CSC 172- Data Structures and Algorithms

Lecture #7/
Spring 2018

Abstract Data Type

ADT

CSC 172, Spring 18

Qutline

Accessing the data
Data types

Abstract data types
Collection

List

ArrayList and LinkedList

Accessing the data

Any form of information processing or communication
requires that data must be stored in and accessed from either
main or secondary memory

There are two questions we should ask:

— What do we want to do?
— How can we do it?

This topic will cover Abstract Data Types:
— Models of the storage and access of information

The next topic will cover data structures and algorithms:

— The concrete methods for organizing and accessing data in the
computer

Data Type

 Adata type is a type together with a collection of
operations to manipulate the type.
— Example:

* Aninteger variable is a member of the integer data type.

e Addition is an example of an operation on the integer data
type.

CSC 172, Spring 18

Logical vs Physical

A distinction should be made between:

— The logical concept of a data type and its physical
implementation in a computer program.

— For example:

* Two traditional implementations for the list data type: the
linked list and the array-based list.

* The list data type can therefore be implemented
using a linked list or an array.

Arrays

* The most primitive data structure

 “Array” is commonly used in computer
programming to mean a contiguous block of
memory locations, where each memory location
stores one fixed-length data item.

* By this meaning, an array is a physical data
structure.

CSC 172, Spring 18

Abstract data type (ADT)

* An abstract data type (ADT) is the realization of a
data type as a software component.

— The interface of the ADT is defined in terms of

 Atype and
* A set of operations on that type.

— The behavior of each operation is determined by its inputs
and outputs.

— An ADT does not specify how the data type is
implemented.

— Encapsulation:

* These implementation details are hidden from the user of the
ADT and protected from outside access

CSC 172, Spring 18

Data structure

A data structure is the implementation for an ADT.

— In Java, an ADT and its implementation together make up a
class.

— Each operation associated with the ADT is implemented by a
member function or method.

— The variables that define the space required by a data item are
referred to as data members.

— An object is an instance of a class, that is, something that is
created and takes up storage during the execution of a
computer program.

Data structure often refers to data stored in a computer’s main memory.

File structure often refers to the organization of data on secondary memory

ADT vs Data Structures

Data Type
A?T: Data ltems:
°ype Logical Form
* Operations g

\

Data Structure:
* Storage Space
* Subroutines

Data ltems:
Physical Form

The relationship between data items, abstract data types,
and data structures. The ADT defines the logical form of
the data type. The data structure implements the physical
form of the data type.

CSC 172, Spring 18

COLLECTION AND LIST

Collection

2.1.1

The most general Abstract Data Type (ADT) is that
of a collection

A collection describes structures that store and
give access to objects

The core collection interfaces

| Collection

| Set

|Ust

\Queue Deque | SortedMap

‘ SortedSet

Note that the hierarchy consists of two
distinct trees — a Map is not a

true Collection.

https://docs.oracIe.com/javase/tutoriaI/coIIect
ions/interfaces/index.html

Collection<E>

* public interface Collection<E> extends Iterable<E>

CSC 172, Spring 18

lterable<T>

e publicinterface Iterable<T>

Modifier and Type Method and Description

Iterator<T> iterator()
Returns an iterator over a set of elements of type T.

Implementing this interface allows an
object to be the target of the "foreach"
statement.

Review Lab 3 and learn how you can iterate
an ArraylList using iterator.

CSC 172, Spring 18

public interface lterator<E>

Modifier and Type Method and Description
boolean hasNext()
Retums true if the iteration has more elements.
E next ()
Retums the next element in the iteration.
void remove()

Removes from the underlying collection the last element returned by this iterator (optional operation).

CSC 172, Spring 18

Modifier and Type
boolean

boolean
void
boolean
boolean
boolean
int
boolean
Iterator<g>
boolean
boolean
boolean
int
Object()

<> T[]

Interface Collection<E>

Method and Description

add(E e)

Ensures that this collection contains the specified element (optional operation).

addAll (Collection<? extends E> c)

Adds all of the elements in the specified collection to this collection (optional operation).

clear()

Removes all of the elements from this collection (optional operation).

contains (Object o)

Returns true if this collection contains the specified element.

containsAll (Collection<?> c)

Returns true if this collection contains all of the elements in the specified collection.

equals(Object o)

Compares the specified object with this collection for equality.

hashCode()

Returns the hash code value for this collection.

isEmpty()

Returns true if this collection contains no elements.

iterator()

Returns an iterator over the elements in this collection.

remove (Object o)

Removes a single instance of the specified element from this collection, if it is present (optional operation).
removeAll (Collection<?> c)

Removes all of this collection's elements that are also contained in the specified collection (optional operation).
retainAll(Collection<?> ¢)

Retains only the elements in this collection that are contained in the specified collection (optional operation).
size()

Returns the number of elements in this collection.

toArray()

Returns an array containing all of the elements in this collection.

toArray (T[] a)

Returns an array containing all of the elements in this collection; the runtime type of the returned array is that of the specified array.

CSC 172, Spring 18

List<E>

e public interface List<E> extends Collection<E>

CSC 172, Spring 18

List<E> Methods

Modifier and Type Method and Description
boolean add(E e)
Appends the specified element to the end of this list (optional operation).
void add(int index, E element)
Inserts the specified element at the specified position in this list (optional operation).
boolean addAll (Collection<? extends E> c)
Appends all of the elements in the specified collection to the end of this list, in the order that they are returned by the specified collection's iterator (optional operation).
boolean addAll(int index, Collection<? extends E> c)
Inserts all of the elements in the specified collection into this list at the specified position (optional operation).
void clear()
Removes all of the elements from this list (optional operation).
boolean contains(Object o)
Returns true if this list contains the specified element.
boolean containsAll (Collection<?> c)
Returns true if this list contains all of the elements of the specified collection,
boolean equals(Object o)
Compares the specified object with this list for equality.
E get(int index)
Returns the element at the specified position in this list.
int hashCode()

Returns the hash code value for this list.

CSC 172, Spring 18

List<E> Methods (continued

int index0Of (Object o)

Returns the index of the first occurrence of the specified element in this list, or -1 if this list does not contain the element.
boolean isEmpty()

Returns true if this list contains no elements.
Iterator<E> iterator()

Returns an iterator over the elements in this list in proper sequence.
int lastIndexOf (Object o)

Returns the index of the last occurrence of the specified element in this list, or -1 if this list does not contain the element,
ListIterator<e> listIterator()

Returns a list iterator over the elements in this list (in proper sequence).
ListIterator<g> listIterator(int index)

Returns a list iterator over the elements in this list (in proper sequence), starting at the specified position in the list.
remove(int index)

Removes the element at the specified position in this list (optional operation).
boolean remove (Object o)

Removes the first occurrence of the specified element from this list, if it is present (optional operation).
boolean removeAll (Collection<?> ¢)

Removes from this list all of its elements that are contained in the specified collection (optional operation).
boolean retainAll (Collection<?> ¢)

Retains only the elements in this list that are contained in the specified collection (optional operation).
E set(int index, E element)

Replaces the element at the specified position in this list with the specified element (optional operation).
int size()

Returns the number of elements in this list,
List<E> subList(int fromIndex, int tolIndex)

Returns a view of the portion of this list between the specified fromIndex, inclusive, and toIndex, exclusive,
Object() toArray()

Returns an array containing all of the elements in this list in proper sequence (from first to last element).
<r> T() toArray (T[] a)

Returns an array containing all of the elements in this list in proper sequence (from first to last element); the runtime type of the returned array is that of the specified array.

CSC 172, Spring 18

ArrayList and LinkedList

The Java platform contains two general-
purpose List implementations

Note: ArrayList and LinkedList are both classes, not
interfaces

ArrayList, which is usually the better-performing
implementation, and

LinkedList which offers better performance under certain
circumstances.

CSC 172, Spring 18

class ArrayList<E>

public class ArrayList<E>
extends AbstractList<E>

implements
List<E>,
RandomAccess,

Cloneable,

Serializable

CSC 172, Spring 18

class LinkedList<E>

public class LinkedList<E>
extends AbstractSequentialList<E>

implements
List<E>,
Deque<E>,

Cloneable,

Serializable

CSC 172, Spring 18

Acknowledgement

* Douglas Wilhelm Harder.

— Thanks for making an excellent set of slides for ECE
250 Algorithms and Data Structures course

* Prof. Hung Q. Ngo:

— Thanks for those beautiful slides created for CSC 250
(Data Structures) course at UB.

 Many of these slides are taken from these two
sources.

CSC 172, Spring 18

