

ndex @ @ @ © OQ © 0 Q@ © 9 ¢

Adding elements (offer)

ndex @ @ @ © OQ © 0 Q@ © 9 ¢

Donel!

offer

volid offer(int data) {

al[size] = data;
bubbleUp(size);
size++;

vold bubbleUp(int pos) {
if (pos > && a[pos] > a[(pos-1)/21) {

swap (a, pos, (pos-1)/2);
bubbleUp ((pos-1)/2) ;

Before we proceed...

ndex @ @ @ © OQ © 0 Q@ © 9 ¢

Answer

12 9 10 3 5 8 4 2 1 1 2 6

©Q © 0 © 09 000 9 ¢ 0

Another practice problem

« Create a max heap by inserting given integers from left to
write.

¢« 2,4,3,7,9,8

Answer:9,7,8,2,4,3

Another practice problem

« Create a max heap by inserting given integers from left to
write.

¢« 2,4,3,7,9,8

Last one!

« CHEMISTRY

— Is it a heap?

=y
p— |‘1.
— : ['y
| P |
%\i .‘ If'\

Remove (poll)

Remove (poll)

Remove (poll)

1) 8 3 2 6 4 P 1 10

nex Q@ @ @ © O © 0 @ @0 ©

Remove (poll)

1) 8 3 2 6 4 2 1

nx @ @ @ © O © 0 0 ©

Remove (poll)

1) 8 3 2 6 4 2 1

nx @ @ @ © O © 0 0 ©

Remove (poll)

1 5 8 3 2 6 4 = 2 1

nex Q@ @ @ © O © 0 @ O

Remove (poll)

8 5 1 3 2 6 4 2 1

nx @ @ @ © O © 0 0 ©

Remove (poll)

8 5 1 3 2 6 4 = 2 1

nex Q@ @ @ © O © 0 @ O

Remove (poll)

8 5 1 3 2 6 4 = 2 1

nex Q@ @ @ © O © 0 @ O

Remove (poll)

8) 6 3 2 1 4 2 1

nex Q@ @ @ © O © 0 @ O

poll

void trickleDown (int pos) {
int left = 2 * pos + 1;

int right = left + 1; //
possibly >= size

int poll() { if (left < size) {
int tmp = al0]; int greaterChild = left;
swap(a, 0,size-1); if (right < size && a[left] <

a[right]) {
greaterChild = right;

size--;
trickleDown (0) ;

return tmp;

} {

}
if (a[greaterChild] > al[pos])

swap(a, greaterChild,

pos) ;
trickleDown (greaterChild) ;

Binary Heap as Priority Queue

- offer takes O(log n)
- peek takes 0(1)
- poll takes O(log n)

* Drawback: search takes a long time

» Extremely simple to implement

Where is a Priority Queue used?

Scheduling jobs on a server

In all kinds of networking protocols
— Buffer/bandwidth management at routers
— Dijkstra’s shortest path in link-state routing

Huffman coding algorithm

Prim’s algorithm for minimum spanning tree.

Heap sort

Note: Heapify is an in-place
algorithm. So, it’s different

* heapify:turn avector/array into a heap [Fses nserting elements into
the heap one after the other

* sink(i, n, array)
— Makes sub-tree rooted at 1 a max heap
— Assumes left & right sub-trees are already max heap

— Sinks node 1 down to the correct level

] Note: sink is same as trickle down
* heap sort(array):

—heapify(array)
—swap roottoarray[n]
—sink(0, n-1, array)

Heapify and heap_sort

void heapify(int[] arr) {
for (int i=arr.length/2; i>=0; i--)
r_sink(arr, i, arr.length);

} Note: Heapify is an in-place
algorithm. So, it’s different

from inserting elements into
the heap one after the other

void heap_sort(int[] arr) {
heapify(arr);
for (int j=arr.length-1; j>=1; j--) {
swap(arr, @: j)3
r_sink(arr, 0, j);

Sinking, Recursively

void r_sink(int[] arr , int i, int n) {
int left = 2*i + 1;
if (n > arr.length || left >= n) return;
int right = left + 1; // possibly >= n
int my pick = (right >= n) ? left :
(arr[right] > arr[left]) ? right : left;

if (arr[i] < arr[my_pick]) {
swap(arr, i, my pick);
r_sink(arr, my_pick, n);

Heap Sort Runtime

* Runtime to heapify:
— Not O(nlog n)
— Rather: O(n)

— Why:
http://www.cs.umd.edu/~meesh/351/mount/lecture
s/lectl4-heapsort-analysis-part.pdf

+ Total Runtime = Heapify + n * Sinking
« =0(n)+ 0O(nlogn)
« = (0(nlogn)

Summary

 Heap
— Min and Max Heap
— Used for implementing Priority Queue
— Used for Sorting
— We never build the tree --- it’s always an array

— Heapify is an in-place algorithm and it’s runtime is
O(n)

Acknowledgement

* Douglas Wilhelm Harder.

— Thanks for making an excellent set of slides for ECE
250 Algorithms and Data Structures course

 Prof. Hung Q. Ngo:

— Thanks for those beautiful slides created for CSC 250
(Data Structures) course at UB.

* Many of these slides are taken from these two sources.

