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CONNECTEDNESS



Outline

We will use graph traversals to determine:

– Whether one vertex is connected to another



Is A connected to D?

Determining Connections



Determining Connections

Vertex A is marked as visited and pushed onto the queue

A A



Determining Connections

Pop the head, A, and mark and push B, F and G

B F G B F G



Determining Connections

Pop B and mark and, in the left graph, mark and push H
– On the right graph, B has no unvisited adjacent 

vertices

F G H F G



Determining Connections

Popping F results in the pushing of E

G H E G E



Determining Connections

In either graph, G has no adjacent vertices that are unvisited

H E E



Determining Connections

Popping H on the left graph results in C and I being pushed

C I D



Determining Connections

The queue op the right is empty
– We determine A is not connected to D

C I D



Determining Connections

On the left, we pop C and return true because D is adjacent 
to C
– In the left graph, A is connected to D

I



Determining Connections

On the left, we pop C and return true because D is adjacent 
to C
– In the left graph, A is connected to D

I



PATH LENGTH



Outline

This topic looks at another problem solved by breadth-first 
traversals
– Finding all path lengths in an unweighted graph



Determining Distances

Problem:  find the distance from one vertex v to all other 
vertices
– Use a breadth-first traversal
– Vertices are added in layers
– The starting vertex is defined to be in the zeroth 

layer, L0
– While the kth layer is not empty:

• All unvisited vertices adjacent to verticies in Lk are 
added to the (k + 1)st layer

Any unvisited vertices are said to be an infinite distance from 
v



Determining Distances

Consider this graph:  find the distance from A to each other 
vertex



Determining Distances

A forms the zeroeth layer, L0

A



Determining Distances

The unvisited vertices B, F and G are adjacent to A
– These form the first layer, L1

B F G



Determining Distances

We now begin popping L1 vertices: pop B
– H is adjacent to B
– It is tagged L2

F G H



Determining Distances

Popping F pushes E onto the queue
– It is also tagged L2

G H E



Determining Distances

We pop G which has no other unvisited neighbours
– G is the last L1 vertex; thus H and E form the 

second layer, L2

H E



Determining Distances

Popping H in L2 adds C , I, and D to the third layer L3

E C I D

D



Determining Distances

E has no more adjacent unvisited vertices
– Thus C, I, and D form the third layer, L3

C I D

D



Determining Distances

Pop C,I, D. The queue is Empty. Stop. 

D



TOPOLOGICAL SORTING



Topological Sort

In this topic, we will discuss:
– Motivations
– Review the definition of a directed acyclic graph 

(DAG)
– Describe a topological sort and applications



Motivation

Given a set of tasks with dependencies,
is there an order in which we can complete the tasks?



Definition of topological sorting

A topological sorting of the vertices in a DAG 
is an ordering

v1, v2, v3, …, v|V|

such that vj appears before vk if there is a 
path from vj to vk

Example: CSC 171, MTH 150, CSC 172 



Definition of topological sorting

Given this DAG, a topological sort is

H, C, I, D, J, A, F, B, G, K, E, L



Example

For example, there are paths from H, C, I, D and J to 
F, so all these must come before F in a topological 
sort

H, C, I, D, J,A, F,B, G, K, E, L

Clearly, this sorting need not be unique



Applications

Consider  a gentleman is getting ready for a 
dinner out

He must wear the following:
– jacket, shirt, briefs, socks, tie, etc.

There are certain constraints:
– the pants really should go on after the briefs,
– socks are put on before shoes



Otherwise

Gentleman to Superman 



Applications

The following is a task graph for getting dressed:

One topological sort is:
briefs, pants, wallet, keys, belt, socks, shoes, shirt, tie, jacket, iPod, 

watch

A more reasonable topological sort is:
briefs, socks, pants, shirt, belt, tie, jacket, wallet, keys, iPod, watch, 

shoes



Topological Sort

A graph is a DAG if and only if it has a topological 
sorting



Example

On this graph, iterate the following |V| = 12
times
– Choose a vertex v that has in-degree zero
– Let v be the next vertex in our topological sort
– Remove v and all edges connected to it



Example

Let’s step through this algorithm with this 
example
– Which task can we start with?



Example

Of Tasks C or H, choose Task C



Example

Having completed Task C, which vertices 
have in-degree zero?

C



Example

Only Task H can be completed, so we 
choose it

C



Example

Having removed H, what is next?

C, H



Example

Both Tasks D and I have in-degree zero
– Let us choose Task D

C, H



Example

We remove Task D, and now?

C, H, D



Example

Both Tasks A and I have in-degree zero
– Let’s choose Task A

C, H, D



Example

Having removed A, what now?

C, H, D, A



Example

Both Tasks B and I have in-degree zero
– Choose Task B

C, H, D, A



Example

Removing Task B, we note that Task E still 
has an in-degree of two
– Next?

C, H, D, A, B



Example

As only Task I has in-degree zero, we choose 
it

C, H, D, A, B



Example

Having completed Task I, what now?

C, H, D, A, B, I



Example

Only Task J has in-degree zero:  choose it

C, H, D, A, B, I



Example

Having completed Task J, what now?

C, H, D, A, B, I, J



Example

Only Task F can be completed, so choose it

C, H, D, A, B, I, J



Example

What choices do we have now?

C, H, D, A, B, I, J, F



Example

We can perform Tasks G or K
– Choose Task G

C, H, D, A, B, I, J, F



Example

Having removed Task G from the graph, what 
next?

C, H, D, A, B, I, J, F, G



Example

Choosing between Tasks E and K, choose 
Task E

C, H, D, A, B, I, J, F, G



Example

At this point, Task K is the only one that can 
be run

C, H, D, A, B, I, J, F, G, E



Example

And now that both Tasks G and K are 
complete,
we can complete Task L

C, H, D, A, B, I, J, F, G, E, K



Example

There are no more vertices left

C, H, D, A, B, I, J, F, G, E, K, L



Example

Thus, one possible topological sort would be:
C, H, D, A, B, I, J, F, G, E, K, L



Example

Note that topological sorts need not be 
unique:

C, H, D, A, B, I, J, F, G, E, K, L
H, I, J, C, D, F, G, K, L, A, B, E



The topological sort will be your roadmap to
graduation 



Summary

In this topic, we have discussed topological 
sorts
– Sorting of elements in a DAG



MINIMUM SPANNING TREE

CSC 172, Fall 2017 



Outline

In this topic, we will
– Define a spanning tree
– Define the weight of a spanning tree in a 

weighted graph
– Define a minimum spanning tree
– Consider applications
– List possible algorithms



Spanning trees

Given a connected graph with |V| = n vertices, a spanning 
tree is defined a collection of n – 1 edges which connect all n
vertices
– The n vertices and n – 1 edges define a 

connected sub-graph

A spanning tree is not necessarily unique

A spanning tree is a tree which connects all the vertices



Spanning trees

This graph has 16 vertices and 35 edges



Spanning trees

These 15 edges form a minimum spanning tree



Spanning trees

As do these 15 edges:



Spanning trees on weighted graphs

The weight of a spanning tree is the sum of the weights on 
all the edges which comprise the spanning tree
– The weight of this spanning tree is 20



Minimum Spanning Trees

Which spanning tree which minimizes the weight?
– Such a tree is termed a minimum spanning tree

The weight of this spanning tree is 14



Minimum Spanning Trees

If we use a different vertex as the root, we get a different 
tree, however, this is simply the result of one or more 
rotations



Unweighted graphs

Observation
– In an unweighted graph, we nominally give each 

edge a weight of 1
– Consequently, all minimum spanning trees have 

weight |V| – 1



Application

Consider supplying power to
– All circuit elements on 

a board

Computer Networks:
– Broadcasting 

messages to all 
nodes

A minimum spanning tree 
will give the lowest-cost 
solution

www.commedore.ca

www.kpmb.com



Application

Consider attempting to find the best means of connecting a 
number of LANs
– Minimize the number

of bridges
– Costs not strictly

dependant on 
distances



Application

A minimum spanning tree will provide the optimal solution



Application
Consider an ad hoc wireless network

– Any two terminals can connect with any others

Problem:
– Errors in transmission increase with transmission length
– Can we find clusters of terminals which can communicate 

safely?



Application

Find a minimum spanning tree



Application

Remove connections which are too long

This clusters terminals into smaller and more manageable 
sub-networks



Algorithms

Two common algorithms for finding minimum spanning trees 
are:
– Prim’s algorithm (Next topic)
– Kruskal’s algorithm (We won’t cover)



Summary

This topic covered
– The definition of spanning trees, weighted 

graphs, and minimum spanning trees
– Applications generally involve networks 

(electrical or communications)



PRIM’S ALGORITHM
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Outline

This topic covers Prim’s algorithm:
– Finding a minimum spanning tree
– The idea and the algorithm
– An example



Strategy

Suppose we take a vertex 
– Given a single vertex v1, it forms a minimum 

spanning tree on one vertex  

v1



Strategy

Add that adjacent vertex v2 that has a connecting edge e1 of 
minimum weight
– This forms a minimum spanning tree on our two 

vertices and e1 must be in any minimum spanning 
tree containing the vertices v1 and v2

v1

v2

e1



Strategy

Strategy:
– Suppose we have a known minimum spanning 

tree on k < n vertices
– How could we extend this minimum spanning 

tree?



Strategy
Add that edge ek with least 
weight that connects this 
minimum spanning tree to 
a new vertex vk + 1

– This does create a 
minimum spanning 
tree on k + 1
nodes—there is no 
other edge we could 
add that would 
connect this vertex

– Does the new edge, 
however, belong to 
the minimum 
spanning tree on all 
n vertices?

vk + 1

ek



Strategy

Suppose it does not
– Thus, vertex vk + 1 is connected to the minimum 

spanning tree via another sequence of edges

vk + 1

ek



Strategy

Where at least one edge (let’s assume !") would be greater 
than !#

Therefore, our minimum spanning tree must contain ek

vk + 1

ek

ez

!" ≥ !#



Strategy

Recall that we did not prescribe the value of k, and thus, k
could be any value, including k = 1

vk + 1

ek

e



Strategy

Recall that we did not prescribe the value of k, and thus, k
could be any value, including k = 1
– Given a single vertex v1, it forms a minimum 

spanning tree on one vertex  

v1



Strategy

Add that adjacent vertex v2 that has a connecting edge e1 of 
minimum weight
– This forms a minimum spanning tree on our two 

vertices and e1 must be in any minimum spanning 
tree containing the vertices v1 and v2

v1

v2

e1



Minimum Spanning Trees

Prim’s algorithm for finding the minimum spanning tree 
states:
– Start with an arbitrary vertex to form a minimum 

spanning tree on one vertex
– At each step, add that vertex v not yet in the 

minimum spanning tree that has an edge with 
least weight that connects v to the existing 
minimum spanning sub-tree

– Continue until we have n – 1 edges and n vertices



Prim’s Algorithm

Initialization:
– Select a root node and set its distance as 0
– Set the distance to all other vertices as ∞ 
– Set all vertices to being unvisited
– Set the parent of all vertices to null



Prim’s Algorithm

Iterate while there exists an unvisited vertex with distance < 
∞
– Select that unvisited vertex with minimum 

distance
– Mark that vertex as having been visited
– For each adjacent vertex, if the weight of the 

connecting edge is less than the current distance 
to that vertex:

• Update the distance to equal the weight of the edge
• Set the current vertex as the parent of the adjacent 

vertex



Prim’s Algorithm

Halting Conditions:
– There are no unvisited vertices 

• which have a distance < ∞ (important for unconnected 
graph)

If all vertices have been visited, we have a spanning tree of 
the entire graph

If there are vertices with distance ∞, then the graph is not 
connected and we only have a minimum spanning tree of the 
connected sub-graph containing the root



Prim’s Algorithm

Let us find the minimum spanning tree for the following 
undirected weighted graph



Prim’s Algorithm

A B C D E
A 0,A inf inf inf inf



Prim’s Algorithm

A B C D E
A 0,A 6,A inf 1,A inf



Prim’s Algorithm

A B C D E
A 0,A 6,A inf 1,A inf
D,A 2,D inf 1,D



Prim’s Algorithm

A B C D E
A 0,A 6,A inf 1,A inf
D,A 2,D inf 1,D
E,D 2,D 5,E



Prim’s Algorithm

A B C D E
A 0,A 6,A inf 1,A inf
D,A 2,D inf 1,D
E,D 2,D 5,E
B,D 5,E



Prim’s Algorithm

A B C D E
A 0,A 6,A inf 1,A inf
D,A 2,D inf 1,D
E,D 2,D 5,E
B,D 5,E
C,E



Minimal Spanning Tree

CSC 172, Fall 2017 

A

B

C

D

E

1

22

5



Prim’s Algorithm

To summarize:
– we begin with a vertex which represents the root
– starting with this trivial tree and iteration, we find 

the shortest edge which we can add to this 
already existing tree to expand it

This is a reasonably efficient algorithm:  the number of visits 
to vertices is kept to a minimum



Summary

We have seen an algorithm for finding minimum spanning 
trees
– Start with a trivial minimum spanning tree and 

grow it
Prim’s algorithm finds an edge with least weight which grows 
an already existing tree



DIJKSTRA’S ALGORITHM 

CSC 172, Fall 2017 



Dijkstra’s algorithm 

Let us find the shortest distance from A to every other nodes 
for the following undirected weighted graph



Dijkstra’s algorithm 

A B C D E
A 0,A inf inf inf inf



Dijkstra’s algorithm 

A B C D E
A 0,A 6,A inf 1,A inf



Dijkstra’s algorithm 

A B C D E
A 0,A 6,A inf 1,A inf
D,A 3,D inf 2,D



Dijkstra’s algorithm 

A B C D E
A 0,A 6,A inf 1,A inf
D,A 3,D inf 2,D
E,D 3,D 7,E



Dijkstra’s algorithm 

A B C D E
A 0,A 6,A inf 1,A inf
D,A 3,D inf 2,D
E,D 3,D 7,E
B,D 7,E



Dijkstra’s algorithm 

A B C D E
A 0,A 6,A inf 1,A inf
D,A 3,D inf 2,D
E,D 3,D 7,E
B,D 7,E
C,E



Dijkstra’s algorithm 

CSC 172, Fall 2017 

A

B

C

D

E

1

22

5



Dijkstra’s vs Prim’s

• A, B = 5
• B,C = 5
• A, C = 8



ANALYSIS OF DIJKSTRA’S 
ALGORITHM 

CSC 172, Fall 2017 
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Adjacency matrix

The matrix entry (j, k) is set to true if there is an edge (vj, vk)

– Requires Q(|V|2) memory
– Determining if vj is adjacent to vk is O(1)
– Finding all neighbors of vj is Q(|V|)

1 2 3 4 5 6 7 8 9
1 T T
2
3 T
4 T T
5 T T T
6 T
7 T
8 T
9



Adjacency list

Most efficient for algorithms is an adjacency list
– Each vertex is associated with a list of its 

neighbors

– Requires Q(|V| + |E|) memory
– On average:

• Determining if vj is adjacent to vk is 

• Finding all neighbors of vj is 

1    • → 2 → 4
2    •
3    • → 5
4    • → 2 → 5
5    • → 2 → 3 → 8
6    • → 9
7    • → 9
8    • → 4
9    •

E
V

æ öQç ÷
è ø

O E
V

æ ö
ç ÷
è ø



– On average:
• Determining if vj is adjacent to vk is 

• checking this |V| number of times: O(|E|);

O E
V

æ ö
ç ÷
è ø



Implementation and analysis

The initialization requires Q(|V|) memory and run time

We iterate |V| – 1 times, each time finding next closest vertex to 
the source
– Iterating through the table requires is Q(|V|) time
– Each time we find a vertex, we must check all of its neighbors
– With an adjacency matrix, the run time is Q(|V|(|V| + |V|)) = 
Q(|V|2)

– With an adjacency list, the run time is Q(|V|2 + |E|) = Q(|V|2) as 
|E| = O(|V|2)

Can we do better?
– Recall, we only need the closest vertex 
– How about a priority queue?



Pseudocode (Using PQ)

CSC 172, Fall 2017 
Source: http://www.cs.dartmouth.edu/~thc/cs10/lectures/0509/0509.html

Runtime:  O(log |V|) 



Let’s find the runtime

CSC 172, Fall 2017 

while (!queue.isEmpty()) {    // O(|V|)
u = queue.extractMin();  // O(log |V|) 

while (!queue.isEmpty()) {   
for (each vertex v adjacent to u) {

How many times?:  
We are traversing the whole adjacency list.

So, O(|E|)

So: total runtime = O(|V|log |V| + |E|log|V|)  = O(|E|log|V|) 

relax(u, v); Runtime:  O(log |V|)  



Implementation and analysis

The initialization still requires Q(|V|) memory and run time
– The priority queue will also requires O(|V|) memory
– We must use an adjacency list, not an adjacency matrix

We iterate |V| -1 times, each time finding the closest vertex to the source
– Place the distances into a priority queue
– The size of the priority queue is O(|V|)
– Thus, the work required for this is O(|V| log(|V|))

Is this all the work that is necessary?
– Recall that each edge visited may result in updating the priority 

queue
– Thus, the work required for this is O(|E| log(|V|))

Thus, the total run time is O(|V| ln(|V|) + |E| log(|V|)) = O(|E| log(|V|))



Summary

We have seen an algorithm for finding single-source shortest 
paths
– Start with the initial vertex
– Continue finding the next vertex that is closest

Dijkstra’s algorithm always finds the next closest vertex
– It solves the problem in O( |E| log(|V|)) time using 

Priority Queue
– The algorithm can be further improved to run in 

time O((|V|log(|V|) +  |E| ) --- (using Fibonacci Heap; 
We won’t cover it)
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