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Please put away all electronic devices





Announcements

• This Thursday we will have a pre-Final Exam.

– Will cover time consuming graph algorithms 
• Whatever we have covered last week
• Worth 20 pts of the final Exam
• Other 80 pts on Next Tuesday
• Time: 20 minutes
• Purpose: To give you extra time for other questions on the 

Final
• This questions won’t be repeated on the exam!



Dijkstra’s vs Prim’s

Let us discuss how Dijkstra's and Prim’s algoritms differ



Dijkstra’s vs Prim’s

A B C D E
A 0,A inf inf inf inf

A B C D E
A 0,A inf inf inf inf



Dijkstra’s vs Prim’s

A B C D E
A 0,A 6,A inf 1,A inf

A B C D E
A 0,A 6,A inf 1,A inf



Dijkstra’s vs Prim’s

A B C D E
A 0,A 6,A inf 1,A inf
D,A 2,D inf 1,D

A B C D E
A 0,A 6,A inf 1,A inf
D,A 3,D inf 2,D



Dijkstra’s vs Prim’s

A B C D E
A 0,A 6,A inf 1,A inf
D,A 2,D inf 1,D
E,D 2,D 5,E

A B C D E
A 0,A 6,A inf 1,A inf
D,A 3,D inf 2,D
E,D 3,D 7,E



Dijkstra’s vs Prim’s

A B C D E
A 0,A 6,A inf 1,A inf
D,A 2,D inf 1,D
E,D 2,D 5,E
B,D 5,E

A B C D E
A 0,A 6,A inf 1,A inf
D,A 3,D inf 2,D
E,D 3,D 7,E
B,D 7,E



Dijkstra’s vs Prim’s

A B C D E
A 0,A 6,A inf 1,A inf
D,A 2,D inf 1,D
E,D 2,D 5,E
B,D 5,E
C,E

A B C D E
A 0,A 6,A inf 1,A inf
D,A 3,D inf 2,D
E,D 3,D 7,E
B,D 7,E
C,E



Final Outcome: Prim’s and Dijkstra’s

A

B

C

D

E

1

22

5

They are the 
same!

But, it’s just a 
coincidence. Most of
the time, it will not be
the case

Cost of MSP = 10

Shortest Path from A to C ?

Shortest Path from B to C ?



Dijkstra’s vs Prim’s

• A, B = 5
• B,C = 5
• A, C = 8

An Example where Dijkstra’s (A to B and C) 
and Prim’s produce different output. 



ANALYSIS OF DIJKSTRA’S 
ALGORITHM 





Adjacency matrix

The matrix entry (j, k) is set to true if there is an edge (vj, vk)

– Requires Q(|V|2) memory
– Determining if vj is adjacent to vk is O(1)
– Finding all neighbors of vj is Q(|V|)

1 2 3 4 5 6 7 8 9
1 T T
2
3 T
4 T T
5 T T T
6 T
7 T
8 T
9



Adjacency list

Most efficient for algorithms is an adjacency list
– Each vertex is associated with a list of its 

neighbors

– Requires Q(|V| + |E|) memory
– On average:

• Determining if vj is adjacent to vk is 

• Finding all neighbors of vj is 

1    • → 2 → 4
2    •
3    • → 5
4    • → 2 → 5
5    • → 2 → 3 → 8
6    • → 9
7    • → 9
8    • → 4
9    •

E
V

æ öQç ÷
è ø

O E
V

æ ö
ç ÷
è ø



– On average:
• Determining if vj is adjacent to vk is 

• checking this |V| number of times: O(|E|);

O E
V

æ ö
ç ÷
è ø



Implementation and analysis

The initialization requires Q(|V|) memory and run time

We iterate |V| – 1 times, each time finding next closest vertex to 
the source
– Iterating through the table requires is Q(|V|) time
– Each time we find a vertex, we must check all of its neighbors
– With an adjacency matrix, the run time is Q(|V|(|V| + |V|)) = 
Q(|V|2)

– With an adjacency list, the run time is Q(|V|2 + |E|) = Q(|V|2) as 
|E| = O(|V|2)

Can we do better?
– Recall, we only need the closest vertex 
– How about a priority queue?



Pseudocode for Dijkstra’s Algorithm (Using PQ)



Recall (Adjacency List)

– On average:
• Determining if vj is adjacent to vk is 

• checking this |V| number of times: O(|E|);

O E
V

æ ö
ç ÷
è ø



Let’s find the runtime

while (!queue.isEmpty()) {    // O(|V|)
u = queue.extractMin();  // O(log |V|) 

while (!queue.isEmpty()) {   
for (each vertex v adjacent to u) {

How many times?:  
We are traversing the whole adjacency list.

So, O(|E|)

So: total runtime = O(|V|log |V| + |E|log|V|)  = O(|E|log|V|) 

relax(u, v); Runtime:  O(log |V|)  



Implementation and analysis

The initialization still requires Q(|V|) memory and run time
– The priority queue will also requires O(|V|) memory
– We must use an adjacency list, not an adjacency matrix

We iterate |V| -1 times, each time finding the closest vertex to the source
– Place the distances into a priority queue
– The size of the priority queue is O(|V|)
– Thus, the work required for this is O(|V| log(|V|))

Is this all the work that is necessary?
– Recall that each edge visited may result in updating the priority 

queue
– Thus, the work required for this is O(|E| log(|V|))

Thus, the total run time is O(|V| ln(|V|) + |E| log(|V|)) = O(|E| log(|V|))



Once Again: Dijkstra’s to Prim’s

Source: http://www.cs.dartmouth.edu/~thc/cs10/lectures/0509/0509.html



Now Prim’s
prims (s) { 



Summary

Dijkstra’s algorithm and Prim’s:

– It solves the problem in O( |E| log(|V|)) time using 
Priority Queue

– The algorithm can be further improved to run in 
time O((|V|log(|V|) +  |E| ) --- (using Fibonacci Heap; 
We won’t cover it)





HASHMAP



Motivations

• Balanced search trees
– Store (key, value)-pairs
– O(log n)-time search, insert, delete, max, min
– Relatively complex implementations

• Can we improve running times for basic operations?



Example

• Given a set of (key, value)-pairs
– Keys  are in the set {0, 1, 2, 3, …, n-1}
– Values could be anything

• Store them in an array (direct access table)

• Search/insert/delete takes O(1)-time

v0 NULL v2 NULL … … … … Vn-2 Vn-1

0 1 2 3 … … … … n-2 n-1

I wish I could get such a good runtime



What are the drawbacks?

• Keys are not always integers. 

• Unlikely see such perfect key set in practice
– (Key, Value) = (English Word, Meaning)
– (Key, Value) = (URL, IP address)

• Thus there’ll be lots of NULL entries
– Wastes lots of space because n >> # pairs
– Say keys are 8-byte integers, n = 2256-1



HASH MAP



Map (for storing key-value pair) 

• Wanted: data structure for an online dictionary
• With what we know so far, what are the choices?
– Randomize the keys and insert one by one in a normal BST
– Use Balanced Search Tree
– Sort the entries on the keys, use binary search
– Use TreeMap (which uses Red-Black balanced binary tree 

as the container)

• Runtime
– Search still takes O(log n)-time
– Can we do better?  Yes, O(1) …. 



HASHING
Applying Hash Functions



The hash process

We will break the process into

three independent steps:

Object

32-bit integer

Map to an index 0, ..., M – 1

Deal with collisions

Hashing

Modulus

a) Chained hash tables

b) Open addressing

Linear probing

Quadratic probing (We didn’t cover)

9.1.4

We will try to get each of

these down to O(1)



Hash of an object

• What we want:
• Hash an object into a 32-bit integer
• How to achieve this:

– Write your own hashCode
– Java provides hashCode for free



Java hashCode() 

-862545276 
-1394859631 



Java String hashCode

Returns a hash code for this string. 
The hash code for a String object is 
computed as

s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]

public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {

char val[] = value;

for (int i = 0; i < value.length; i++) {
h = 31 * h + val[i];

}
hash = h;

}
return h;

}



Properties

Necessary properties of such a hash function h are:
– Should be fast:  ideally O(1)
– The hash value must be deterministic

• It must always return the same 32-bit integer each 
time

– Equal objects hash to equal values
• x = y   ⇒ h(x) = h(y)

– If two objects are randomly chosen, there should 
be only a one-in-232 chance that they have the 
same hash value

• We call it collision
We would love: 

Two different objects hash to two different values 
But not possible. So, aim for the best



Collision is simply unavoidable

• Pigeonhole principle
– K+1 pigeons, K holes à at least one hole with ≥ 2 

pigeons

• There are many more objects in the universe than 2^32
– Object set = set of strings of length ≤ 30 characters
– Object set = set of possible URLs
– Object set = set of possible file names in a CD-ROM



NEXT STEP

Done with First level of Hashing. Next?
Another level of Hashing (or Mapping)
Much faster



The hash process

Object

32-bit integer

Map to an index 0, ..., M – 1

Deal with collisions

Modulus, bitwise operator

Chained hash tables
Open addressing



Properties

Necessary properties of this mapping function hM are:
a. Must be fast:  O(1)
b. The hash value must be deterministic

• Given n and M, hM(n) must always return the same 
value

c. If two objects are randomly chosen, there should 
be only a one-in-M chance that they have the 
same value from 0 to M – 1 



Modulus operator

Easiest method:  return the value modulus M

int hash(int n, int M ) {
return n % M;

}

Unfortunately, calculating the modulus (or remainder) is 
expensive
– We can simplify this if M = 2m

– We can use logic operations



How Java Does it in HashMap?

•

int indexFor(int h, int length) 
{
return h & (length-1);
}

Not required for exam.
You need to be familiar with ‘bitwise AND’ 

operator to appreciate this. 

Length = Length of the array = m



Java HashMap get Method

Not required for exam. But, go 
through it to appreciate how Java 

has implemented hashmap
(uses chaining (covered later))



Java HashMap put Method

Source: http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-
b14/java/util/HashMap.java#HashMap.get%28java.lang.Object%29

Not required for exam. But, go 
through it to appreciate how Java 

has implemented hashmap



HashMap addEntry

Not required for exam. But, go 
through it to appreciate how Java 

has implemented hashmap



NEXT STEP:
COLLISION RESOLUTION

Chaining

Open addressing



Background

First, a review:
– We want to store objects in an array of size M
– We want to quickly calculate the bin where we 

want to store the object
• We came up with hash functions—hopefully Q(1)
• Perfect hash functions (no collisions) are difficult to 

design
– We will look at some schemes for  dealing with 

collisions



Chaining and Open Addressing

• Chaining:
– Each index is associated with a linked list:

• Open Addressing:
– Simply move down the table from the `home’ index 

until a free slot is found
• How far at a time?

– Depends on the algorithm



Chaining

Turing

Cantor

Knuth

Karp

Dijkstra

Index Pointer
0
1
2
3
4

Turing Knuth Dijkstra

Karp Cantor



Performance

• Under simple uniform hashing assumption
– i.e. Each object hashed into a bucket with probability 
1/m, uniformly and independent from other objects

• Expected search time Θ(1)

• Worst-case search time Ω(n) – though very unlikely

• Using universal hashing, expected time for n operations is 
Ω(n)



Open Addressing
• Store all entries in the hash table itself, no pointer to the “outside”

– For Linear Probing:
• Calculate the final index X for the key
• If the current location X is full, 

– try the next location X’ = X + c mod M
– Continue until you find a free space

• Advantage
– Less space waste
– Perhaps good cache usage

• Disadvantage
– More complex collision resolution
– Slower operations



Open Addressing

Turing

Cantor

Knuth

Karp

Dijkstra

Index Pointer
0
1
2
3
4
5
6
7

Turing

Knuth

Dijkstra
Karp

Cantor

h(“Knuth”)
h(“Knuth”, 1)

h(“Karp”) h(“Karp”)

h(“Dijkstra”)

h(“Dijkstra”)

h(“Dijkstra”)

For this example:
C = 2; M = 8
X’ = X + C mod M



Conclusion

• HashMap:
– A great data structure that can be used to:

• Search
• Insert 
• Delete 

• In O(1) time. 

– Not good for Range-Query
– Not good for finding Max or Min

– Next, one example for you showing how the whole process.
• For collision resolution, chaining is performed.



Example

As an example, let’s store hostnames and allow a fast look-

up of the corresponding IP address

– The key-value pairs contains 

• (hostname, IP address)

• E.g., ("optimal", 129.97.94.57)
– Hash Function Used: 

• ASCII code of the first character of the host name

– (A terrible choice for Hashcode!!!)

– Final Array Size, M = 8

• That is: all the hostnames need to be mapped to 

values between 0….7



Example

Further explanation:
– Final Array Size, M = 8

• That is: all the hostnames need to be mapped to values between 
0….7

– How to achieve this:
the final hash value (index of the array) of a Hostname will be the last 3 
bits of the first character in the Hostname

Example:
The hash of "optimal" is based on "o"
ASCII Code for "o" is   01101111
The last 3 bits of o is 111. 

111 represents 7
So, ("optimal", 129.97.94.57) should be stored at
index 7 of the array. 
(Note: We will get the same result by performing mod 8 
operation)



Example

The following is a list of the binary representation of each 
letter:
– "a" is 1 and it cycles from there…

a   01100001 n   01101110
b   01100010 o   01101111
c   01100011 p   01110000
d   01100100 q   01110001
e   01100101 r   01110010
f   01100110 s   01110011
g   01100111 t   01110100
h   01101000 u   01110101
i 01101001 v   01110110
j   01101010 w   01110111
k   01101011 x   01111000
l   01101100 y   01111001
m   01101101 z   01111010



Example
Our HashCode:

Our Second (or Final) hash function (indexOf) is:

int hash(String str) {
int firstHash = str.charAt(0);
return firstHash;

}

int indexOf( int firstHash ) { 
return firstHash % 8;

}

int indexOf( int firstHash ) {
return firstHash & 7;

}

OR

Both IndexOf method performs the 
exact same operation



Example

Starting win an array of 8 empty linked lists



Example

The pair ("optimal", 129.97.94.57) is entered into bin 
01101111 = 7



Example

Similarly, as "c" hashes to 3
– The pair ("cheetah", 129.97.94.45) is 

entered into bin 3



Example

The "w" in Wellington also hashes to 7
– ("wellington", 129.97.94.42) is entered into 

bin 7



Example

Why did I add at the beginning of the list?
– Do I have a choice?
– A good heuristic is

“unless you know otherwise, data which has been
accessed recently will be accessed again in the near future”

– It is easiest to access data at the front of a linked list

Heuristics include rules of thumb,
educated guesses, and intuition



Example

Similarly we can insert the host names "augustin" and 
"lowpower"



Example

If we now wanted the IP address for "optimal", we would 
simply hash "optimal" to 7, walk through the linked list, 
and access 129.97.94.57 when we access the node 
containing the relevant string



Example

Similarly, "ashok" and "vlach" are  entered into bin 7



Example

Inserting "ims", "jab", and "cad" doesn’t even out the bins



Example
Indeed, after 21 insertions, the linked lists are becoming 
rather long
– We were looking for O(1) access time, but accessing something in a 

linked list with k objects is O(k)
– But, as long as size of the array is sufficiently larger than the number of 

entries, we are ok (Provided we have a good hash function to begin with)
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