
CSC 172– Data Structures and Algorithms

Lecture #24
Spring 2018

Please put away all electronic devices

CONNECTEDNESS

Outline

We will use graph traversals to determine:

– Whether one vertex is connected to another

Is A connected to D?

Determining Connections

Determining Connections

Vertex A is marked as visited and pushed onto the queue

A A

Determining Connections

Pop the head, A, and mark and push B, F and G

B F G B F G

Determining Connections

Pop B and mark and, in the left graph, mark and push H
– On the right graph, B has no unvisited adjacent

vertices

F G H F G

Determining Connections

Popping F results in the pushing of E

G H E G E

Determining Connections

In either graph, G has no adjacent vertices that are unvisited

H E E

Determining Connections

Popping H on the left graph results in C and I being pushed

C I D

Determining Connections

The queue op the right is empty
– We determine A is not connected to D

C I D

Determining Connections

On the left, we pop C and return true because D is adjacent
to C
– In the left graph, A is connected to D

I

Determining Connections

On the left, we pop C and return true because D is adjacent
to C
– In the left graph, A is connected to D

I

PATH LENGTH

Outline

This topic looks at another problem solved by breadth-first
traversals
– Finding all path lengths in an unweighted graph

Determining Distances

Problem: find the distance from one vertex v to all other
vertices
– Use a breadth-first traversal
– Vertices are added in layers
– The starting vertex is defined to be in the zeroth

layer, L0
– While the kth layer is not empty:

• All unvisited vertices adjacent to verticies in Lk are
added to the (k + 1)st layer

Any unvisited vertices are said to be an infinite distance from
v

Determining Distances

Consider this graph: find the distance from A to each other
vertex

Determining Distances

A forms the zeroeth layer, L0

A

Determining Distances

The unvisited vertices B, F and G are adjacent to A
– These form the first layer, L1

B F G

Determining Distances

We now begin popping L1 vertices: pop B
– H is adjacent to B
– It is tagged L2

F G H

Determining Distances

Popping F pushes E onto the queue
– It is also tagged L2

G H E

Determining Distances

We pop G which has no other unvisited neighbours
– G is the last L1 vertex; thus H and E form the

second layer, L2

H E

Determining Distances

Popping H in L2 adds C , I, and D to the third layer L3

E C I D

D

Determining Distances

E has no more adjacent unvisited vertices
– Thus C, I, and D form the third layer, L3

C I D

D

Determining Distances

Pop C,I, D. The queue is Empty. Stop.

D

TOPOLOGICAL SORTING

Topological Sort

In this topic, we will discuss:
– Motivations
– Review the definition of a directed acyclic graph

(DAG)
– Describe a topological sort and applications

Motivation

Given a set of tasks with dependencies,
is there an order in which we can complete the tasks?

Definition of topological sorting

A topological sorting of the vertices in a DAG
is an ordering

v1, v2, v3, …, v|V|

such that vj appears before vk if there is a
path from vj to vk

Example: CSC 171, MTH 150, CSC 172

Definition of topological sorting

Given this DAG, a topological sort is

H, C, I, D, J, A, F, B, G, K, E, L

Example

For example, there are paths from H, C, I, D and J to
F, so all these must come before F in a topological
sort

H, C, I, D, J,A, F,B, G, K, E, L

Clearly, this sorting need not be unique

Applications

Consider a gentleman is getting ready for a
dinner out

He must wear the following:
– jacket, shirt, briefs, socks, tie, etc.

There are certain constraints:
– the pants really should go on after the briefs,
– socks are put on before shoes

Otherwise

Gentleman to Superman

Applications

The following is a task graph for getting dressed:

One topological sort is:
briefs, pants, wallet, keys, belt, socks, shoes, shirt, tie, jacket, iPod,

watch

A more reasonable topological sort is:
briefs, socks, pants, shirt, belt, tie, jacket, wallet, keys, iPod, watch,

shoes

Topological Sort

A graph is a DAG if and only if it has a topological
sorting

Example

On this graph, iterate the following |V| = 12
times
– Choose a vertex v that has in-degree zero
– Let v be the next vertex in our topological sort
– Remove v and all edges connected to it

Example

Let’s step through this algorithm with this
example
– Which task can we start with?

Example

Of Tasks C or H, choose Task C

Example

Having completed Task C, which vertices
have in-degree zero?

C

Example

Only Task H can be completed, so we
choose it

C

Example

Having removed H, what is next?

C, H

Example

Both Tasks D and I have in-degree zero
– Let us choose Task D

C, H

Example

We remove Task D, and now?

C, H, D

Example

Both Tasks A and I have in-degree zero
– Let’s choose Task A

C, H, D

Example

Having removed A, what now?

C, H, D, A

Example

Both Tasks B and I have in-degree zero
– Choose Task B

C, H, D, A

Example

Removing Task B, we note that Task E still
has an in-degree of two
– Next?

C, H, D, A, B

Example

As only Task I has in-degree zero, we choose
it

C, H, D, A, B

Example

Having completed Task I, what now?

C, H, D, A, B, I

Example

Only Task J has in-degree zero: choose it

C, H, D, A, B, I

Example

Having completed Task J, what now?

C, H, D, A, B, I, J

Example

Only Task F can be completed, so choose it

C, H, D, A, B, I, J

Example

What choices do we have now?

C, H, D, A, B, I, J, F

Example

We can perform Tasks G or K
– Choose Task G

C, H, D, A, B, I, J, F

Example

Having removed Task G from the graph, what
next?

C, H, D, A, B, I, J, F, G

Example

Choosing between Tasks E and K, choose
Task E

C, H, D, A, B, I, J, F, G

Example

At this point, Task K is the only one that can
be run

C, H, D, A, B, I, J, F, G, E

Example

And now that both Tasks G and K are
complete,
we can complete Task L

C, H, D, A, B, I, J, F, G, E, K

Example

There are no more vertices left

C, H, D, A, B, I, J, F, G, E, K, L

Example

Thus, one possible topological sort would be:
C, H, D, A, B, I, J, F, G, E, K, L

Example

Note that topological sorts need not be
unique:

C, H, D, A, B, I, J, F, G, E, K, L
H, I, J, C, D, F, G, K, L, A, B, E

The topological sort will be your roadmap to
graduation

Summary

In this topic, we have discussed topological
sorts
– Sorting of elements in a DAG

MINIMUM SPANNING TREE

CSC 172, Fall 2017

Outline

In this topic, we will
– Define a spanning tree
– Define the weight of a spanning tree in a

weighted graph
– Define a minimum spanning tree
– Consider applications
– List possible algorithms

Spanning trees

Given a connected graph with |V| = n vertices, a spanning
tree is defined a collection of n – 1 edges which connect all n
vertices
– The n vertices and n – 1 edges define a

connected sub-graph

A spanning tree is not necessarily unique

A spanning tree is a tree which connects all the vertices

Spanning trees

This graph has 16 vertices and 35 edges

Spanning trees

These 15 edges form a minimum spanning tree

Spanning trees

As do these 15 edges:

Spanning trees on weighted graphs

The weight of a spanning tree is the sum of the weights on
all the edges which comprise the spanning tree
– The weight of this spanning tree is 20

Minimum Spanning Trees

Which spanning tree which minimizes the weight?
– Such a tree is termed a minimum spanning tree

The weight of this spanning tree is 14

Minimum Spanning Trees

If we use a different vertex as the root, we get a different
tree, however, this is simply the result of one or more
rotations

Unweighted graphs

Observation
– In an unweighted graph, we nominally give each

edge a weight of 1
– Consequently, all minimum spanning trees have

weight |V| – 1

Application

Consider supplying power to
– All circuit elements on

a board

Computer Networks:
– Broadcasting

messages to all
nodes

A minimum spanning tree
will give the lowest-cost
solution

www.commedore.ca

www.kpmb.com

Application

Consider attempting to find the best means of connecting a
number of LANs
– Minimize the number

of bridges
– Costs not strictly

dependant on
distances

Application

A minimum spanning tree will provide the optimal solution

Application
Consider an ad hoc wireless network

– Any two terminals can connect with any others

Problem:
– Errors in transmission increase with transmission length
– Can we find clusters of terminals which can communicate

safely?

Application

Find a minimum spanning tree

Application

Remove connections which are too long

This clusters terminals into smaller and more manageable
sub-networks

Algorithms

Two common algorithms for finding minimum spanning trees
are:
– Prim’s algorithm (Next topic)
– Kruskal’s algorithm (We won’t cover)

Summary

This topic covered
– The definition of spanning trees, weighted

graphs, and minimum spanning trees
– Applications generally involve networks

(electrical or communications)

PRIM’S ALGORITHM

CSC 172, Fall 2017

Outline

This topic covers Prim’s algorithm:
– Finding a minimum spanning tree
– The idea and the algorithm
– An example

Strategy

Suppose we take a vertex
– Given a single vertex v1, it forms a minimum

spanning tree on one vertex

v1

Strategy

Add that adjacent vertex v2 that has a connecting edge e1 of
minimum weight
– This forms a minimum spanning tree on our two

vertices and e1 must be in any minimum spanning
tree containing the vertices v1 and v2

v1

v2

e1

Strategy

Strategy:
– Suppose we have a known minimum spanning

tree on k < n vertices
– How could we extend this minimum spanning

tree?

Strategy
Add that edge ek with least
weight that connects this
minimum spanning tree to
a new vertex vk + 1

– This does create a
minimum spanning
tree on k + 1
nodes—there is no
other edge we could
add that would
connect this vertex

– Does the new edge,
however, belong to
the minimum
spanning tree on all
n vertices?

vk + 1

ek

Strategy

Suppose it does not
– Thus, vertex vk + 1 is connected to the minimum

spanning tree via another sequence of edges

vk + 1

ek

Strategy

Where at least one edge (let’s assume !") would be greater
than !#

Therefore, our minimum spanning tree must contain ek

vk + 1

ek

ez

!" ≥ !#

Strategy

Recall that we did not prescribe the value of k, and thus, k
could be any value, including k = 1

vk + 1

ek

e

Strategy

Recall that we did not prescribe the value of k, and thus, k
could be any value, including k = 1
– Given a single vertex v1, it forms a minimum

spanning tree on one vertex

v1

Strategy

Add that adjacent vertex v2 that has a connecting edge e1 of
minimum weight
– This forms a minimum spanning tree on our two

vertices and e1 must be in any minimum spanning
tree containing the vertices v1 and v2

v1

v2

e1

Minimum Spanning Trees

Prim’s algorithm for finding the minimum spanning tree
states:
– Start with an arbitrary vertex to form a minimum

spanning tree on one vertex
– At each step, add that vertex v not yet in the

minimum spanning tree that has an edge with
least weight that connects v to the existing
minimum spanning sub-tree

– Continue until we have n – 1 edges and n vertices

Prim’s Algorithm

Initialization:
– Select a root node and set its distance as 0
– Set the distance to all other vertices as ∞
– Set all vertices to being unvisited
– Set the parent of all vertices to null

Prim’s Algorithm

Iterate while there exists an unvisited vertex with distance <
∞
– Select that unvisited vertex with minimum

distance
– Mark that vertex as having been visited
– For each adjacent vertex, if the weight of the

connecting edge is less than the current distance
to that vertex:

• Update the distance to equal the weight of the edge
• Set the current vertex as the parent of the adjacent

vertex

Prim’s Algorithm

Halting Conditions:
– There are no unvisited vertices

• which have a distance < ∞ (important for unconnected
graph)

If all vertices have been visited, we have a spanning tree of
the entire graph

If there are vertices with distance ∞, then the graph is not
connected and we only have a minimum spanning tree of the
connected sub-graph containing the root

Prim’s Algorithm

Let us find the minimum spanning tree for the following
undirected weighted graph

Prim’s Algorithm

A B C D E
A 0,A inf inf inf inf

Prim’s Algorithm

A B C D E
A 0,A 6,A inf 1,A inf

Prim’s Algorithm

A B C D E
A 0,A 6,A inf 1,A inf
D,A 2,D inf 1,D

Prim’s Algorithm

A B C D E
A 0,A 6,A inf 1,A inf
D,A 2,D inf 1,D
E,D 2,D 5,E

Prim’s Algorithm

A B C D E
A 0,A 6,A inf 1,A inf
D,A 2,D inf 1,D
E,D 2,D 5,E
B,D 5,E

Prim’s Algorithm

A B C D E
A 0,A 6,A inf 1,A inf
D,A 2,D inf 1,D
E,D 2,D 5,E
B,D 5,E
C,E

Minimal Spanning Tree

CSC 172, Fall 2017

A

B

C

D

E

1

22

5

Prim’s Algorithm

To summarize:
– we begin with a vertex which represents the root
– starting with this trivial tree and iteration, we find

the shortest edge which we can add to this
already existing tree to expand it

This is a reasonably efficient algorithm: the number of visits
to vertices is kept to a minimum

Summary

We have seen an algorithm for finding minimum spanning
trees
– Start with a trivial minimum spanning tree and

grow it
Prim’s algorithm finds an edge with least weight which grows
an already existing tree

DIJKSTRA’S ALGORITHM

CSC 172, Fall 2017

Dijkstra’s algorithm

Let us find the shortest distance from A to every other nodes
for the following undirected weighted graph

Dijkstra’s algorithm

A B C D E
A 0,A inf inf inf inf

Dijkstra’s algorithm

A B C D E
A 0,A 6,A inf 1,A inf

Dijkstra’s algorithm

A B C D E
A 0,A 6,A inf 1,A inf
D,A 3,D inf 2,D

Dijkstra’s algorithm

A B C D E
A 0,A 6,A inf 1,A inf
D,A 3,D inf 2,D
E,D 3,D 7,E

Dijkstra’s algorithm

A B C D E
A 0,A 6,A inf 1,A inf
D,A 3,D inf 2,D
E,D 3,D 7,E
B,D 7,E

Dijkstra’s algorithm

A B C D E
A 0,A 6,A inf 1,A inf
D,A 3,D inf 2,D
E,D 3,D 7,E
B,D 7,E
C,E

Dijkstra’s algorithm

CSC 172, Fall 2017

A

B

C

D

E

1

22

5

Dijkstra’s vs Prim’s

• A, B = 5
• B,C = 5
• A, C = 8

ANALYSIS OF DIJKSTRA’S
ALGORITHM

CSC 172, Fall 2017

CSC 172, Fall 2017

Adjacency matrix

The matrix entry (j, k) is set to true if there is an edge (vj, vk)

– Requires Q(|V|2) memory
– Determining if vj is adjacent to vk is O(1)
– Finding all neighbors of vj is Q(|V|)

1 2 3 4 5 6 7 8 9
1 T T
2
3 T
4 T T
5 T T T
6 T
7 T
8 T
9

Adjacency list

Most efficient for algorithms is an adjacency list
– Each vertex is associated with a list of its

neighbors

– Requires Q(|V| + |E|) memory
– On average:

• Determining if vj is adjacent to vk is

• Finding all neighbors of vj is

1 • → 2 → 4
2 •
3 • → 5
4 • → 2 → 5
5 • → 2 → 3 → 8
6 • → 9
7 • → 9
8 • → 4
9 •

E
V

æ öQç ÷
è ø

O E
V

æ ö
ç ÷
è ø

– On average:
• Determining if vj is adjacent to vk is

• checking this |V| number of times: O(|E|);

O E
V

æ ö
ç ÷
è ø

Implementation and analysis

The initialization requires Q(|V|) memory and run time

We iterate |V| – 1 times, each time finding next closest vertex to
the source
– Iterating through the table requires is Q(|V|) time
– Each time we find a vertex, we must check all of its neighbors
– With an adjacency matrix, the run time is Q(|V|(|V| + |V|)) =
Q(|V|2)

– With an adjacency list, the run time is Q(|V|2 + |E|) = Q(|V|2) as
|E| = O(|V|2)

Can we do better?
– Recall, we only need the closest vertex
– How about a priority queue?

Pseudocode (Using PQ)

CSC 172, Fall 2017
Source: http://www.cs.dartmouth.edu/~thc/cs10/lectures/0509/0509.html

Runtime: O(log |V|)

Let’s find the runtime

CSC 172, Fall 2017

while (!queue.isEmpty()) { // O(|V|)
u = queue.extractMin(); // O(log |V|)

while (!queue.isEmpty()) {
for (each vertex v adjacent to u) {

How many times?:
We are traversing the whole adjacency list.

So, O(|E|)

So: total runtime = O(|V|log |V| + |E|log|V|) = O(|E|log|V|)

relax(u, v); Runtime: O(log |V|)

Implementation and analysis

The initialization still requires Q(|V|) memory and run time
– The priority queue will also requires O(|V|) memory
– We must use an adjacency list, not an adjacency matrix

We iterate |V| -1 times, each time finding the closest vertex to the source
– Place the distances into a priority queue
– The size of the priority queue is O(|V|)
– Thus, the work required for this is O(|V| log(|V|))

Is this all the work that is necessary?
– Recall that each edge visited may result in updating the priority

queue
– Thus, the work required for this is O(|E| log(|V|))

Thus, the total run time is O(|V| ln(|V|) + |E| log(|V|)) = O(|E| log(|V|))

Summary

We have seen an algorithm for finding single-source shortest
paths
– Start with the initial vertex
– Continue finding the next vertex that is closest

Dijkstra’s algorithm always finds the next closest vertex
– It solves the problem in O(|E| log(|V|)) time using

Priority Queue
– The algorithm can be further improved to run in

time O((|V|log(|V|) +  |E|) --- (using Fibonacci Heap;
We won’t cover it)

Acknowledgement

• A lot of these slides are taken from ECE 250 Algorithms and
Data Structures course (University of Waterloo) offered by
Prof. Douglas W. Harder.

CSC 172, Fall 2017

