CSC 172- Data Structures and Algorithms

L.ecture 7#25
Spring 2018

Please put away all electronic devices

Announcements

« This Thursday we will have a pre-Final Exam.

— Will cover time consuming graph algorithms
* Whatever we have covered last week
* Worth 20 pts of the final Exam
e Other 80 pts on Next Tuesday
* Time: 20 minutes

e Purpose: To give you extra time for other questions on the
Final

* This questions won’t be repeated on the exam!

Dijkstra’s vs Prim’s

Let us discuss how Dijkstra's and Prim’s algoritms differ

OO

.
e

6
2
1
1

Dijkstra’s vs Prim’s

inf inf inf inf inf inf inf inf

A _[B lc D |E A |8 _lC_ D |E__
A 0,A A 0,A

Dijkstra’s vs Prim’s

c b [E L

inf 1,A inf A

(B ___8B_c_ D JE__
A 0A 6A 0,A 6A

inf 1,A inf

Dijkstra’s vs Prim’s

® - ©

inf 1,A inf 0OA 6,A inf 1A inf
D,A 3,D inf 2,D D,A 2,D inf 1,D

Di'kstra’s VS Prim’s

@éé/

inf 1,A inf inf 1,A inf
D,A 3,D inf 2D D,A 2,D inf 1,D

E,D 3D 7,E E,D 2,D 5,E

Dukstra s vs Prim’s
é?)

inf 1,A inf inf inf
D,A 3,D inf 2,D D,A 2,D inf 1,D
E,D 3,0 7,E E,D 2,D 5,E

B,D /,E B,D 5,E

Dijkstra’s VS Prim’s

5

@Zé/

inf - 1A inf inf 1A inf
D,A 3,D inf 2,D D,A 2,D inf 1,D
E,D 3,0 7,E E,D 2,D 5,E
B,D 7,E B,D 5,E

CE CE

Final Outcome: Prim’'s and Dijkstra’s

They are the
same!

But, it’s just a
coincidence. Most of
the time, it will not be
the case

Cost of MSP =10

Shortest Path from Ato C?

Dijkstra’s vs Prim’s

- A,B=5

J B,C =5 An Example where Dijkstra’s (A to B and C)
and Prim’s produce different output.
« A,C=8

ANALYSIS OF DIUKSTRA’S
ALGORITHM

0 1 2 3 4 o 1—3
o 1 1
1 1| —+—>|3]/
1 2| —+—»[4]/
1 4| —+—»1]/
./

Adajceny Matrix Adajceny List

Adjacency matrix

The matrix entry (j, k) is set to true if there is an edge (v}, v;)

12345678109
1 T

2

3 T

4 T T v,
5 T|T T

6 T
7 T
8 T

9
— Requires O(|V]?) memory

— Determining if v; is adjacent to v is O(1)
— Finding all neighbors of v; is O(| /)

Adjacency list

Most efficient for algorithms is an adjacency list

— Each vertex is associated with a list of its
neighbors

O 0 1 O\ D =~ W N~
°
!
(\®)
l
w
l
o0

— Requires O(|V] + |E|) memory
— On average:
of £
e Determining if Vi is adjacent to v, is ‘V‘

* Finding all neighbors of v; is (/‘

— On average:
L e . E|
* Determining if v; is adjacent to v, is O V]

 checking this IVI number of times: O(IEl);

Implementation and analysis

The initialization requires ®(|/]) memory and run time

We iterate || — 1 times, each time finding next closest vertex to
the source

— lterating through the table requires is ©(|/]) time
— Each time we find a vertex, we must check all of its neighbors

— With an adjacency matrix, the run time is O(|V|(|V| + |V])) =
o1

— With an adjacency list, the run time is O(|))> + |E|) = ©(|V)?) as
[E] = O(VF)

Can we do better?
— Recall, we only need the closest vertex
— How about a priority queue?

Pseudocode for Dijkstra’s Algorithm (Using PQ)

void dijkstra(s) {
queue = new PriorityQueue<Vertex>();
for (each vertex v) {
v.dist = infinity; // can use Integer.MAX VALUE
queue.enqueue(v);
v.pred = null;
}

s.dist = 0;

while (!queue.isEmpty()) {
u = queue.extractMin();
for (each vertex v adjacent to u)
relax(u, v);

void relax(u, v) {
if (u.dist + w(u,v) < v.dist) {
v.dist = u.dist + w(u,v);
v.pred = u;
}
}

Recall (Adjacency List)

— On average:
* Determining if v; is adjacent to v, is OU%/‘]

 checking this IVl number of times: O(IEl);

Let’s find the runtime

while (!queue.isEmpty()) {
u = queue.extractMin();
for (each vertex v adjacent to u)
relax(u, v);

}

Implementation and analysis

The initialization still requires ®(|/|) memory and run time
— The priority queue will also requires O(|/|) memory
— We must use an adjacency list, not an adjacency matrix

We iterate |/] -1 times, each time finding the closest vertex to the source
— Place the distances into a priority queue
— The size of the priority queue is O(|/])
— Thus, the work required for this is O(|V] log(|V]))

Is this all the work that is necessary?

— Recall that each edge visited may result in updating the priority
queue

— Thus, the work required for this is O(|£| log(|/]))

Thus, the total run time is O(|V] In(|¥]) + |E| log(|V])) = O(|E| log(|V]))

Once Again: Dijkstra’s to Prim’s

void dijkstra(s) {
queue = new PriorityQueue<Vertex>();
for (each vertex v) {
v.dist = infinity; // can use Integer.MAX VALUE
queue.enqueue(v);
v.pred = null;
}

s.dist = 0;

while (!queue.isEmpty()) {
u = queue.extractMin();
for (each vertex v adjacent to u)
relax(u, v);

void relax(u, v) {
if (u.dist + w(u,v) < v.dist) {
v.dist = u.dist + w(u,v);
v.pred = u;
}
}

Source: http://www.cs.dartmouth.edu/~thc/cs10/lectures/0509/0509.html

Now Prim’s

void prims (s) {
queue = new PriorityQueue<Vertex>();
for (each vertex v) {
v.dist = infinity; // can use Integer.MAX VALUE
queue.enqueue(v);
v.pred = null;
}

s.dist = 0;

while (!queue.isEmpty()) {
u = queue.extractMin();
for (each vertex v adjacent to u)
relax(u, v);

void relax(u, v) {
if (w(u,v) < v.dist) {
v.dist = w(u,v);
v.pred u;
}
}

Summary

Dijkstra’s algorithm and Prim’s:

— It solves the problem in O(|E| log(|/])) time using
Priority Queue

— The algorithm can be further improved to run in
time O((|Vlog(|V]) + |E|) --- (using Fibonacci Heap;
We won’t cover it)

HASHMAP

Motivations

« Balanced search trees
— Store (key, value)-pairs
— O(log n)-time search, insert, delete, max, min

— Relatively complex implementations

« Can we improve running times for basic operations?

Example
« Given a set of (key, wvalue)-pairs

— Keys are in theset {O, 1, 2, 3, .., n-1}
— Values could be anything

« Store them in an array (direct access table)

« Search/insert/delete takes O(1)-time

-~

[
| wish | could get such a good runtime Q

What are the drawbacks?

« Keys are not always integers.

* Unlikely see such perfect key set in practice
— (Key, Value) = (English Word, Meaning)
— (Key, Value) = (URL, IP address)

* Thus therée’ll be lots of NULL entries
— Wastes lots of space because n >> # pairs
— Say keys are 8-byte integers, n = 22°6-1

HASH MAP

Map (for storing key-value pair)

- Wanted: data structure for an online dictionary
« With what we know so far, what are the choices?

— Randomize the keys and insert one by one in a normal BST
— Use Balanced Search Tree
— Sort the entries on the keys, use binary search

— Use TreeMap (which uses Red-Black balanced binary tree
as the container)

* Runtime

— Search still takes O(log n)-time

— Can we do better? M :/

Applying Hash Functions

HASHING

The hash process

9.1.4

Object

32-bit integer

Map to an index O, ..., M — 1

Deal with collisions a) Chained hash tables
b) Open addressing

Linear probing /

Quadratic probing (We didn’t cover)

Hash of an object

 What we want:
* Hash an object into a 32-bit integer

« How to achieve this:
— Write your own hashCode
— Java provides hashCode for free

Java hashCode()

public static void main(String[] args) {
String strl = "Hello World";
String str2 = "Hello CSC 172";

System.out.println(strl.hashCode());
System.out.println(str2.hashCode());

-862545276
-1394859631

Java String hashCode

Properties

Necessary properties of such a hash function 4 are:

— Should be fast: ideally O(1)

— The hash value must be deterministic
* [t must always return the same 32-bit integer each
time
— Equal objects hash to equal values
cx=y = hx)=h()
— If two objects are randomly chosen, there should
be only a one-in-23? chance that they have the
same hash value

« We call it collision

We would love:
Two different objects hash to two different values
But not possible. So, aim for the best

Collision is simply unavoidable

* Pigeonhole principle

— K+1 pigeons, K holes = at least one hole with > 2
pigeons

* There are many more objects in the universe than 2232
— Object set = set of strings of length < 30 characters
— Object set = set of possible URLs
— Object set = set of possible file names in a CD-ROM

Done with First level of Hashing. Next!?

Another level of Hashing (or Mapping)
Much faster

NEXT STEP

The hash process

Obiject

32-bit integer

Modulus, bitwise operator

Map to an index 0, ..., M — 1

Deal with collisions Chained hash tables
Open addressing

Properties

Necessary properties of this mapping function #,, are:
a. Must be fast: O(1)

b. The hash value must be deterministic
« Given n and M, h,(n) must always return the same
value

c. If two objects are randomly chosen, there should
be only a one-in-M chance that they have the
same value from 0 to M — 1

Modulus operator

Easiest method: return the value modulus M

int hash(int n, int M) {
return n % M;

}

Unfortunately, calculating the modulus (or remainder) is
expensive
— We can simplify this if A7/ =27

— We can use logic operations

How Java Does it in HashMap?

int indexFor(int h, int length)

{
return h & (length-1);

1

Not required for exam.

You need to be familiar with ‘bitwise AND’
operator to appreciate this.

Java HashMap get Method

public V G&t(Object key) {
if (key == null)
return getForNullKey();
int hash = hash(key.hashCode());
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;

}

return null;

Not required for exam. But, go
through it to appreciate how Java

has implemented hashmap
(uses chaining (covered later))

Java HashMap put Method

public V {ﬂpgng key, V value) {
if (key == null)
return putForNullKey(value);
int hash = hash(key.hashCode());
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Obiject k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldvalue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;

}
}
modCount++;
addEntry(hash, key, value, i); through it to appreciate how Java
return null; has implemented hashmap

}

Source: http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/6-
b14/java/util/HashMap.java#tHashMap.get%28java.lang.Object%?29

HashMap addEntry

void " BAAEREry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
if (size++ >= threshold)
resize(2 * table.length);

Not required for exam. But, go

through it to appreciate how Java
has implemented hashmap

Chaining

Open addressing

NEXT STEP:
COLLISION RESOLUTION

Background

First, a review:

— We want to store objects in an array of size M

— We want to quickly calculate the bin where we
want to store the object

* We came up with hash functions—hopefully (1)

 Perfect hash functions (no collisions) are difficult to
design

— We will look at some schemes for dealing with
collisions

Chaining and Open Addressing

» Chaining:

— Each index is associated with a linked list:

* Open Addressing:

— Simply move down the table from the home’ index
until a free slot is found

* How far at a time?
— Depends on the algorithm

A W N — O

Chaining

1

Performance

Under simple uniform hashing assumption

— i.e. Each object hashed into a bucket with probability
1/m, uniformly and independent from other objects

Expected search time O(1)
Worst-case search time Q(n) — though very unlikely

Using universal hashing, expected time for n operations is
Q(n)

Open Addressing

« Store all entries in the hash table itself, no pointer to the “outside”

— For Linear Probing:
* Calculate the final index X for the key

* |f the current location X is full,
— try the next location X’ = X+ ¢ mod M
— Continue until you find a free space

- Advantage
— Less space waste
— Perhaps good cache usage

» Disadvantage
— More complex collision resolution

— Slower operations

Open Addressing

For this example:
C=2,M=8
X' =X+ Cmod M

h(“Knuth”)

nuth g
l ' I h(“Karp”)

h(“Dijkstra”)

‘ h(“Dijkstra”)
h(“Karp”)

N o o BN -, O

h(“Dijkstra”)

Conclusion

 HashMap:

— A great data structure that can be used to:

e Search
* |nsert
 Delete

* InO(1) time.

— Not good for Range-Query
— Not good for finding Max or Min

— Next, one example for you showing how the whole process.
* For collision resolution, chaining is performed.

Example

As an example, let’s store hostnames and allow a fast look-
up of the corresponding IP address

— The key-value pairs contains

* (hostname, IP address)

« E.g., ("optimal™, 129.97.94.57)
— Hash Function Used:

 ASCII code of the first character of the host name
— (Aterrible choice for Hashcode!!!)

— Final Array Size, M = 8

* That is: all the hostnames need to be mapped to
values between O....7

Example

Further explanation:
— Final Array Size, M = 8

* That is: all the hosthames need to be mapped to values between
0....7

— How to achieve this:

the final hash value (index of the array) of a Hostname will be the last 3
bits of the first character in the Hostname

Example:
The hash of "optimal" is based on "o"
ASCII Code for "o" 1is 01101111
The last 3 bits of o is 111.
111 represents /

So, ("optimal", 129.97.94.57) should be stored at
index 7 of the array.

(Note: We will get the same result by performing mod 8
operation)

The following is a list of the binary representation of each

letter:

—"a" is 1 and it cycles from there...

S PFAUW R0 D QN C QD

01100001
01100010
01100011
01100100
01100101
01100116
01100111
011016000
01101001
011010160
01101011
011011600
01101101

Example

N X =< crtw 50T O >

01101110
01101111
01110000
01110001
011100160
01110011
011101600
01110101
01110110
01110111
01111000
01111001
01111010

Example

Our HashCode:

int hash(String str) {
int firstHash = str.charAt(0);
return firstHash;

i

Our Second (or Final) hash function (indexOf) is:

int indexOf(int firstHash) {
return firstHash % 8;
e

o

int i1ndex0f(int firstHash) {
return firstHash & 7;
i

€XacCt same operation

~N O OB WOWN -~ O

~N (o)} %] H w N = (W)

Example

Starting win an array of 8 empty linked lists

Example

The pair ("optimal", 129.97.94.57) is entered into bin
1101111 =7

] optimal 0
129.97.94.57

~N (o)} (%21 H w N = (W)

Example

Similarly, as "c" hashes to 3

— The pair ("cheetah", 129.97.94.45) is
entered into bin 3

] cheetah 0
129.97.94.45

_—>0

_—>0

_—>0

, optimal
129.97.94.57

_>e

Example

The "w" in Wellington also hashes to 7

— ("wellington", 129.97.94.42) is entered into
bin 7

.|cheetah
129.97.94.45

_—>0

_—.}0

~N (o)} (%21 H w N = (W)

_—}0

] wellington optimal 0
129.97.94.42 129.97.94.57

Example

Why did | add at the beginning of the list?
— Do | have a choice?
— A good heuristic is

“‘unless you know otherwise, data which has been

B . accessed recently will be accessed again in the near future”
1 e It is easiest to access data at the front of a linked list
— 0
.|cheetah

129.97.94.45 }_'9
N Heuristics include rules of thumb,
I educated guesses, and intuition
——>0
] wellington optimal .

129.97.94.42 }_’129.97.94.57 0

Example

Similarly we can insert the host names "augustin" and
"lowpower"

_—,}0

jagustin
129.97.94.70

_’0

_—,»0

| cheetah
129.97.94.45

, lowpower
129.97.94.72

_—’0

__’0

, wellington ,optimal
129.97.94.42 129.97.94.57

—’0

Example

If we now wanted the |IP address for "optimal", we would
simply hash "optimal" to 7, walk through the linked list,
and access 129.97.94.57 when we access the node
containing the relevant string

_He

|agustin

—’0
129.97.94.70

_—>e

.|cheetah
129.97.94.45

| lowpower
129.97.94.72

*HO

_—>e

,wellington ,optimal
129.97.94.42 129.97.94.57

_>e

Example

Similarly, "ashok" and "vlach" are entered into bin 7

_—>0
|ashok |agustin 0
129.97.94.73 129.97.94.70
——"0
=cheetah 0
129.97.94.45
,| Llowpower 0
129.97.94.72
__>0
=v1ach 0
129.97.94.25
, optimal ,wellington 0
129.97.94.57 129.97.94.42

Example

Inserting "ims", "jab", and "cad" doesn’t even out the bins

_—>0
| ims _|ashok |agustin 0
129.97.94.14 129.97.94.73 129.97.94.70
,jab .o
129.97.94.99
=cad =cheetah 0
129.97.94.62 129.97.94.45
,| Llowpower 0
129.97.94.72
__>0
, vlach 0
129.97.94.25
, wellington ,optimal 0
129.97.94.42 129.97.94.57

Example

Indeed, after 21 insertions, the linked lists are becoming
rather long

— We were looking for O(1) access time, but accessing something in a
linked list with & objects is O(k)

— But, as long as size of the array is sufficiently larger than the number of
entries, we are ok (Provided we have a good hash function to begin with)

— 0
| ims _|ashok |agustin o
129.97.94.14 129.97.94.73 129.97.94.70
.|bladel |rimpda | bltl jab o
129.97.94.121 129.97.94.148 129.97.94.52 129.97.94.99
.| sachdevl |coiprinter |starcore cad | cheetah e
129.97.94.90 129.97.94.48 129.97.94.118 129.97.94.62 129.97.94.45
,| Llowpower o
129.97.94.72
, ultra7 , egypt RN
129.97.94.107 129.97.94.69
, vlach2 ,/ vlach IR
129.97.94.71 129.97.94.25
, optras-dc2729| Igebotyscoi , wellington ,optimal -
129.97.94.45 129.97.94.166 129.97.94.42 129.97.94.57

Acknowledgement

* Alot of these slides are taken from ECE 250 Algorithms and

Data Structures course (University of Waterloo) offered by
Prof. Douglas W. Harder.

» Special Thanks to Prof. Hung Ngo for his slides.

