
CSC 172– Data Structures and Algorithms

Lecture #8
Spring 2018

Announcements

• Project 1 due tonight

• Project 2 will be out soon

Q & A

• Reminder:
– For sharing your concern anonymously, you can

always go to:
– http://www.cs.rochester.edu/courses/172/spring2018/
– Forms à Feedback Form

Concerns

• I see that it is possible to get extra credit on
Project 1 by scheduling an appointment with a
TA. However I was wondering if it would be
possible to implement a similar system as I had in
CSC 171 where you could explain why you
deserve extra credit in your README and the TAs
decide at their discretion.

Reply

• You should always explain the extra features your
code provides.

• Why Demo:
– 0: Builds rapport
– 1. You should feel good to demo your code!
– 2. It will boost your confidence.
– 3. Code walkthrough would motivate you to write

comments
– 4. If you are not confident enough to demo your code, you

probably do not deserve the extra credit.
– 5. Last, but not the least, it will help us detect plagiarism

Plagiarism

Note: It’s better not to submit your code rather
than cheat.

Someone who cheats must get lower grade than
someone who does not submit his/her work

Using code available online (with/without
citation if exceeds 10% of your code) or getting
code from friends will be treated as plagiarism

Concerns

• When people ask or answer questions, it's often
hard to hear them because of the acoustics of the
auditorium. Would you be willing to make an
effort to repeat what someone has said when
they ask/answer questions so that the whole
class can hear it?

• Certainly I will. But please let me know
immediately if I ever forget to do so.

Concerns (Website on iPad)

• If you could link the mobile css on your website
so that it works on iphone and ipad that would
be great. The header does not load which makes
it impossible to use. It is funny that website
issues are only prevalent for sites for the
computer science department.

• I believe we have fixed it this time! Let me know
if you can access now.

Agenda

• ADT vs Data Structures

List <E> is an ADT whereas
ArrayList<E> and LinkedList<E> are Data Structures

Outline

We will now look at our first abstract data
structure
– Linear ordering
– Operations
– Implementations of an abstract list with:

• Linked lists
• Arrays

– Memory requirements

ArrayList<E> and LinkedList<E>

How are
ArrayList<E> and LinkedList<E> fundamentally different?

Mainly due to Memory Allocation

MEMORY ALLOCATION

Outline

This topic will describe:
– The concrete data structures that can be used to

store information
– The basic forms of memory allocation

• Contiguous
• Linked

– The prototypical examples of these:
• ArrayLists and LinkedLists
• Finally, we will discuss the run-time of queries and

operations on ArrayLists and LinkedLists

Memory Allocation

Memory allocation can be classified as either
– Contiguous
– Linked

Prototypical examples:
– Contiguous allocation: Arrays
– Linked allocation: Linked lists

Contiguous Allocation

• An array stores n objects in a single
contiguous space of memory

• Unfortunately, if more memory is
required, a request for new memory
usually requires copying all information
into the new memory

– In general, you cannot request for the
operating system to allocate to you
the next n memory locations

Linked Allocation

Linked storage such as a linked list
associates two pieces of data with each item
being stored:
– The object itself, and
– A reference to the next item

LIST

Definition

An Abstract List (or List ADT) is linearly
ordered data where the programmer explicitly
defines the ordering

– The most obvious implementation is to use either
an array or linked list

3.1

Operations

Given access to the kth object, gain access to
either the previous or next object

Given two abstract lists, we may want to
– Concatenate the two lists
– Determine if one is a sub-list of the other

3.1.1

Locations and run times

We will consider the amount of time required to
perform actions such as
– finding,
– inserting new entries before or after, or
– erasing entries at

• the first location (the front)
• an arbitrary (kth) location
• the last location (the back or nth)

The run times will be Q(1), O(n) or Q(n)

Operations

Operations at the kth entry of the list include:
3.1.1

Replacement of the objectInsertion of a new object

Access to the object Erasing an object

Recall: List<E>

• public interface List<E> extends Collection<E>

List<E> Methods

List<E> Methods

How does Java Implements List

• http://grepcode.com/file/repository.grepcode.co
m/java/root/jdk/openjdk/6-
b14/java/util/ArrayList.java

• http://grepcode.com/file/repository.grepcode.co
m/java/root/jdk/openjdk/6-
b14/java/util/LinkedList.java

Java ArrayList (Core Members and Constructor)

Object[] elementData; // This is the core container
private int size;
private static final int DEFAULT_CAPACITY = 10;

public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {

this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {

this.elementData = EMPTY_ELEMENTDATA;
} else {

throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);

}
}

How to ensure capacity?

private void grow(int minCapacity) {
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
elementData = Arrays.copyOf(elementData, newCapacity);

}

One sample function: add (E e)

public boolean add(E e) {
ensureCapacityInternal(size + 1);
elementData[size++] = e;
return true;

}

Note: You need
to update size

Performance of ArrayList

• The good
– Dynamic size
– Adding and removing at the end takes O(1)
– Sorting takes O(n log n)
– Allows binary search

• The bad
– add & remove in the middle takes O(n)
– Requires contiguous memory block

Java LinkedList (Core Members and Constructor)

int size = 0;
Node<E> first;
Node<E> last;

public LinkedList() {}

Java Node Class For LinkedList

private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;

Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;

}
}

Doubly Linked Lists

• Can go back and forth

Node

“b”

Node

“c”

Node

“a”

first last

One sample function: add (E e)

public boolean add(E e) {
linkLast(e);
return true;

}

void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)

first = newNode;
else

l.next = newNode;
size++;
modCount++;

}

Lab 5: Your own List

• We will give you the interface: URList

• You need to implement URArrayList and
URLinkedList!

(Note: You do not have to make the classes
generic. But, by this time, you know how
should you proceed if you had to!)

SINGLY LINKED LIST

Linked lists

We will consider these for
– Singly linked lists
– Doubly linked lists

3.1.3

Basic Singly Linked List
class Node {

Node next;
String payload;
Node(String payload, Node next) {

this.payload = payload;
this.next = next;

}
}

SLL Node Structure

payload “some string”

next

Node

“another string”

Linked lists

• Overcome the bad of ArrayLists/arrays
– Add & remove in O(1)-time
– Does not need contiguous block of memory
– Can still grow/shrink dynamically
– Can still sort in O(n log n), with care

• However
– No random access
– Can’t do binary search even if list is sorted
– Unless we use more advanced linked lists

Basic Singly Linked List
class Node {

Node next;
String payload;
Node(String payload, Node next) {
this.payload = payload;
this.next = next;
}

}

SLL Node Structure

payload “some string”

next

Node

“another string”

Constructing a SLL
public static void main(String[] args) {

Node head = new Node("deep”, null);
head = new Node("the", head);
head = new Node("in", head);
head = new Node("rolling", head);
print_list(head);

}

Node

“deep”

head

Node

“the”

head

Node

“in”

head

Node

“rolling”

head

Traverse a SLL, Iteratively

void print_list(Node ptr) {
while (ptr != NULL) {
System.out.println (ptr.payload);

ptr = ptr.next;
}

}

Recursive version?

Traverse a SLL, Recursively

void print_list(Node ptr) {
if (ptr != NULL) {

System.out.println (ptr.payload);
print_list(ptr.next);

}
}

Linear Search

Node iterative_search(String key, Node ptr)
{

while (ptr != NULL &&
!key.equals(ptr.payload))

ptr = ptr.next;
return ptr;

}

Node recursive_search(String key, Node ptr) {
if (ptr != NULL && !key.equals(ptr.payload))

return recursive_search(key, ptr.next);
else

return ptr;
}

Delete: Must Have a Predecessor Pointer

• void del_successor(Node ptr) {

Delete: Must Have a Predecessor Pointer

void del_successor(Node ptr) {
if (ptr == null|| ptr.next == null) return;
Node temp = ptr.next;
ptr.next = temp.next;

}

2/13/18 46

Node

“d”

temp.next

Node

“c”

temp

Node

“b”

ptr

Node

“a”

Reverse a Linked List

• Given a head pointer, return the head pointer to
the reversed list
Node reverse_sll(Node head) {

Node prev = NULL, temp;
while (head != NULL) {

temp = head.next;
head.next = prev;
prev = head;
head = temp;

}
return prev;

}

Insert Into a Sorted List
Node insert_into_sorted_list(Node head, Node node_ptr) {

// insert in the beginning
if (head == NULL ||

node_ptr.payload.compareTo(head.payload)) < 0) {
node_ptr.next = head;
return node_ptr;

}

// insert in the middle, first look for spot
Node prev = head, temp = head.next;
while (temp != NULL &&

temp.payload.compareTo(node_ptr.payload) < 0) {
prev = temp;
temp = temp.next;

}

prev.next = node_ptr;
node_ptr.next = temp;
return head;

}

Properties of Singly Linked Lists

• Delete & Insert: O(1)-time if we know where
– Especially great if we operate on the two ends
– O(1)-time for stack & queue operations

• Search: O(n)-time even if list already sorted
• Waste O(n)-space for all the pointers
– However, this O(n) is only on the pointers!

• What about sorting?
– Insertion sort: O(n2)
– Merge sort: O(n log n)

Properties of Singly Linked Lists

• Many other types of computation can be done
iteratively (or recursively sometimes)
– Count # of members in the list
– Remove duplicate elements
– Swap 2 sub-blocks of two lists
– Remove elements of a given key
– Etc.

• Can’t go backward

Doubly Linked Lists

• Can go back and forth
• Waste one extra pointer per element

DLL Node

“b”

DLL Node

“c”

DLL Node

“a”

Recall: One sample function: add (E e)

public boolean add(E e) {
linkLast(e);
return true;

}

void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)

first = newNode;
else

l.next = newNode;
size++;
modCount++;

}

Singly linked list
3.1.3.1

Front/1st node kth node Back/nth node
Find Q(1) O(n)* Q(1)
Insert Before Q(1) O(n)* Q(n)
Insert After Q(1) Q(1)* Q(1)
Replace Q(1) Q(1)* Q(1)
Erase Q(1) O(n)* Q(n)
Next Q(1) Q(1)* n/a
Previous n/a O(n)* Q(n)

* These assume we have already accessed the kth entry—an O(n) operation

Singly linked list

Front/1st node kth node Back/nth node
Find Q(1) O(n)* Q(1)
Insert Before Q(1) Q(1)* Q(1)
Insert After Q(1) Q(1)* Q(1)
Replace Q(1) Q(1)* Q(1)
Erase Q(1) Q(1)* Q(n)
Next Q(1) Q(1)* n/a
Previous n/a O(n)* Q(n)

By replacing the value in the node in question, we can speed things up

Doubly linked lists

Front/1st node kth node Back/nth node
Find Q(1) O(n)* Q(1)
Insert Before Q(1) Q(1)* Q(1)
Insert After Q(1) Q(1)* Q(1)
Replace Q(1) Q(1)* Q(1)
Erase Q(1) Q(1)* Q(1)
Next Q(1) Q(1)* n/a
Previous n/a Q(1)* Q(1)

* These assume we have already accessed the kth entry—an O(n) operation

Doubly linked lists

kth node
Insert Before Q(1)
Insert After Q(1)
Replace Q(1)
Erase Q(1)
Next Q(1)
Previous Q(1)

Accessing the kth entry is O(n)

Other operations on linked lists

Other operations on linked lists include:
– Allocation the memory requires Q(n) time
– Concatenating two linked lists can be done in Q(1)

• This requires a tail pointer

Main Problem with Linked List

Operation Time
Search O(n)
Insert Search + O(1)
Delete Search + O(1)
Insert front/back O(1)
Delete front/back O(1)

Acknowledgement

• Douglas Wilhelm Harder.
– Thanks for making an excellent set of slides for ECE

250 Algorithms and Data Structures course

• Prof. Hung Q. Ngo:
– Thanks for those beautiful slides created for CSC 250

(Data Structures) course at UB.

• Many of these slides are taken from these two
sources.

