
CSC 172– Data Structures and Algorithms

Lecture #5
Spring 2018



STOP

CSC 172, Spring 18

Please go through Chapter 4 before you proceed

http://lti.cs.vt.edu/LTI_ruby/Books/CS172/html/#algo
rithm-analysis



Asymptotic Analysis

we will look at:
– Justification for analysis

– Concept of a growth rate
• the rate at which the cost of an algorithm grows as the size of its input 

grows 

– Asymptotic Notation symbols

– The concept of an upper bound and lower bound for a growth 
rate

• How to estimate these bounds for a simple program
– Counting machine instructions

– Examples

CSC 172, Spring 18



Background

Suppose we have two algorithms, how can 
we tell which is better?

We could implement both algorithms, run 
them both
– Expensive and error prone

Preferably, we should analyze them 
mathematically
– Algorithm analysis

CSC 172, Spring 18



Asymptotic Analysis

In general, we will always analyze algorithms with respect to one 
or more variables

We will begin with one variable:
– The number of items n currently stored in an array or other data 

structure
– The number of items expected to be stored in an array or other data 

structure
– The dimensions of an n × n matrix

Examples with multiple variables:
– Dealing with n objects stored in m memory locations
– Multiplying a k × m and an m × n matrix
– Dealing with sparse matrices of size n × n with m non-zero entries
– Dealing with Graphs

CSC 172, Spring 18



Asymptotic Analysis

Given an algorithm:
– We need to be able to describe these values 

mathematically

– We need a systematic means of using the description of 
the algorithm together with the properties of an 
associated data structure

–

– We need to do this in a machine-independent way

For this, we need Landau symbols and the associated 
asymptotic analysis

CSC 172, Spring 18



Quadratic Growth

Consider the two functions
f(n) = n2 and g(n) = n2 – 3n + 2

Around n = 0, they look very different

CSC 172, Spring 18



Quadratic Growth

Yet on the range n = [0, 1000], they are 
(relatively) indistinguishable:

CSC 172, Spring 18



Quadratic Growth

The absolute difference is large, for example,
f(1000) = 1 000 000
g(1000) =   997 002

but the relative difference is very small

and this difference goes to zero as n → ∞

0.3%0.002998
)1000f(

)1000g()1000f(
<=

-

CSC 172, Spring 18



Polynomial Growth

To demonstrate with another example,
f(n) = n6 and   

g(n) = n6 – 23n5+193n4 –729n3+1206n2 – 648n

CSC 172, Spring 18



Polynomial Growth

Still, around n = 1000, the relative difference is 
less than 3%

CSC 172, Spring 18



Polynomial Growth

The justification for both pairs of polynomials 
being similar is that, in both cases, they each 
had the same leading term:
n2 in the first case, n6 in the second

Suppose however, that the coefficients of the 
leading terms were different
– In this case, both functions would exhibit the 

same rate of growth, however, one would always 
be proportionally larger

CSC 172, Spring 18



Counting Instructions

Because we can count the number 
instructions, we can also estimate how much 
time is required to run one of these 
algorithms on a computer

CSC 172, Spring 18



Example

For example, the time taken to find the difference between 
the maximum and minimum element in an array of n random 
integers will take ! + b	operations, where b is a constant. 

CSC 172, Spring 18

public static int diffMaxMin(int[] anArray) {

if (anArray.length <= 1)
return 0;

int max,min;
max = min = anArray[0];
for (int val: anArray) {

if (val > max) max = val;
if (val < min) min = val;

}
return max - min;

}

T(n) = c (n + b)
= cn + b’ 

(b’ is another constant)

Most of the times, we 
ignore constant terms.
So, 

T(n) = cn



Example 1

CSC 172, Spring 18

! " = $%
Constant Running time



Example 2

CSC 172, Spring 18

! " = $"
Linear Running Time



Example 3

CSC 172, Spring 18

! " = $"%
Quadratic  Running Time



Example 4

CSC 172, Spring 18

! " = $%
" " + 1

2 + $)"	



Linear Search: Best, Worst, and Average Case

CSC 172, Spring 18



Linear and binary search

There are other algorithms which are 
significantly faster as the problem size 
increases

This plot shows maximum
and average number of
comparisons to find an entry
in a sorted array of size n
– Linear search
– Binary search

nCSC 172, Spring 18



Algorithms Analysis

We will use Landau symbols to describe the 
complexity of algorithms
– E.g., adding a list of n doubles will be said to be a 
Q(n) algorithm

CSC 172, Spring 18



ASYMPTOTIC ANALYSIS

CSC 172, Spring 18



ASYMPTOTIC ANALYSIS

- Back of the envelope time/space estimation
- Independent of whether our computer is fast
- Big-o, big-omega, theta

CSC 172, Spring 18



Big-O

f, g : N ! R+

such that f(n)  Cg(n), 8n � n0

f(n) = O(g(n)) i↵ 9 constants C, n0 > 0

CSC 172, Spring 18



Intuition

CSC 172, Spring 18



In English

• f(n) = O(g(n)) means: for n sufficiently large, f(n)
is bounded above by a constant scaling of g(n)
– Does the “English translation” make things worse?

• An algorithm with runtime f(n) is at least as good 
as an algorithm with runtime g(n), asymptotically

CSC 172, Spring 18



Examples

n2 = O(n2)

n2 = O(n2/106)

n = O(n2)

CSC 172, Spring 18



Big-Omega

f, g : N ! R+

such thatf(n) � Cg(n), 8n � n0

f(n) = ⌦(g(n)) i↵ 9 constants C, n0 > 0

CSC 172, Spring 18



In picture

CSC 172, Spring 18



Examples

n log n = ⌦(n)

2n/106 = ⌦(n100)

CSC 172, Spring 18



Equivalence

f(n) = O(g(n)) , g(n) = ⌦(f(n))

CSC 172, Spring 18



Theta

f(n) = ⇥(g(n)) , f(n) = O(g(n) and g(n) = O(f(n))

We say they “have the same growth rate”

CSC 172, Spring 18



In picture

CSC 172, Spring 18



!,Ω, $%&	Θ

CSC 172, Spring 18



What is the runtime?

CSC 172, Spring 18

O(n) or !(#)
From now on, we will 
talk about run-time in 
asymptotic notation!



Example

For example, the time taken to find the difference between 
the maximum and minimum element in an array of n random 
integers will take ! + b	operations, where b is a constant. 

CSC 172, Spring 18

public static int diffMaxMin(int[] anArray) {

if (anArray.length <= 1)
return 0;

int max,min;
max = min = anArray[0];
for (int val: anArray) {

if (val > max) max = val;
if (val < min) min = val;

}
return max - min;

}

Most of the times, we 
ignore constant terms.
So, 

T(n) = O(n)



Example 1

CSC 172, Spring 18

! " = $(1)
Constant Running time



Example 2

CSC 172, Spring 18

! " = $(")
Linear Running Time



Example 3

CSC 172, Spring 18

! " = $("&)
Quadratic  Running Time



Example 4

CSC 172, Spring 18

! " = $ "%



Program Efficiency

• Faster Computer, or Faster Algorithm?

• Insertion Sort:
– Best Case:! "
– Worst Case: ! "#

CSC 172, Spring 18



Runtime Matters

CSC 172, Spring 18



Runtime Matters

CSC 172, Spring 18



Let’s check our understanding

CSC 172, Spring 18

Sort them in ascending order (fastest to slowest) 



Question

CSC 172, Spring 18

k = 2



True / False

CSC 172, Spring 18

TRUE. A better (or more informative) 
answer would be O(n)



Something you must know!

CSC 172, Spring 18



Example 5

CSC 172, Spring 18

! " = $ "		log	"



Example 6

CSC 172, Spring 18

! " = $ "



Linear Search: In Big Oh notation ?

CSC 172, Spring 18



ADDITIONAL SLIDES

CSC 172, Spring 18



Faster Computer, or Faster Algorithm?

CSC 172, Spring 18

Old Machine vs New Machine (10 times faster):
10,000 operations vs 100,000 operations in one hour

1st Column: Five growth rate equations. 
2nd Column: Maximum value of n supported
3rd Column: nʹ, the new maximum size for the problem supported
4th Column: Change in size
5th Column: increase the increase in the problem size as the ratio of nʹ to n.



Asymptotic Analysis for Two functions

CSC 172, Spring 18



Summary

• Faster running time does not imply faster algorithm

• For describing the efficiency of an algorithm:
– You should provide the:

• Upper Bound (Big Oh) and Lower bound (Big Omega)

• You can ignore lower order terms and constants in 
asymptotic notations. 

• From Now on, we will use only these term describing 
efficiency of any algorithms!

CSC 172, Spring 18



Acknowledgement

• Douglas Wilhelm Harder. 
– Thanks for making an excellent set of slides for ECE 

250 Algorithms and Data Structures course

• Prof. Hung Q. Ngo:
– Thanks for those beautiful slides created for CSC 250 

(Data Structures) course at UB.

• Many of these slides are taken from these two 
sources. 

CSC 172, Spring 18


