
CSC 172– Data Structures and Algorithms

Lecture #21
Spring 2018

Please put away all electronic devices





Student Feedback

• Workshop Problems vs. Problems on Quiz
– As you have noticed, for the last couple of quizzes 

most of the problems are similar to those you have 
done in workshop.

– As we will cover less coding problems, this will be the 
case until the end of the semester.

– But, don’t forget Labs are also part of the quizzes. 

Note: Currently, we use Workshops for concepts and Labs for coding

Please let me know whether you are interested in doing more coding problems 
during workshops or you prefer to continue working on the concepts. 



Student Feedback

• Slides before Lecture:
– Most of the time, slides are uploaded within 30 minutes of the 

lecture. 
– Also, slides have many ‘surprise’ elements. 

– I understand that it might be useful for a few student to review the 
slides beforehand. But we encourage students to take note on 
paper and discourage using electronic devices in class. 

– Still, if you want to access the slides beforehand, I would suggest 
visiting http://www.cs.rochester.edu/courses/172/fall2017/

That being said, I will make more conscious effort to post the slides ‘just before’ 
lectures.  



Scheduling an appointment

• Feel free to come during office hours 
– No Appointment required

• Stop by my office anytime and if I am free I will meet

• Send me an email with your availability. Usually, Friday 
afternoon works best for me. But, please check with me 
before coming. 



Lecture Video

• Slides are not readable because of the light
– Please interrupt me and let me know if that is the 

case. 



Extra Credit

• If you have any suggestion, let me know. 

• Curving of course grade: 
– Grading based on Distribution shown in Lecture 1
– I may curve the course (and/or particular components) 

if required 
• No negative curving
• Median would be in the range of B (between B- and B+)



(Self) Balanced Search Trees



Variations of Balanced Binary Search Tree

• AVL

• Red-black

• 2-4

• Splay

• B+ Tree



BSTs are Potentially Good

• In O(h)-time, where h is the height of the tree, we can 
perform
– Search
– Minimum, maximum
– Predecessor, successor
– Insert, Delete

• An n-node binary tree must have height 
h = Ω(log n)
– The best we can hope for is h = O(log n)



Intuitively, How to Keep a Tree’s Height Small?

• For every internal node v
– |left branch of v| ≈ |right branch of v|
– Exactly the same reason quick sort needs balanced 

partition

• AVL trees maintain this property by
– Keeping the heights of left and the right subtrees 

roughly equal

• AVL is more rigid, faster search



AVL TREES

Named after
- Georgy Adelson-Velsky and Evgenii Landis
- First self-balancing binary search tree
- 1962
- http://professor.ufabc.edu.br/~jesus.mena/courses/mc3305-2q-

2015/AED2-10-avl-paper.pdf

Idea: rebalance the tree after an insert/delete



AVL Trees

• Balanced node:
– A node v is “balanced” if its left subtree and right 

subtree have heights differ by at most 1

• An AVL tree is 
– a BST in which every internal node is balanced.

Theorem: an AVL tree on n nodes has 
O(log n)-height



Recurrence for n(h)

For convenience, heights measured to the NULLs

h

n(h) = 1 + n(h� 1) + n(h� 2)

n(1) = 1 n(2) = 2

h� 1 h� 2



Old Friend: Fibonacci
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Not reqd. for Exam or Quiz



But how do we maintain AVL property?

• After an insert
– One subtree might be taller than the other by 2
– Potentially affect the balance of all nodes up to the 

root
– Rebalance

• After a delete
– One subtree might be shorter than the other by 2
– Potentially affect the balance of all nodes up to the 

root
– Rebalance
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Balance

• Let’s define the “balanceness” of a node 
– Balance(v) = height(v.left) – height(v.right)

• We want v’s balance to be in {-1, 0, 1}
– balance = 1 means v is “left heavy”
– balance = -1 means v is “right heavy”

• After inserting a new node
– Let a be the first node on the path back to the root 

that’s not balanced, then a’s new balance is 2 or -2



Example: RR case

Single Rotation
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Example: RL case

Double Rotation
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Picture from Wikipedia
20



Insert

90

30

10 70

40 80

60

110

100 150

130

120 140

8

50

160105

unbalanced

35



Insert

90

30

10 70

40 80

60

110

100 150

130

120 140

8

50

160105

unbalanced

35



Insert

90

30

10 70

40 80

60

110

100 150

130

120 140

8

50

160105

unbalanced

35



Insert

90

30

10 70

40 80

60

110

100 150

130

120 140

8

50

160105

LR

35



Insert

90

30

10 70

80

110

100 150

130

120 140

8 160105

LR

40

60

5035



Insert

90

30

10 70

80

110

100 150

130

120 140

8 160105

LL

40

60

5035



Insert

90

30

10

70

80

110

100 150

130

120 140

8 160105

Balanced Again!

40

60

5035



In-class Exercise

• Adding 37 to the earlier AVL tree
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Delete

• First, delete as in normal BST
– But nodes on path to root might become unbalanced

• Second, fix unbalanced nodes one by one using exactly the 
same strategy
– Might require up to O(log n) rotations

• Insert & delete run in time O(log n)



Deletion Example
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Deletion Example
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Theorems

• Insertion:
– After fixing one node (with a single/double rotation) 

the tree becomes balanced (i.e. AVL again) – why?

• Deletion:
– Fixing one node does not necessarily balance the tree
– Need more fixing up to the root

• Think of an example AVL-tree for which 
Ω(log n) fixes are necessary after a deletion!



Let’s try this!

• Delete 32



Last Example

• Fibonacci Tree



Summary: AVL trees

• AVL trees: 
– All operations logarithmic worst-case because trees are 

always balanced. 
– The height balancing adds no more than a constant factor 

to the speed of insert and delete. 

– Arguments against AVL trees:
• Difficult to program & debug 
• More space for height field 
• Rebalancing takes time 
• Most large searches are done in database systems on disk

– B+ Tree is often used for that
• If amortized logarithmic time is enough, use splay trees (not 

covered)

(Mostly for further 
reading)



Summary (Balanced BST)

• Balanced Search Tree:
– Insertion, Deletion, and Searching O(log n)

• Improvement over O(h) where h = height of the tree
– h can O(n) in the worst case. 

• Is Balanced Search Tree ever used?:
– Yes. Java uses Red-Black tree for constructing TreeMap.
– What is TreeMap?

• A Map (used for accessing values using key)
– Stores (key, value) pair 

• Not a HashMap
• The map is sorted according to the natural ordering of its keys, or 

by a Comparator provided at map creation time



Summary

• What did we cover?
– Heap
– Binary Search Tree (BST)
– Balanced BST

• Data Structures that use these data structures:
– Priority Queue uses Heap
– TreeMap uses Balanced BST
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